Answer:
45 square units
Step-by-step explanation:
In the above question, we are given the following values
The ratio of the lengths of the corresponding sides of two regular octagons is 8 to 3.
This means the length of the larger octagon = 8
The length of the smaller octagon = 3
Using scale factor denoted as k and because we are dealing with area of the octagon
k = 3²/8²
The area of the larger octagon is 320 ft².
The area of the smaller octagon s represented as y and is calculated as
k = y/Area of larger octagon
3²/8² = y/320
Cross multiply
8² × y = 3² × 320
y = 3² × 320/8²
y = 45 square units
Area of smaller octagon = 45 square units.
Thuy is substituting t = 3 and t = 8 to determine if the two expressions are equivalent.
Answer:
The expressions are not equivalent.
Step-by-step explanation:
The answers would be 196 and 193 for t = 8
The answers would be 76 and 73 for t = 3
Find the volume of a right circular cone that has a height of 18.8 in and a base with a
diameter of 14.3 in. Round your answer to the nearest tenth of a cubic inch.
Answer:
The volume of the cone is 1006.9in³
Step-by-step explanation:
Given
[tex]Height = 18.8\ in[/tex]
[tex]Diameter = 14.3\ in[/tex]
Required
Calculate the volume;
The volume of a cone is calculated as thus;
[tex]V = \frac{1}{3} \pi r^2h[/tex]
Where V represents volume; r represents radius; and h represents height
The radius is calculated as thus;
[tex]r = \frac{1}{2}Diameter[/tex]
[tex]r = \frac{1}{2} * 14.3[/tex]
[tex]r = 7.15[/tex]
Substitute [tex]r = 7.15[/tex]; [tex]h = 18.8[/tex] and [tex]\pi = \frac{22}{7}[/tex]
[tex]V = \frac{1}{3} \pi r^2h[/tex] becomes
[tex]V = \frac{1}{3} * \frac{22}{7} * 7.15^2 * 18.8[/tex]
[tex]V = \frac{1}{3} * \frac{22}{7} * 51.1225 * 18.8[/tex]
[tex]V = \frac{22* 51.1225 * 18.8}{3 * 7}[/tex]
[tex]V = \frac{21144.266}{21}[/tex]
[tex]V = 1006.86980952[/tex]
[tex]V = 1006.9\ in^3[/tex] (Approximated)
Hence, the approximated volume of the cone is 1006.9in³
Answer:1006.5
Step-by-step explanation:
box plots show the data distributions for the number of customers who used a coupon each hour during a two-day sale. Which measure of variability can be compared using the box plots? interquar
Answer:
A. Interquartile
Step-by-step explanation:
Answer:
A: interquartile range
Step-by-step explanation:
edg2020
What's the standard equation of the circle with the general equation x2 + y2 + 4x – 2y – 20 = 0? answers: 1) (x + 2)2 + (y – 1)2 = 5 2) (x – 2)2 + (y + 1)2 = 25 3) (x + 1)2 + (y – 2)2 = 5 4) (x + 2)2 + (y – 1)2 = 25
Answer:
4). (x + 2)^2 + (y - 1)^2 = 25.
Step-by-step explanation:
x^2 + y^2 + 4x - 2y - 20 = 0
x^2 + 4x + y^2 - 2y = 20
Completing the square on the x and y terms:
(x + 2)^2 - 4 + (y - 1)^2 - 1 = 20
(x + 2)^2 + (y - 1)^2 = 20 + 4 + 1
(x + 2)^2 + (y - 1)^2 = 25.
The standard equation of the circle with the given equation is (x+2)²+(y-1)²=25. Therefore, option 4 is the correct answer.
What is a circle equation?The equation of circle provides an algebraic way to describe a circle, given the center and the length of the radius of a circle. The equation of a circle is different from the formulas that are used to calculate the area or the circumference of a circle.
The standard equation of a circle with center at (x₁, y₁) and radius r is (x-x₁)²+(y-y₁)²=r²
The given circle equation is x²+ y²+4x-2y-20=0.
