The regular price of a baseball cleats is $80. If the cleats are on sale for 45% off. then: (how to solve this two questions?) a) What is the value of the discount, in dollars? b) What is the final selling price of the cleats, before tax?​

Answers

Answer 1

Answer:

The discount is 36 dollars

The sale price is 44 dollars

Step-by-step explanation:

First find the discount by multiplying the original price by the discount rate

80*45%

Change to decimal form

80*.45

36

The discount is 36 dollars

The sale price is the original price minus the discount

80-36

44

The sale price is 44 dollars


Related Questions

Suppose that c (x )equals 5 x cubed minus 40 x squared plus 21 comma 000 x is the cost of manufacturing x items. Find a production level that will minimize the average cost of making x items.

Answers

Answer

X= 64.8 gives the minimum average cost

Explanation:

The question can be interpreted as

C(x)= 5x^3 -40^2 + 21000x

To find the minimum total cost, we will need to find the minimum of

this function, then Analyze the derivatives.

CHECK THE ATTACHMENT FOR DETAILED EXPLANATION

Two balls are drawn in succession out of a box containing 2 red and 5 white balls. Find the probability that at least 1 ball was​ red, given that the first ball was (Upper A )Replaced before the second draw. (Upper B )Not replaced before the second draw.

Answers

Answer:

With replacement = 14/49without replacement = 3/7

Step-by-step explanation:

Since there are  2 red and 5 white balls in the box, the total number of balls in the bag = 2+5 = 7balls.

Probability that at least 1 ball was​ red, given that the first ball was replaced before the second can be calculated as shown;

Since at least 1 ball picked at random, was red, this means the selection can either be a red ball first then a white ball or two red balls.

Probability of selecting a red ball first then a white ball with replacement = (2/7*5/7) = 10/49

Probability of selecting two red balls with replacement = 2/7*2/7 = 4/49

The probability that at least 1 ball was​ red given that the first ball was replaced before the second draw= 10/49+4/49 = 14/49

If the balls were not replaced before the second draw

Probability of selecting a red ball first then a white ball without replacement = (2/7*5/6) = 10/42 = 5/21

Probability of selecting two red balls without replacement = 2/7*2/6 = 4/42 = 2/21

The probability that at least 1 ball was​ red given that the first ball was not replaced before the second draw = 5/21+4/21 = 9/21 = 3/7

The probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.

Since two balls are drawn in succession out of a box containing 2 red and 5 white balls, to find the probability that at least 1 ball was red, given that the first ball was A) replaced before the second draw; and B) not replaced before the second draw; the following calculations must be performed:

2 + 5 = X7 = X

(2/7 + 2/7) / 2 = X (0.285 + 0.285) / 2 = X 0.285 = X

(2/7 + 1/6) / 2 = X (0.28 + 0.16) / 2 = X 0.451 / 2 = X 0.225 = X

Therefore, the probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.

Learn more about probability in https://brainly.com/question/14393430

Which of the following graphs is described by the function given below?
y = 2x^2 + 8x + 3

Answers

Answer:

Option A

Step-by-step explanation:

Equation of the given quadratic function is,

y = 2x² + 8x + 3

y = 2(x² + 4x) + 3

  = 2(x² + 4x + 4 - 4) + 3

  = 2(x + 2)² - 8 + 3

  = 2(x + 2)² - 5

By comparing this equation with the equation of a quadratic function in vertex form,

y = a(x - h)² + k

Here (h, k) is the vertex of the parabola

Vertex of the given equation will be (-2, -5) and coefficient 'a' is positive (a > 0)

Therefore, vertex will lie in the 3rd quadrant and the parabola will open upwards.

Option (A). Graph A will be the answer.

