Answer:
The answer is
1520.5 cm²Step-by-step explanation:
Surface area of a sphere is given by
S = 4πr²
where r is the radius
From the question r = 11cm
So the surface area of the sphere is
4π(11)²
= 4(121)π
= 484π
= 1520.5308
Which is
1520.5 cm² to the nearest tenth
Hope this helps you
find the equation of a straight line joining the points (6,9) and (4,7). Please help im bad at mathematic :( and please do a calculation too.
Answer:
y = x+3
Step-by-step explanation:
First step is to find the slope
m = ( y2-y1)/(x2-x1)
= ( 7-9)/(4 - 6)
= -2 / -2
= 1
The we can put is in slope intercept form
y = mx+b where m is the slope and b is the y intercept
y = 1x+b
Putting in one of the points
9 = 1*6+b
Subtracting 6
9-6 = b
3=b
y = 1x+3
y = x+3
Answer:
[tex]\boxed{y=x+3}[/tex]
Step-by-step explanation:
Solve for slope first.
The slope can be found through 2 points.
[tex]slope=\frac{change \: in \: y}{change \: in \: x}[/tex]
[tex]slope=\frac{7-9}{4-6}[/tex]
[tex]slope=\frac{-2}{-2}[/tex]
[tex]slope=1[/tex]
Using slope-intercept form.
[tex]y=mx+b\\m=slope\\b=y \: intercept[/tex]
[tex]y=1x+b[/tex]
Let x = 6 and y = 9.
[tex]9=1(6)+b[/tex]
[tex]9-6=b[/tex]
[tex]3=b[/tex]
[tex]y=1x+3[/tex]
An angle measures 125.6° less than the measure of its supplementary angle. What is the measure of each angle?
Answer:
The measure of each angle:
152.8° and 27.2°
Step-by-step explanation:
Supplementary angles sum 180°
then:
a + b = 180°
a - b = 125.6°
then:
a = 180 - b
a = 125.6 + b
180 - b = 125.6 + b
180 - 125.6 = b + b
54.4 = 2b
b = 54.4/2
b = 27.2°
a = 180 - b
a = 180 - 27.2
a = 152.8°
Check:
152.8 + 27.2 = 180°
Answers:
152.8° & 27.2°Step-by-step explanation:
Let x and y be the measures of each angle.
x + y = 180°
x - y = 125.6°
180 - 125.6 = 54.4
Now we divide 54.4 evenly to get y.
y = 27.2°
To get x, we substitute y into the equation.
x = 27.2 + 125.6
x = 152.8°
To check, we plug these in to see if they equal 180°.
27.2 + 152.8 = 180° ✅
I'm always happy to help :)Can someone answer this for me. My teacher gave me this As a Hint so once I get this I’m good plz help
To find the decay factor, b,
find the ratio of the
consecutive y-
values between the
points (0,16) and (1.12)?
Answer:
b = 4/3
Step-by-step explanation:
In an exponential equation:
f(x) = a (b)ˣ
Evaluated at x+1:
f(x+1) = a (b)ˣ⁺¹
The ratio between them is:
f(x+1) / f(x)
= (a (b)ˣ⁺¹) / (a (b)ˣ)
= b
So the decay factor b can be found by dividing the consecutive y values.
b = 16 / 12
b = 4/3
Please help asap.
A pizza is cut into six unequal slices (each cut starts at the center). The largest slice measures $90$ degrees If Larry eats the slices in order from the largest to the smallest, then the number of degrees spanned by a slice decreases at a constant rate. (So the second slice is smaller than the first by a certain number of degrees, then the third slice is smaller than the second slice by that same number of degrees, and so on.) What is the degree measure of the fifth slice Larry eats?
Answer:
The answer is 5th angle = [tex]\bold{42^\circ}[/tex]
Step-by-step explanation:
Given that pizza is divided into six unequal slices.
Largest slice has an angle of [tex]90^\circ[/tex].
He eats the pizza from largest to smallest.
Let the difference in angles in each slice = [tex]d^\circ[/tex]
1st angle = [tex]90^\circ[/tex]
2nd angle = 90-d
3rd angle = 90-d-d = 90 - 2d
4th angle = 90-2d-d = 90 - 3d
5th angle = 90-3d-d = 90 - 4d
6th angle = 90-4d -d = 90 - 5d
We know that the sum of all the angles will be equal to [tex]360^\circ[/tex] (The sum of all the angles subtended at the center).
i.e.