Here, x²+ y²+4x-2y=20
By completing the square on the x and y terms:
Now, add 4 on both the sides of an equation, we get
x²+ y²+4x-2y+4=20+4
x²+4x+4+y²-2y=24
Add 1 on both the sides of an equation, we get
(x+2)²+y²-2y+1=24+1
(x+2)²+(y-1)²=25
The standard equation of the circle with the given equation is (x+2)²+(y-1)²=25. Therefore, option 4 is the correct answer.
To learn more about an equation of a circle visit:
https://brainly.com/question/23799314.
#SPJ2
Attachment Below, please help, I'm not timed
Answer:
Step-by-step explanation:
x + 2x + 4x = 49
7x = 49
x = 7
2(7)= 14 hours he worked on Wednesday
NEED HELP ASAPPP!!! Drag each scenario to show whether the final result will be greater than the original
value, less than the original value, or the same as the original value.
1. A $30 increase followed by a $30 decrease
2. A 20% decrease followed by a 40% increase
3. A 100% increase followed by a 50% decrease
4. A 75% increase followed by a 33% decrease
5. 55% decrease followed by a 25% increase
Answer:
Greater than the original = 2, 4
Less than the original = 5
Same as the original = 1, 3
Step-by-step explanation:
Let the original value be x.
1. A $30 increase followed by a $30 decrease.
New value [tex]=x+30-30=x[/tex], it is same as original value.
2. A 20% decrease followed by a 40% increase.
Afer 20% decrease.
New value [tex]=x-\dfrac{20}{100}x=x-0.2x=0.8x[/tex]
Afer 40% increase.
New value [tex]=0.8x+\dfrac{40}{100}(0.8x)=0.8x+0.32x=1.12x[/tex], it is greater than original value.
Similarly check the other values.
3. A 100% increase followed by a 50% decrease.
New value [tex]=x+\dfrac{100}{100}x-\dfrac{50}{100}(x+x)=x[/tex], it is same as original value.
4. A 75% increase followed by a 33% decrease
New value [tex]=x+\dfrac{75}{100}x-\dfrac{33}{100}(x+0.75x)=1.1725x[/tex], it is greater than the original value.
5. 55% decrease followed by a 25% increase
New value [tex]=x-\dfrac{55}{100}x+\dfrac{25}{100}(x-0.55x)=0.5625x[/tex], it is less than the original value.
Therefore, Greater than the original = 2, 4, Less than the original = 5, Same as the original = 1, 3 .
A 100% increase followed by a 50% decrease
A $30 increase followed by a $30 decrease
Less Than The Original:55% decrease followed by a 25% increase
Greater Than The Original:A 20% decrease followed by a 40% increase
A 75% increase followed by a 33 1/3% decrease
URGENT HELP NEEDED! YOU WILL GET BRAINLIEST! Convert to a product: cot(α) - 1
Answer:
WHAT
Step-by-step explanation:
Please could I have some help :)
Answer:
a) x = 128 degrees
b) Angle APD is the arc angle, which is equal to the central angle x subtended by the arc. Therefore angle APD = 128 degrees (and not 116 degrees)
Step-by-step explanation:
Given:
attached diagram
ABC is a straight line
Solution:
a) Find x
ABC is a straight line
angle ABD = supplement of CBD = 180-CBD = 180-116 = 64 degrees.
x is the central angle of the arc APD
so angle ABD is the inscribed angle which equals half of the arc angle =>
angle ABD = x/2 = 64 degrees
Solve for x
x/2 = 64
x = 2*64
x = 128 degrees
b.
Angle APD is the arc angle, which is equal to the central angle x subtended by the arc. Therefore angle APD = 128 degrees (and not 116 degrees)
A rectangular carton has twice the height, one-
third the length, and four times the width of a
second carton. The ratio of the volume of the
first carton to that of the second is
A)16:3
B)3:1
C)8:3
D)3:8
What is the factored form of 125a6-64?
Answer:
(5a^2-4)*(25a^4+20a^2+16)
Step-by-step explanation:
Answer:
Its B, (5a^2-4)(25a^4+20a^2+16)
Step-by-step explanation:
Edge 2020
PLEASE!!! HELP!!! Question: If you have points on a graph that plot (1,7), (2,8), (3,5) and (4,6) what would be the slope?
Answer:
1
Step-by-step explanation:
You only need two points to find the slope.
Let's use (1,7) and (2,8).