If 2x+9<32 then x could be

Answers

Answer:

x < 11.5

Step-by-step explanation:

2x + 9 < 32

(2x + 9) - 9  < 32 - 9

2x < 23

2x/2 < 23/2

x < 11.5

Answer:

x < 11 1/2

Step-by-step explanation:

2x+9<32

Subtract 9 from each side

2x+9-9 < 32-9

2x<23

Divide by 2

2x/2 <23/2

x < 11 1/2

X is any number less than 11 1/2

which equation represents the graph function?

Answers

Answer:

[tex]\displaystyle y=-\frac{1}{3}x+3[/tex]

Step-by-step explanation:

First, notice that since the graph of the function is a line, we have a linear function.

To find the equations for linear functions, we need the slope and the y-intercept. Recall the slope-intercept form:

[tex]y=mx+b[/tex]

Where m is the slope and b is the y-intercept.

We are given the point (0,3) which is the y-intercept. Thus, b = 3.

To find the slope, we can use the slope formula:

[tex]\displaystyle m=\frac{\Delta y}{\Delta x} =\frac{2-3}{3-0}=-1/3[/tex]

Therefore, our equation is:

[tex]\displaystyle y=-\frac{1}{3}x+3[/tex]

HELP !!!..... ASAP PLS

Answers

Step-by-step explanation:

the average change H = Δy/ Δx

so H = ( f(4) - f(2) )/ (4 -2) = ( 0 -1 ) / 2 = -1/2

Will anyone help me with geometry ASAP!? Please!? In desperate help!!!

Answers

Answer:

14.  C   41

15. k = 72

Step-by-step explanation:

14.

For parallel lines, alternate exterior angles must be congruent.

3x - 43 = 80

3x = 123

x = 41

15.

The sum of the measures of the angles of a triangle is 180 deg.

k + 33 + 75 = 180

k + 108 = 180

k = 72

Answer:

1. 32

2. 41

3. 72

Step-by-step explanation:

Find the area of this parallelogram.
6 cm
11 cm

Answers

Step-by-step explanation:

given,

base( b) = 6cm

height (h)= 11cm

now, area of parallelogram (a)= b×h

or, a = 6cm ×11cm

therefore the area of parallelogram (p) is 66cm^2.

hope it helps...

Factor the trinomial!! PLEASE HELP and if possible please explain how to do this!!

Answers

Answer:

d.  a = 39

Step-by-step explanation:

Question:

for which value of "a" will the trinomial be factorizable.

x^2+ax-40

For the expression to have integer factors, a = sum of the pairs of factors of -40.

-40 has following pairs of factors

{(1,-40), (2,-20, (4,-10), (5,-8), (8, -5), (10,-4), (20,-2), (40,-1) }

meaning that the possible values of a are

+/- 39, +/- 18, +/- 6, +/- 3

out of which only +39 appears on answer d.  a=39

Suppose 150 students are randomly sampled from a population of college students. Among sampled students, the average IQ score is 115 with a standard deviation of 10. What is the 99% confidence interval for the average IQ of college students? Possible Answers: 1) A) E =1.21 B) E = 1.25 C) E =2.52 D) E = 2.11 2) A) 112.48 < μ < 117.52 B) 113.79 < μ < 116.21 C) 112.9 < μ < 117.10 D) 113.75 < μ < 116.3

Answers

Answer:

99% confidence interval for the mean of college students

A) 112.48 < μ < 117.52

Step-by-step explanation:

step(i):-

Given sample size 'n' =150

mean of the sample = 115

Standard deviation of the sample = 10

99% confidence interval for the mean of college students are determined by

[tex](x^{-} -t_{0.01} \frac{S}{\sqrt{n} } , x^{-} + t_{0.01} \frac{S}{\sqrt{n} } )[/tex]

Step(ii):-

Degrees of freedom

ν = n-1 = 150-1 =149

t₁₄₉,₀.₀₁ =  2.8494

99% confidence interval for the mean of college students are determined by

[tex](115 -2.8494 \frac{10}{\sqrt{150} } , 115 + 2.8494\frac{10}{\sqrt{150} } )[/tex]

on calculation , we get

(115 - 2.326 , 115 +2.326 )

(112.67 , 117.326)  

Which set of numbers can represent the lengths of the sides of a triangle? A. {1,2,3} B. {3,5,7} C. {3,9,14} D. {4,4,8}

Answers

B

To form a triangle, the sum of any 2 sides of a triangle must be greater than the measure of the third side. For B, 3+5>7 works.