[tex]90+90-d+90-2d+90-3d+90-4d+90-5d=360\\\Rightarrow 540 - 15d = 360\\\Rightarrow 15d = 540 -360\\\Rightarrow 15d = 180\\\Rightarrow d = 12^\circ[/tex]
So, the angles will be:
1st angle = [tex]90^\circ[/tex]
2nd angle = 90- 12 = 78
3rd angle = 78-12 = 66
4th angle = 66-12 = 54
5th angle = 54-12 = 42
6th angle = 42 -12 = 30
So, the answer is 5th angle = [tex]\bold{42^\circ}[/tex]
A tech company is curious about marketing their new drones for home security. Let the proportion of houses that have home security be p. If the tech company would like to know if the proportion of houses that have home security is different than 45%, what are the null and alternative hypotheses
Answer:
Step-by-step explanation:
The null hypothesis is described as the default hypothesis while the alternative hypothesis us always tested against this null ie the opposite of the null hypothesis.
In this case study, Let the proportion of houses that have home security be p
Thus, the null hypothesis is proportion of houses that have home security is 45% : p = 45%
The alternative hypothesis is proportion of houses that have home security is different than 45%: p =/ 45%
the price of apples at three different stores is shown below. Store R sells apples for $1.20 per pound. Store S sells 4 pounds of apples for $5.00. Store T sells 3 pounds of apples for $3.48.
which of these is a true statemnt
Store R sells apples at the lowest rate
Store T sells apples at the lowest rate
Store s charges a lower rate than Store T
Store t charges the same rate as Store R
Store T sells apples at the lowest rate
Step-by-step explanation:
1st We need to make every statement in order of 1 pound. Then We will easily find the lowest rate of apple.
i) R sell 1.20 $ per pound.
ii) S sell 4 pounds for 5$
i.e S sell 1 pound for 5/4 = 1.25$
iii) T sell 3 pound for 3.48$
i.e T sell 1 pound for 3.48/3 = 1.16$
Analysing the above data I get,
Store T sells apples at the lowest rate
Find the area of the shaded region if the dimensions of the unshaded region are 12ft x 20ft . Use 3.14 for π as necessary. - - - no lengthy explanation needed! all I need is the answer! first answer gets brainliest!
Answer:
810.66 ft²
Step-by-step explanation:
Short answer:
Shaded region:
(12+2*7)*20 - 12*20 + 3.14*((12+2*7)/2)² =14*20 + 530.66 = 810.66 ft²Answer: 810.66 ft²
I agree.
Find the directional derivative of f at the given point in the direction indicated by the angle θ. f(x, y) = y cos(xy), (0, 1), θ = π/3
Answer:
√3/2
Explanation:
The directional derivative at the given point is gotten using the formula;
∇f(x,y)•u where u is the unit vector in that direction.
∇f(x,y) = f/x i + f/y j
Given the function f(x, y) = y cos(xy),
f/x = -y²sin(xy) and
f/y = -xysin(xy)+cos(xy)
∇f(x,y) = -y²sin(xy) i + (cos(xy)-xysin(xy)) j
∇f(x,y) at (0,1) will give;
∇f(0,1) = -0sin0 i + cos0j
∇f(0,1) = 0i+j
The unit vector in the direction of angle θ is given as u = cosθ i + sinθ j
u = cos(π/3)i+ sin(π/3)j
u = 1/2 i + √3/2 j
Taking the dot product of both vectors;
∇f(x,y)•u = (0i+j)•(1/2 i + √3/2 j)
Note that i.i = j.j = 1 and i.j = 0
∇f(x,y)•u = 0 + √3/2
∇f(x,y)•u = √3/2
The directional derivative of [tex]f[/tex] at the given point in the direction indicated is [tex]\frac{\sqrt{3}}{2}[/tex].
How to calculate the directional derivative of a multivariate functionThe directional derivative is represented by the following formula:
[tex]\nabla_{\vec v} f = \nabla f(x_{o},y_{o}) \cdot \vec v[/tex] (1)
Where:
[tex]\nabla f(x_{o}, y_{o})[/tex] - Gradient evaluated at point [tex](x_{o},y_{o})[/tex].[tex]\vec v[/tex] - Directional vectorThe gradient of [tex]f[/tex] is calculated below:
[tex]\nabla f (x_{o},y_{o}) = \left[\begin{array}{cc}\frac{\partial f}{\partial x} (x_{o}, y_{o}) \\\frac{\partial f}{\partial y} (x_{o}, y_{o})\end{array}\right][/tex] (2)
Where [tex]\frac{\partial f}{\partial x}[/tex] and [tex]\frac{\partial f}{\partial y}[/tex] are the partial derivatives with respect to [tex]x[/tex] and [tex]y[/tex], respectively.