The formula for slope is (y2-y1)/(x2-x1)
Let's plug the values in:
(8-7)/(2-1) = 1.
So, the slope is 1.
MATH— Please help me answer this question. Hopefully you can see the picture
simplify this please 41 =12d-741=12d−7
Answer:
Simplifying
41 = 12d + -7
Reorder the terms:
41 = -7 + 12d
Solving
41 = -7 + 12d
Solving for variable 'd'.
Move all terms containing d to the left, all other terms to the right.
Add '-12d' to each side of the equation.
41 + -12d = -7 + 12d + -12d
Combine like terms: 12d + -12d = 0
41 + -12d = -7 + 0
41 + -12d = -7
Add '-41' to each side of the equation.
41 + -41 + -12d = -7 + -41
Combine like terms: 41 + -41 = 0
0 + -12d = -7 + -41
-12d = -7 + -41
Combine like terms: -7 + -41 = -48
-12d = -48
Divide each side by '-12'.
d = 4
Simplifying
d = 4
Please Help!! I will give brainliest to correct answer
A carpool service has 2,000 daily riders. A one-way ticket costs $5.00. The service estimates that for each $1.00 increase to the one-way fare, 100 passengers will find other means of transportation. Let x represent the number of $1.00 increases in ticket price.
Choose the inequality to represent the values of x that would allow the carpool service to have revenue of at least $12,000. Then, use the inequality to select all the correct statements.
options:-
The price of a one-way ticket that will maximize revenue is $7.50.
The price of a one-way ticket that will maximize revenue is $12.50.
-100x^2 + 1,500x + 10,000 >/= 12,000
The maximum profit the company can make is $4,125.00.
The maximum profit the company can make is $15,625.00.
100x^2 - 1,500x - 10,000 >/= 12,000
100x^2 + 1,500x - 10,000 = 12,000
(There can be more than one correct answers)
Answer.
Step-by-step explanation:
Find the missing side lengths. Leave your answers as radicals in simplest form.
ANSWER QUICK
Answer:
C
Step-by-step explanation:
It is an iscoceles triangle because there are 180 degrees in a triangle and the right angle plus the 45 degree equals 135 and 180 minus 135 is 45.
Since it is an iscoceles triangle that means that n = 3 and the pythagorean theorom says that a^2 + b^2 = c^2 which means that m = 3^2 plus 3^2 with a root.
3^2 is 9 so you get 18
the root of 18 is infinite, however can be simplified to 3 root to 2 because 3 times 3 equals 9 times 2 equals a root of 18
Hope this helps!
Find the missing segment in the attached image
Answer:
The length of the missing segment is 36
Step-by-step explanation:
Given
The figure above
Required
Determine the missing segment
Let the missing segment be represented with x
Given that, there exist parallel lines between the two triangles;
The relationship between the sides of the triangles is as follows;
[tex]\frac{20}{24} = \frac{30+20}{24+x}[/tex]
[tex]\frac{20}{24} = \frac{50}{24+x}[/tex]
Cross Multiply
[tex]20 * (24 + x) = 24 * 50[/tex]
[tex]20 * (24 + x) = 1200[/tex]
Divide both sides by 20
[tex]\frac{20 * (24 + x)}{20} = \frac{1200}{20}[/tex]
[tex](24 + x)= \frac{1200}{20}[/tex]
[tex]24 + x= 60[/tex]
Subtract 24 from both sides
[tex]24 - 24 + x = 60 - 24[/tex]
[tex]x = 60 - 24[/tex]
[tex]x = 36[/tex]
Hence, the length of the missing segment is 36
The points in a plane in a fixed distance from a given point
is called a circle. What is the fixed distance called?
a. chord
b. radius
c. diameter
d. not given
Answer:
radius
Step-by-step explanation:
That "fixed distance" is the 'radius' of the circle.
plz help!!
will give the brainliest!!