The set of numbers that can represent the lengths of the sides of a triangle are 3,5,7. That is option B.

What is a triangle?

Triangle is defined as a type of polygon that has three sides in which the sum of both sides is greater than the third side.

That is to say, 3+5 = 8 is greater than the third side which is 7.

Therefore, the set of numbers the would represent a triangle are 3,5,7.

Learn more about triangle here:

https://brainly.com/question/17335144

#SPJ1

how many types of progression in mathematics?

Answers

There are three different type


Explain

In math , there are three different type , they are arithmetic progression ( Ap) , Geometric progression and Harmonic



Arithmetic Progression - When a fix constant is added to each number except the first number.

For example : 2,4,6,8,10..... Here 2 is added each time to get the next number.


2. Geometric Progression - When a fix constant is multiplied to each number except the first number.

For example : 2,6,18,54.... Here 3 is multiplies each time to get first number.

3. Harmonic - a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression.

For example : 1/2 , 1/4 , 1/6, 1/8 ....

objective: Solve applications involving problem-s...
1 of 21 (0
1.1.A-4
Cookies are sold singly or in packages of 8 or 24. With this packaging, how many
ways can you buy 48 cookies?​

Answers

Step-by-step explanation:

With the packaging of 8

48 cookies = 48 ÷ 8 = 6 boxes

With the packaging of 24

48 cookies = 48 ÷ 24 = 2 boxes

Find the indicated conditional probability
using the following two-way table:
P( Drive to school | Sophomore ) = [?]
Round to the nearest hundredth.

Answers

Answer:

0.07

Step-by-step explanation:

The number of sophmores is 2+25+3 = 30.

Of these sophmores, 2 drive to school.

So the probability that a student drives to school, given that they are a sophmore, is 2/30, or approximately 0.07.

Answer:

[tex]\large \boxed{0.07}[/tex]

Step-by-step explanation:

The usual question is, "What is the probability of A, given B?"

They are asking, "What is the probability that you are driving to school if you are a sophomore (rather than taking the bus or walking)?"

We must first complete your frequency table by calculating the totals for each row and column.

The table shows that there are 30 students, two of whom drive to school.

[tex]P = \dfrac{2}{30}= \mathbf{0.07}\\\\\text{The conditional probability is $\large \boxed{\mathbf{0.07}}$}[/tex]

Select the correct answer.
If two angles of a triangle have equal measures and the third angle measures 90º, what are the angle measures of the triangle?
ОА.
60°, 60°, 60°
OB.
459,909, 90°
Ос.
30°, 30°, 90°
OD.
45°, 45°, 90°

Answers

Answer:

OD. 45,45,90

Step-by-step explanation:

Which value of x makes 7+5(x-3)=227+5(x−3)=227, plus, 5, left parenthesis, x, minus, 3, right parenthesis, equals, 22 a true statement? Choose 1 answer:

Answers

Answer:

7 + 5(x - 3) = 22

5(x - 3) = 15

x - 3 = 3

x = 6

Answer:

x = 6

Step-by-step explanation:

Step 1: Distribute 5

7 + 5x - 15 = 22

Step 2: Combine like terms

5x - 8 = 22

Step 3: Add 8 to both sides

5x = 30

Step 4: Divide both sides by 5

x = 6

Suppose you just purchased a digital music player and have put 12 tracks on it. After listening to them you decide that you like 2 of the songs. With the random feature on your​ player, each of the 12 songs is played once in random order. Find the probability that among the first two songs played ​(a) You like both of them. Would this be​ unusual? ​(b) You like neither of them. ​(c) You like exactly one of them. ​(d) Redo​ (a)-(c) if a song can be replayed before all 12 songs are played.