If we know that [tex](x_{o}, y_{o}) = (0, 1)[/tex], then the gradient is:
[tex]\nabla f(x_{o}, y_{o}) = \left[\begin{array}{cc}-y^{2}\cdot \sin xy\\\cos xy -x\cdot y\cdot \sin xy\end{array}\right][/tex]
[tex]\nabla f (x_{o}, y_{o}) = \left[\begin{array}{cc}-1^{2}\cdot \sin 0\\\cos 0-0\cdot 1\cdot \sin 0\end{array}\right][/tex]
[tex]\nabla f (x_{o}, y_{o}) = \left[\begin{array}{cc}0\\1\end{array}\right][/tex]
If we know that [tex]\vec v = \cos \frac{\pi}{3}\,\hat{i} + \sin \frac{\pi}{3} \,\hat{j}[/tex], then the directional derivative is:
[tex]\Delta_{\vec v} f = \left[\begin{array}{cc}0\\1\end{array}\right]\cdot \left[\begin{array}{cc}\cos \frac{\pi}{3} \\\sin \frac{\pi}{3} \end{array}\right][/tex]
[tex]\nabla_{\vec v} f = (0)\cdot \cos \frac{\pi}{3} + (1)\cdot \sin \frac{\pi}{3}[/tex]
[tex]\nabla_{\vec v} f = \frac{\sqrt{3}}{2}[/tex]
The directional derivative of [tex]f[/tex] at the given point in the direction indicated is [tex]\frac{\sqrt{3}}{2}[/tex]. [tex]\blacksquare[/tex]
To learn more on directional derivatives, we kindly invite to check this verified question: https://brainly.com/question/9964491
please help all i need is the slope in case the points are hard to see here they are problem 1. (-2,2) (3,-3) problem 2. (-5,1) (4,-2) problem 3. (-1,5) (2,-4)
Answer: 1. [tex]-\dfrac{5}{6}[/tex] 2. [tex]-\dfrac{1}{3}[/tex] . 3. [tex]-3[/tex]
Step-by-step explanation:
Formula: Slope[tex]=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
1. (-2,2) (3,-3)
Slope [tex]=\dfrac{-3-2}{3-(-2)}[/tex]
[tex]=\dfrac{-5}{3+2}\\\\=\dfrac{-5}{6}[/tex]
Hence, slope of line passing through (-2,2) (3,-3) is [tex]-\dfrac{5}{6}[/tex] .
2. (-5,1) (4,-2)
Slope [tex]=\dfrac{-2-1}{4-(-5)}[/tex]
[tex]=\dfrac{-3}{4+5}\\\\=\dfrac{-3}{9}\\\\=-\dfrac{1}{3}[/tex]
Hence, slope of line passing through (-2,2) and (3,-3) is [tex]-\dfrac{1}{3}[/tex] .
3. (-1,5) (2,-4)
Slope [tex]=\dfrac{-4-5}{2-(-1)}[/tex]
[tex]=\dfrac{-9}{2+1}\\\\=\dfrac{-9}{3}\\\\=-3[/tex]
Hence, slope of line passing through (-1,5) and (2,-4) is -3.
What is the rate of change of the function
The average rate of change between two input values is the total change of the function values (output values) divided by the change in the input values.
Find the common ratio of the following geometric sequence:
11,55, 275, 1375, ....
Answer:
Hey there!
The common ratio is 5, because you multiply by 5 to get from one term to the next.
Hope this helps :)
Answer:
5
Step-by-step explanation:
To find the common ratio take the second term and divide by the first term
55/11 = 5
The common ratio would be 5
A survey found that 39% of all gamers play video games on their smartphones. Ten frequent gamers are randomly selected. The random variable represents the number of frequent games who play video games on their smartphones. What is the value of n
Answer:
61% i think
Step-by-step explanation:
if you have 39% and it 10 out of a 100 well you have a 39/100 and then n would be 61/100 so 61%
0.39 is the value of n for the video games on their smartphones. Thus option A is correct.