Answer:
x = 3
Inverse matrix:
[tex]A^{-1} = \begin{pmatrix} \frac{1}{9} & \frac{2}{9} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \quad[/tex]
Step-by-step explanation:
Determinant: ad - bc
a = 3, b = 2, c = 3, d = -1
3 * (-1) - (2 * x) = -9
-3 - 2x = -9
-2x = -6
x = 3
For matrix
[tex]A = \begin{pmatrix}a & b\\c & d\end{pmatrix} \quad[/tex]
the inverse is
[tex]A^{-1} = \dfrac{1}{ad - bc}\begin{pmatrix}d & -b \\-c & a\end{pmatrix}\quad[/tex]
Here we have: det = -9
a = 3, b = 2, c = 3, d = -1
Inverse matrix:
[tex]A^{-1} = \dfrac{1}{-9}\begin{pmatrix} -1 & -2 \\ -3 & 3 \end{pmatrix}\quad[/tex]
[tex]A^{-1} = \begin{pmatrix} \frac{-1}{-9} & \frac{-2}{-9} \\\frac{-3}{-9} & \frac{3}{-9}\end{pmatrix} \quad[/tex]
[tex]A^{-1} = \begin{pmatrix} \frac{1}{9} & \frac{2}{9} \\\frac{1}{3} & -\frac{1}{3}\end{pmatrix}\quad[/tex]
If sin(21°) = 0.36, and cosθ = 0.36, what's the measure of ∠θ? ANSWERS: A) m∠θ = 21° B) m∠θ = 0.36° C) m∠θ = 90° D) m∠θ = 69°
Hey there! :)
Answer:
m∠θ = 69°.
Step-by-step explanation:
If sin (21°) = 0.36 and cos θ = 0.36, the two angles are complementary because the sine and cosine values are equivalent. Therefore:
90 - 21 = 69°.
The correct answer is D) m∠θ = 69°.
What is a number of subsets for the set which contains the 10 elements.
Answer:
The number of subsets of a set containing 10 elements is 2^10=1024.
Step-by-step explanation:
Find the missing length indicated.
Answer:
Step-by-step explanation:
x=✓64*36=✓8^2*6^2
x=8*6
x=48
A rectangle with an area of 192 square meters has a length and width in a ratio of 3:1. What are the length and width?
Answer:
Step-by-step explanation:
let width=x
length=3x
area=3x×x=3x²
3x²=192
x²=192/3=64
x=√64=8
width=8 m
length=3×8=24 m
Answer:
Length= 24 meterWidth= 8 meterSolution,
Let the length be 3x meter.
Let the width be X meter
Area of rectangle= 192 square metres
Now,
Area of rectangles= length * breath
[tex]192 = 3x \times x \\ 192 = 3 {x}^{2} \\ {x}^{2} = \frac{192}{3} \\ x^{2} = 64 \\ x = \sqrt{64} \\ x = 8 \: meter[/tex]
Width = 8 meterReplacing value,
Length= 3x[tex] \: \: \: 3 \times x \\ \: \: = 3 \times 8 \\ \: \: \: \: = 24[/tex]
Length= 24 meter.Hope this helps...
Good luck on your assignment...
What is the slope of the line?
Answer:
5/3
Step-by-step explanation:
it should be y/x
you can count 5 up and 3 over
Answer:
8/5
Step-by-step explanation:
You can use the formula [tex]\frac{y_{1}-y_{2}}{x_{1}-x_{2}}[/tex] with a pair of points [tex](x_{1},y_{1})[/tex][tex](x_{2},y_{2})[/tex]. We can use points (1,4) and (-4,-4). Plugging in the equation we get (4-(-4))/(1-(-4)), which simplifies to 8/5, which is the slope.
Karl set out to Alaska on his truck.
The amount of fuel remaining in the truck's tank (in liters) as a function of distance driven (in kilometers) is
graphed.
How much fuel did the truck consume every 100 kilometers
Answer:
the amount of fuel consumed every 100 kilometers is 62.5 litres.
Step-by-step explanation:
To determine the amount of fuel consumed every 100 kilometers.
Note: since the graph is a straight line graph (linear graph) the amount of fuel consumed every 100 kilometers is constant (i.e the same for every 100 kilometers). So, we only need to derive the amount of fuel consumed any 100 kilometers on the graph.
From the graph, the amount of fuel consumed for the first 100 kilometers is;
[tex]F = F_0 - F_{100} .........................1[/tex]
[tex]F_0 = 500\\F_{100} \simeq 437.5\\[/tex]
substituting into equation 1.