Answers

Answer:

The answer is below

Step-by-step explanation:

We have the following information:

Number of songs you like = 2

Total number of songs = 12

a) P(you like both of them) = 2/12 x 1/11 = 0.015

This is unusual because the probability of the event is less than 0.05

b) P(you like neither of them) = 10/12 x 9/11  = 0.68

c) P(you like exactly one of them) = 2 x 2/12 x 10/11 = 0.30

d) If  a song can be replayed before all 12,

P(you like both of them) = 2/12 x 2/12  =0.027

This is unusual because the probability of the event is less than 0.05

P(you like neither of them) = 9/12 x 9/12  = 0.5625

P(you like exactly one of them) = 2 x 2/12 x 9/12 = 0.25

15% as a fraction in its lowest terms is:

-3/20
-5/100
-1/15
-3/100

Answers

Answer:

3/20

Step-by-step explanation:

15%

15/100

/5  /5

3/20

A common inhabitant of human intestines is the bacterium Escherichia coli. A cell of this bacterium in a nutrient-broth medium divides into two cells every 20 minutes. The initial population of a culture is 58 cells. (a) Find the relative growth rate. (Assume t is measured in hours.) k = (b) Find an expression for the number of cells after t hours. P(t) = (c) Find the number of cells after 8 hours. cells (d) Find the rate of growth after 8 hours. (Round your answer to three decimal places.) billion cells per hour (e) When will the population reach 20,000 cells? (Round your answer to two decimal places.) hr

Answers

Answer:

a) k=2.08 1/hour

b) The exponential growth model can be written as:

[tex]P(t)=Ce^{kt}[/tex]

c) 977,435,644 cells

d) 2.033 billions cells per hour.

e) 2.81 hours.

Step-by-step explanation:

We have a model of exponential growth.

We know that the population duplicates every 20 minutes (t=0.33).

The initial population is P(t=0)=58.

The exponential growth model can be written as:

[tex]P(t)=Ce^{kt}[/tex]

For t=0, we have:

[tex]P(0)=Ce^0=C=58[/tex]

If we use the duplication time, we have:

[tex]P(t+0.33)=2P(t)\\\\58e^{k(t+0.33)}=2\cdot58e^{kt}\\\\e^{0.33k}=2\\\\0.33k=ln(2)\\\\k=ln(2)/0.33=2.08[/tex]

Then, we have the model as:

[tex]P(t)=58e^{2.08t}[/tex]

The relative growth rate (RGR) is defined, if P is the population and t the time, as:

[tex]RGR=\dfrac{1}{P}\dfrac{dP}{dt}=k[/tex]

In this case, the RGR is k=2.08 1/h.

After 8 hours, we will have:

[tex]P(8)=58e^{2.08\cdot8}=58e^{16.64}=58\cdot 16,852,338= 977,435,644[/tex]

The rate of growth can be calculated as dP/dt and is:

[tex]dP/dt=58[2.08\cdot e^{2.08t}]=120.64e^2.08t=2.08P(t)[/tex]

For t=8, the rate of growth is:

[tex]dP/dt(8)=2.08P(8)=2.08\cdot 977,435,644 = 2,033,066,140[/tex]

(2.033 billions cells per hour).