What is probability?The mathematical discipline known as probability specializes in determining the possibility of an event occurring. Probability, which expresses the probability of a risk, is calculated by dividing the total possible combinations by the frequency of favorable events. Composite reliabilities vary from 0 to 1, with 1 representing certainty and 0 representing hesitation.
In a binomial distribution, p stands for the success probability. It refers to the likelihood that a certain number of experiments will result in favorable results. For all binomial attempts, the probability of winning stays constant.
This suggests that there will be a distribution of 39/100. The result after the calculation will be 0.39. Therefore, option A is the correct option.
Learn more about probability, Here:
https://brainly.com/question/11234923
#SPJ2
The question is incomplete, the complete question will be :
A survey found that 39 % of all gamers play video games on their smartphones. Ten frequent gamers are randomly selected. The random variable represents the number of frequent games who play video games on their smartphones. What is the value of n ?
A) 0.39
B) 0.10
C) 10
D) x
Simplify 12/ |-4| x3 + |5|
Answer: 14
Step-by-step explanation:
12/4 times 3 +5
= 3 times 3 + 5
= 9 + 5
= 14
the value of 4^-1+8^-1÷1/2/3^3
Answer:
1.9375.
Step-by-step explanation:
To solve this, we must use PEMDAS.
The first things we take care of are parentheses and exponents.
Since there are no parentheses, we do exponents.
4^-1+8^-1÷1/2/3^3
= [tex]\frac{1}{4} +\frac{1}{8} / 1/ 2/ 27[/tex]
= 1/4 + (1/8) / 1 * (27 / 2)
= 1/4 + (27 / 8) / 2
= 1/4 + (27 / 8) * (1 / 2)
= 1/4 + (27 / 16)
= 4 / 16 + 27 / 16
= 31 / 16
= 1.9375.
Hope this helps!
What is the range of the function F(x) graphed below?F(x)= -(x+2)^2+3
Answer:
range of the function F(x) is (-infinity, 3)
Step-by-step explanation:
I do not see the graph function F(x), so will assume that it is a graph of the function F(x) over the complete domain (-inf,inf).
As you can see from the attached graph, the function reaches a maximum at y=+3, and extends all the way to -infinity.
So the range of the function F(x) is (-infinity, 3)
Show how you can determine that the inscribed figure inside a quadrilateral is a parallelogram. Support your argument with diagrams.
Answer:
Look for perpendicular lines or corresponding angles or alternate interior angles.
Step-by-step explanation:
When you want to show that a quadrilateral is a parallelogram you need to show that the oposite sides are parallel. In order to show that two segments are parallel there are various theorems and definitions you can use.
1 - Remember that two lines perpendicular to the same segment are parallel.
2 - When two lines are cut by a secant and their alternate interior angles are congruent, then the resulting lines are parallel, I will attach a drawing to illustrate what I am saying.
3 - When two lines are cut by a secant and their CORRESPONDING angles are congruent, then the resulting lines are parallel, I will also attach a drawing to illustrate what I am saying.
Which statement about the following equation is true?
2x2-9x+2-1
Complete Question:
Which statement about the following equation is true?
[tex]2x^2-9x+2 = -1[/tex]
A) The discriminant is less than 0, so there are two real roots
B) The discriminant is less than 0, so there are two complex roots
C) The discriminant is greater than 0, so there are two real roots
D) The discriminant is greater than 0, so there are two complex roots
Answer:
C) The discriminant is greater than 0, so there are two real roots
Step-by-step explanation:
The given equation is [tex]2x^2-9x+2 = -1[/tex] which by simplification becomes
[tex]2x^2 - 9x + 3 = 0[/tex]
For a quadratic equation of the form [tex]ax^2 + bx + c = 0[/tex], the discriminant is given by the equation, [tex]D = b^2 - 4ac[/tex]
If the discriminant D is greater than 0, the roots are real and different
If the discriminant D is equal to 0, the roots are real and equal
If the discriminant D is less than 0, the roots are imaginary
For the quadratic equation under consideration, a = 2, b = -9, c = 3
Let us calculate the discriminant D
D = (-9)² - 4(2)(3)
D = 81 - 24
D = 57
Since the Discriminant D is greater than 0, the roots are real and different.
Answer:
Step-by-step explanation:
C) The discriminant is greater than 0, so there are two real roots
may someone assist me?