[tex]F = F_0 - F_{100} \\F = 500 - 437.5\\ F = 62.5 litres\\[/tex]
Therefore, the amount of fuel consumed every 100 kilometers is 62.5 litres.
Answer:500
Step-by-step explanation:got it on Kahn
There are blue, red and green pencils in the box—20 pencils total. There are 6 times more green pencils than blue pencils. There are fewer red pencils than green pencils. How many pencils do you need to take out of the box in order to get at least one red pencil among them?
Answer:
15
Step-by-step explanation:
Try 1, 2, 3, or 4 blue pencils. Then green is 6 times as many. Red must be the rest to make up 20 total.
No. of blue No. of green No. of red
1 6 13
2 12 6
3 18 -1
You can't have 3 blue pencils because 3 blue + 18 green = 21 pencils, and there are only 20.
If you have 1 blue and 6 green, then there must be 13 red, but red must be less than green, and 13 is not less than 6.
The only possibility is
2 blue, 12 green, 6 red
If you start taking out pencils, when you take out the first 14 they may be all blues or green, so only when you take out the 15th pencil do you know for sure there must be 1 green pencil.
60%
12. Your math teacher allows you to choose the most favorable measure of central tendency of your test scores to determine your grade for the term. On
six tests you earn scores of 89, 81, 85, 82, 89, and 89. What is your grade to the nearest whole number, and which measure of central tendency
should you choose?
95
Answers:
89; the mean
91; the mode
89; the mode
87; the median
Answer:
To answer the question above,
If you entered your test scores correctly, then your choices are off the wall.
The median is 87
The mode is 89
The mean is 85.833...
There is not a mode of 91 !
I hope this helps
Step-by-step explanation:
Find the missing side to the triangle in the attached image. Thanks.
Answer:
Let's use Pythagorean Theorem which states:
6² + 10² = x²
36 + 100 = x²
136 = x²
x = ± 2√34
Since the side lengths of a triangle cannot be negative, x = -2√34 is an extraneous solution which means that x = 2√34.
Answer:Answer:
Let's use Pythagorean Theorem which states:
6² + 10² = x²
36 + 100 = x²
136 = x²
x = ± 2√34
Since the side lengths of a triangle cannot be negative, x = -2√34 is an extraneous solution which means that x = 2√34.
Read more on Brainly.com - https://brainly.com/question/17033938#readmore
Step-by-step explanation:
how would a bank represent a withdrawal of 19.43 dollars?
Answer:
-19.43
Step-by-step explanation:
Withdrawals are negative
Determine the approximate area of a sector with a central angle of 75° and a radius of 14 yards. Question 16 options: A) 9.2 yards2 B) 128.3 yards2 C) 40.8 yards2 D) 0.21 yards2
Answer:
B) 128.3 square yards
Step-by-step explanation:
A = (n/360 deg)(pi)r^2
where n = central angle of sector.
A = (75/360)(3.14159)(14 yd)^2
A = 128.3 yd^2
Answer:
B. 128.3 yards
Step-by-step explanation:
Area of a Sector Formula: A = ∅/360πr²
Simply plug in our variables:
A = 75/360(π)(14)²
A = 5π/24(196
A = 128.3
What are the zeros of f(x) = x2 + x - 30?
O A. x= -6 and x = 5
B. x= -2 and x= 15
o
C. x= -5 and x = 6
D. x= -15 and x = 2
SS
Answer:
A
Step-by-step explanation:
The zeroes of the function are the x values when f(x) = 0 so we can write:
0 = x² + x - 30
0 = (x + 6)(x - 5) (To factor this we need to find 2 numbers that have a sum of 1 and a product of -30; these numbers are 6 and -5)
x + 6 = 0 or x - 5 = 0 (Use Zero Product Property)
x = -6, 5
Hey there! :)
Answer:
A. x = -6 and x = 5.
Step-by-step explanation:
Given:
f(x) = x² + x - 30
Factor the equation by finding two numbers that sum up to 1 and multiply into -30. We get:
-5, 6
Use these to express this quadratic function in factored form:
f(x) = (x - 5) (x + 6)
Set each factor equal to 0 to solve for the zeros of the equation:
0 = x - 5
x = 5
-------------
0 = x + 6
x = -6
Therefore, the correct answer is A. x = -6 and x = 5.