We can calculate when the population will reach 20,000 cells as:

[tex]P(t)=20,000\\\\58e^{2.08t}=20,000\\\\e^{2.08t}=20,000/58\approx344.827\\\\2.08t=ln(344.827)\approx5.843\\\\t=5.843/2.08\approx2.81[/tex]

Data collected by the Substance Abuse and Mental Health Services Administration (SAMSHA) suggests that 69.7% of 18-20-year-olds consumed alcoholic beverages in 2008.
(a) Suppose a random sample of the ten 18-20-year-olds is taken. Is the use of the binomial distribution appropriate for calculating the probability that exactly six consumed alcoholic beverages?
i. No, this follows the bimodal distribution.
ii. Yes, there are 10 independent trials, each with exactly two possible outcomes, and a constant probability associated with each possible outcome.
iii. No, the trials are not independent.
iv. No, the normal distribution should be used.
(b) Calculate the probability that exactly 6 out of 10 randomly sampled 18- 20-year-olds consumed an alcoholic drink.
(c) What is the probability that exactly four out of the ten 18-20-year-olds have not consumed an alcoholic beverage?
(d) What is the probability that at most 2 out of 5 randomly sampled 18-20-year-olds have consumed alcoholic beverages?

Answers

Answer:

(a) Yes, there are 10 independent trials, each with exactly two possible outcomes, and a constant probability associated with each possible outcome.

(b) The probability that exactly 6 out of 10 randomly sampled 18- 20-year-olds consumed an alcoholic drink is 0.203.

(c) The probability that exactly 4 out of 10 randomly sampled 18- 20-year-olds have not consumed an alcoholic drink is 0.203.

(d) The probability that at most 2 out of 5 randomly sampled 18-20-year-olds have consumed alcoholic beverages is 0.167.

Step-by-step explanation:

We are given that data collected by the Substance Abuse and Mental Health Services Administration (SAMSHA) suggests that 69.7% of 18-20-year-olds consumed alcoholic beverages in 2008.

(a) The conditions required for any variable to be considered as a random variable is given by;

The experiment consists of identical trials.Each trial must have only two possibilities: success or failure.The trials must be independent of each other.

So, in our question; all these conditions are satisfied which means the use of the binomial distribution is appropriate for calculating the probability that exactly six consumed alcoholic beverages.

Yes, there are 10 independent trials, each with exactly two possible outcomes, and a constant probability associated with each possible outcome.

(b) Let X = Number of 18- 20-year-olds people who consumed an alcoholic drink

The above situation can be represented through binomial distribution;

[tex]P(X = r) = \binom{n}{r}\times p^{r} \times (1-p)^{n-r}; x = 0,1,2,......[/tex]

where, n = number of trials (samples) taken = 10 people

            r = number of success = exactly 6

            p = probability of success which in our question is % 18-20

                  year-olds consumed alcoholic beverages in 2008, i.e; 69.7%.

So, X ~ Binom(n = 10, p = 0.697)

Now, the probability that exactly 6 out of 10 randomly sampled 18- 20-year-olds consumed an alcoholic drink is given by = P(X = 6)

           P(X = 3) =  [tex]\binom{10}{6}\times 0.697^{6} \times (1-0.697)^{10-6}[/tex]

                         =  [tex]210\times 0.697^{6} \times 0.303^{4}[/tex]

                         =  0.203

(c) The probability that exactly 4 out of 10 randomly sampled 18- 20-year-olds have not consumed an alcoholic drink is given by = P(X = 4)

Here p = 1 - 0.697 = 0.303 because here our success is that people who have not consumed an alcoholic drink.

           P(X = 4) =  [tex]\binom{10}{4}\times 0.303^{4} \times (1-0.303)^{10-4}[/tex]

                         =  [tex]210\times 0.303^{4} \times 0.697^{6}[/tex]

                         =  0.203

(d) Let X = Number of 18- 20-year-olds people who consumed an alcoholic drink

The above situation can be represented through binomial distribution;

[tex]P(X = r) = \binom{n}{r}\times p^{r} \times (1-p)^{n-r}; x = 0,1,2,......[/tex]

where, n = number of trials (samples) taken = 5 people

            r = number of success = at most 2

            p = probability of success which in our question is % 18-20

                  year-olds consumed alcoholic beverages in 2008, i.e; 69.7%.