Answer:
28
Step-by-step explanation:
Let x be the missing segment
We will use the proportionality property to find x
24/16 = 42/x
Simplify 24/16
24/16= (4×6)/(4×4)= 4/6 = 3/2
So 3/2 = 42/x
3x = 42×2
3x = 84
x = 84/3
x= 28
For a certain bathtub, the cold water faucet can fill the tub in 9 minutes. The hot water faucet can fill the tub in 11 minutes. If both faucets
are used together, how long will it take to fill the tub?
Do not do any rounding.
Answer:
2 minutes
Step-by-step explanation:
You need to first subtract 9 from 11 and you get 2 minutes.
11 minutes will it take to fill the tub by both hot and cold water faucets.
What is Time?
Time as the progression of events from the past to the present into the future.
Given that,
the cold water faucet can fill the tub in 9 minutes
The hot water faucet can fill the tub in 11 minutes.
If both the faucets are used together then it takes 11 minutes to fill the tub because it takes longer time for hot water faucet to fill the tub.
Therefore it takes 11 min to fill the tub together.
To learn more on Time click:
https://brainly.com/question/28050940
#SPJ5
which formulas can be used to find the surface area of a regular pyramid where p is the perimeter of the base, s is the slant height, BA is the base area, and LA is the lateral area click all that apply options: A. SA= 1/2BA + 1/2ps B. SA= BA-LA C. SA= BA+LA D. SA= BA • LA E. SA= BA + 1/2ps
Answer:
C and E
Step-by-step explanation:
He got it on ap.ex
The area of the pyramid can be found using the formula SA = BA + LA and SA= BA + 1/2ps option (C) and (E) are correct.
What is a square pyramid?In geometry, it is defined as the shape having a square base with equal sides length and all the vertex of the square's joints at the top, which is perpendicular to the center of the square.
The question is incomplete.
The complete question is in the picture, please refer to the attached picture.
We have a pyramid with a square base:
The perimeter of the base is p
The slant height is s.
The base area is BA
The lateral area is LA.
We can find the area of the pyramid as follows:
SA = BA + LA
SA= BA + 1/2ps
Thus, the area of the pyramid can be found using the formula SA = BA + LA and SA= BA + 1/2ps option (C) and (E) are correct.
Learn more about the pyramid here:
brainly.com/question/13057463
#SPJ5
Solve : 1 − | 0.2(m−3)+ 1/4| =0
Answer:
1-{0.2(m-3)+¼}=0
1{0.2m-0.6+¼}=0
1-{(0.8m-2.4+1)/4}=0
1-(0.8m-1.4)/4=0
lcm
(4-0.8m-1.4)/4=0
(2.6-0.8m)/4=0
cross multiply
2.6-0.8m=0
m=2.6/0.8
m=3.25
The solution of the expression are,
⇒ m = 3.25
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Given that;
Expression is,
⇒ 1 - | 0.2 (m - 3) + 1/4 | = 0
Now, We can simplify as;
⇒ 1 - | 0.2m - 0.6 + 1/4| = 0
⇒ 1 - |0.2m - 0.6 + 0.25| = 0
⇒ 1 - |0.2m - 0.35| = 0
⇒ 1 = 0.2m + 0.35
⇒ 1 - 0.35 = 0.2m
⇒ 0.2m = 0.65
⇒ m = 3.25
Thus, The solution of the expression are,
⇒ m = 3.25
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ2
Which graph shows the solution to the system of linear inequalities? y ≥ 2x + 1 y ≤ 2x – 2
The lines of the inequalities are parallel, and the system of inequalities do not have any solution.
How to determine the solution of the inequalitiesThe system of inequalities are given as:
y ≥ 2x + 1 y ≤ 2x – 2The inequality y ≥ 2x + 1 has the following characteristics:
A slope of 2A y-intercept of 1A closed line, where the upper region is shadedThe inequality y ≤ 2x – 2 has the following characteristics:
A slope of 2A y-intercept of -2A closed line, where the lower region is shadedSee attachment for the graphs of the system of inequalities
Read more about system of inequalities at:
https://brainly.com/question/9774970
need answers (ASAP!!!) with equations, please!!
Answer:
a=6, b=5.5
Step-by-step explanation:
By looking at the sides of the triangles it can easily be seen that some of the sides match up. Side b is similar to the side of 11 and same with side a and the side of 3. Since one side is 16 and the other side on the smaller triangle is 8, the bigger triangle is twice as large than the smaller one. So 3 x 2 = 6 and 11 / 2 = 5.5
Find the unknown side length, x. Write your answer in simplest radical form.