So, X ~ Binom(n = 5, p = 0.697)

Now, the probability that at most 2 out of 5 randomly sampled 18-20-year-olds have consumed alcoholic beverages is given by = P(X [tex]\leq[/tex] 2)

        P(X [tex]\leq[/tex] 2) = P(X = 0) + P(X = 1) + P(X = 3)

= [tex]\binom{5}{0}\times 0.697^{0} \times (1-0.697)^{5-0}+\binom{5}{1}\times 0.697^{1} \times (1-0.697)^{5-1}+\binom{5}{2}\times 0.697^{2} \times (1-0.697)^{5-2}[/tex]

=  [tex]1\times 1\times 0.303^{5}+5 \times 0.697^{1} \times 0.303^{4}+10\times 0.697^{2} \times 0.303^{3}[/tex]

=  0.167

The perimeter of a triangle is 82 feet. One side of the triangle is 2 times the second side. The third side is 2 feet longer than the second side. Find the length of each side.

Answers

Answer:

Side 1: 40 feet

Side 2: 20 feet

Side 3: 22 feet

Step-by-step explanation:

Side 1 is twice the length of side 2 and side 2 is 20 feet, which means side 1 is 40 feet. Side 3 is the the length of the second side plus 2, which means it has a length of 22 feet.

At her favorite sneakers store Nyeema saved $48 because of a
sale.
If the sneakers normally cost $120. How much did she save?​

Answers

Answer:

40%

Step-by-step explanation:

We can find what percent 48 is of 120 by dividing:

48/120 = 0.4 or 40%

So, she saved 40% from the original price.

Suppose that the price​ p, in​ dollars, and the number of​ sales, x, of a certain item follow the equation 6 p plus 3 x plus 2 pxequals69. Suppose also that p and x are both functions of​ time, measured in days. Find the rate at which x is changing when xequals3​, pequals5​, and StartFraction dp Over dt EndFraction equals1.5.

Answers

Answer:

[tex]\dfrac{dx}{dt}=-1.3846$ sales per day[/tex]

Step-by-step explanation:

The price​ p, in​ dollars, and the number of​ sales, x, of a certain item follow the equation: 6p+3x+2px=69

Taking the derivative of the equation with respect to time, we obtain:

[tex]6\dfrac{dp}{dt} +3\dfrac{dx}{dt}+2p\dfrac{dx}{dt}+2x\dfrac{dp}{dt}=0\\$Rearranging$\\6\dfrac{dp}{dt}+2x\dfrac{dp}{dt}+3\dfrac{dx}{dt}+2p\dfrac{dx}{dt}=0\\\\(6+2x)\dfrac{dp}{dt}+(3+2p)\dfrac{dx}{dt}=0[/tex]

When x=3, p=5 and [tex]\dfrac{dp}{dt}=1.5[/tex]

[tex](6+2(3))(1.5)+(3+2(5))\dfrac{dx}{dt}=0\\(6+6)(1.5)+(3+10)\dfrac{dx}{dt}=0\\18+13\dfrac{dx}{dt}=0\\13\dfrac{dx}{dt}=-18\\\dfrac{dx}{dt}=-\dfrac{18}{13}\\\\\dfrac{dx}{dt}=-1.3846$ sales per day[/tex]

The number of sales, x is decreasing at a rate of 1.3846 sales per day.

¿Cuál serie numérica tiene como regla general Xn = 2n +1?
a. 3, 5, 7, 9
b. 2, 4, 5, 8
c. 4, 6, 8,10
d. 2, 3, 4, 5

Answers

Answer:

The series of numbers that correspond to the general rule of  [tex]X_n=2n+1[/tex] is {3, 5, 7, 9}.

Step-by-step explanation:

We are given with the following series options below;

a. 3, 5, 7, 9

b. 2, 4, 5, 8

c. 4, 6, 8,10

d. 2, 3, 4, 5

And we have to identify what number series has a general rule as [tex]X_n=2n+1[/tex].

For this, we will put the values of n in the above expression and then will see which series is obtained as a result.

So, the given expression is ; [tex]X_n=2n+1[/tex]

If we put n = 1, then;

[tex]X_1=(2\times 1)+1[/tex]

[tex]X_1 = 2+1 = 3[/tex]

If we put n = 2, then;

[tex]X_2=(2\times 2)+1[/tex]

[tex]X_2 = 4+1 = 5[/tex]

If we put n = 3, then;

[tex]X_3=(2\times 3)+1[/tex]

[tex]X_3 = 6+1 = 7[/tex]

If we put n = 4, then;

[tex]X_4=(2\times 4)+1[/tex]

[tex]X_4 = 8+1 = 9[/tex]

Hence, the series of numbers that correspond to the general rule of  [tex]X_n=2n+1[/tex] is {3, 5, 7, 9}.

how many are 4 x 4 ?​

Answers

16, think of 4 plus 4 plus 4 plus 4.

whats 1 and 1/2 + 2 and 3/10

Answers

Answer:

[tex]3\frac{4}{5}[/tex]

Step-by-step explanation:

You first need to make the denominators the same and the LCM (least Common Multiple of this equation is 10.

10/10-->1

1/2--> 5/10

2--> 20/10

3/10, the denominator is already 10, so don't need to change.

10/10+5/10+20/10+3/10=38/10=[tex]3\frac{8}{10}[/tex]=[tex]3\frac{4}{5}[/tex]

Answer:

3 4/5

Step-by-step explanation:

hopefully this helped :3

Alexandra has $15 to buy drinks for her friends at the baseball game. Soda
costs $2.75 and bottled water costs $2.00. This relationship can be
represented by the inequality 2758+2w $ 15. Three of Alexandra's friends
asked for water. Which inequality represents the number of sodas she can
buy?
A. OS 85 3.27
B. 85 3.27
C. OSSS3
D. 853

Answers

Answer:

C

Step-by-step explanation:

write an equation for the costs:

if x is the number of sodas

and y is the number of waters

2.75x + 2y <= 15

(<= is less than or equal to)

if we substitute 3 for y

we get 2.75x + 2(3) <= 15

2.75x + 6 <= 15

2.75x <= 9

9 / 2.75 = 3.2727

however, you cannot buy part of a soda

so, round to 3

you also cannot buy negative sodas

so, the answer is C

PLEASE HELP ME!!!!!! Consider what would happen if you were to slice a face at a vertex (cut a corner) of a particular polyhedron. You would see a new polygonal face where the old vertex used to be. What type of polygon would a slice of a cube at a vertex create? Explain how you know.

Answers

Answer:

See below.

Step-by-step explanation:

There are 3 edges and 3 faces  projecting out from a vertex of a cube.

So the polygon produced would be a triangle.

Answer:

A triangle.

Step-by-step explanation:

As shown above, the plane which slices a corner intersects the polyhedron in [tex] n [/tex] faces which depend on the particular polyhedron.

Here it is a cube, and it intersects three faces. Since the intersection of two planes is a line and there are three planes to intersect with, there are three sides of the polygon.

Hence the polygon is a triangle.

Tension needs to eat at least an extra 1,000 calories a day to prepare for running a marathon. He has only $25 to spend on the extra food he needs and will spend it on $0.75 donuts that have 360 calories each and $2 energy drinks that have 110 calories. This results in the following system of equations:
0.75d+2e≤25
360d+110e≥1,000

where d is donuts and e is energy drinks. Can Tension buy 8 donuts and 4 energy drinks?

Select the correct answer below:
Yes or No

Answers

Answer:

Yes, he can buy 8 donuts and 4 energy drinks.

Step-by-step explanation:

If Tension is able to buy 8 donuts and 4 energy drinks, then both inequalities would be valid when we use these numbers as inputs. Let's check each expression at a time:

[tex]0.75*d + 2*e \leq 25\\0.75*8 + 2*4 \leq 25\\6 + 8 \leq 25\\14 \leq 25[/tex]

The first one is valid, since 14 is less than 25. Let's check the second one.

[tex]360*d + 110*e \geq 1000\\360*8 + 110*4 \geq 1000\\2880 + 440 \geq 1000\\3320 \geq 1000[/tex]

The second one is also valid.

Since both expressions are valid, Tension can buy 8 donuts and 4 energy drinks and achieve his goal of having a caloric surplus of at least 1000 cal.

The heights of American men are normally distributed. If a random sample of American men is taken and the confidence interval is (65.3,73.7), what is the sample mean x¯? Give just a number for your answer. For example, if you found that the sample mean was 12, you would enter 12.

Answers

Answer:

69.5

Step-by-step explanation:

Given the confidence interval of the heights of american heights given as (65.3,73.7);

Lower confidence interval L = 65.3 and Upper confidence interval U = 73.7

Sample mean will be the average of both confidence interval . This is expressed mathematically as [tex]\overline x = \frac{L+U}{2}[/tex]

[tex]\overline x = \frac{65.3+73.7}{2}\\\overline x = \frac{139}{2}\\\overline x = 69.5[/tex]

Hence, the sample mean is 69.5

Other Questions
Consider U = {xlx is a real number}.A = {xlx U and x + 2 > 10}B = {x\x U and 2x > 10}Which pair of statements is true?5 & A; 5 B6 A; 6 & B8 A; 8 B9 A; 9&B 32. The expression a^x means that a is to be used as a factor x times. Therefore, if a^x is squared, the result isA) a^x^2B) a^2^xC) 2a^2^xD) 2a^x 300=x^2+15x what is x? The degree of the polynomial function f(x) is 4. The roots of the equation f(x)=0 are 2, 1, 1 and 3. Write a program named Deviations.java that creates an array with the deviations from average of another array. The main() method Find the P-value for the indicated hypothesis test. In a sample of 88 children selected randomly from one town, it is found that 8 of them suffer from asthma. Find the P-value for a test of the claim that the proportion of all children in the town who suffer from asthma is equal to 11%. Group of answer choices In the proportionm 1/Z 4/5/8 which number is equal to Z in the proportion? Which of the following was an advantage held by imperialist powers over native peoples in the 1800s? Question 10 options: A) Native people rejecting self-rule B) Better transportation C) Better raw materials D) Alliances among well-developed nations Find the number for which: 25% is a lb 2. Se combinan 40 g de SO2 y 25 g de O2 determine el porcentaje en masa del exceso con respecto a su masa inicial. P.A. (S = 32; O = 16) SO2 + O2 SO3 There are 60 people at the subway station 12 of them jumped theturnstile. What percentage of people jumped the turnstile? Whatpercentage of people paid? Help again please thank you! :) What is the value of a? A coal car on a train weighs 30 tons plus 1 ton per cubic yard of coal x that it carries. The total weight of a coal car is: f(x) = x + 30. How will the graph of this function change if the coal car weight is changed to 26 tons? If I were to fill a water bottle full of air and go up in elevation, would the water bottle expand or shrink? If I were to fill a water bottle full of air and go down in elevation, would the water bottle expand or shrink? I am at elevation 20000 I think. When did the us first claim New Mexico ? A.the Mexican-American war B.the war of 1812 C.the revolutionary war D.the French and Indian war Which of these biomes tends to receive the most rainfall?O A. Boreal forestO B. Rain forestO C. TundraO D. Taiga How long does it take for millions of dollars worth of emerald transactions to occur in Bogota? Given X= 5+ V16 select the value(s) of x. Checkall of the boxes that apply.-111921 Zack's science class is learning about ways to find the volume of irregularly-shaped objects. For his first experiment, Zack finds that a small marble statue weighs 1.3 kilograms. Then, he uses its density to find its volume in liters. If the density of marble is approximately 2.6 grams per milliliter, what is the volume of Zack's statue?