A. 3
B. 34
C. 6.
D. 41
Answer:
√41
Step-by-step explanation:
Considering the sides with lengths 48 and 52 units, we would use Pythagoras theorem to find the third side. Let that side be t
52² = 48² + t²
t² = 52² - 48²
= 2704 - 2304
= 400
t = √400
= 20
Considering the next triangle with sides t (20 units) and 12 units, again using the theorem
20² = 12² + y²
where y is the third side
400 = 144 + y²
y² = 400 - 144
= 256
y = √256
= 16 units
Considering the triangle with two sides given as 5 and 13 units, the third side (which is part of the 16 units calculated earlier)
13² = 5² + u²
where u is the 3rd side
169 = 25 + u²
u² = 169 - 25
u² = 144
u = √144
u = 12
The other part of the side of that triangle
= 16 - 12
= 4
Considering the smallest triangle whose sides are x, 5 and 4,
x² = 5² + 4²
= 25 + 16
= 41
x = √41
Of the following points, name all that lie on the same horizontal line? (1,-2) (-1,2) (-2,1) (2,-1)
Hey there!
If a line is horizontal, the entire line is at the same elevation. On a line, the elevation is the y-value. So, all of the points with the same y-value are on the same horizontal line.
We see that all of these points have different y-values so none of them would be on the same horizontal line.
I hope that this helps! Have a wonderful day!
A subcommittee is randomly selected from a committee of eight men and seven women. What is the probability that all three people on the subcommittee are men
Answer:
The probability that all three people on the subcommittee are men
= 20%
Step-by-step explanation:
Number of members in the committee = 15
= 8 men + 7 women
The probability of selecting a man in the committee
= 8/15
= 53%
The probability of selecting three men from eight men
= 3/8
= 37.5%
The probability that all three people on the subcommittee are men
= probability of selecting a man multiplied by the probability of selecting three men from eight men
= 53% x 37.5%
= 19.875%
= 20% approx.
This is the same as:
The probability of selecting 3 men from the 15 member-committee
= 3/15
= 20%
let x = the amoun of raw sugar in tons a procesing plant is a sugar refinery process in one day . suppose x can be model as exponetial distribution with mean of 4 ton per day . The amount of raw sugar (x) has
Answer:
The answer is below
Step-by-step explanation:
A sugar refinery has three processing plants, all receiving raw sugar in bulk. The amount of raw sugar (in tons) that one plant can process in one day can be modelled using an exponential distribution with mean of 4 tons for each of three plants. If each plant operates independently,a.Find the probability that any given plant processes more than 5 tons of raw sugar on a given day.b.Find the probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day.c.How much raw sugar should be stocked for the plant each day so that the chance of running out of the raw sugar is only 0.05?
Answer: The mean (μ) of the plants is 4 tons. The probability density function of an exponential distribution is given by:
[tex]f(x)=\lambda e^{-\lambda x}\\But\ \lambda= 1/\mu=1/4 = 0.25\\Therefore:\\f(x)=0.25e^{-0.25x}\\[/tex]
a) P(x > 5) = [tex]\int\limits^\infty_5 {f(x)} \, dx =\int\limits^\infty_5 {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_5=e^{-1.25}=0.2865[/tex]
b) Probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day can be solved when considered as a binomial.
That is P(2 of the three plant use more than five tons) = C(3,2) × [P(x > 5)]² × (1-P(x > 5)) = 3(0.2865²)(1-0.2865) = 0.1757
c) Let b be the amount of raw sugar should be stocked for the plant each day.
P(x > a) = [tex]\int\limits^\infty_a {f(x)} \, dx =\int\limits^\infty_a {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_a=e^{-0.25a}[/tex]
But P(x > a) = 0.05
Therefore:
[tex]e^{-0.25a}=0.05\\ln[e^{-0.25a}]=ln(0.05)\\-0.25a=-2.9957\\a=11.98[/tex]
a ≅ 12
Chicos ayudenme rápidito urgente plis es para ahorita al menos con algunos plis doy corona al que me ayuda pero porfavor ayudenme sii ayudenme
Bueno, usaré el español xD
11. Recordemos que entre más negativo es un número, menor es.
a) - 6 > - 10
ya que - 10 es más negativo, por consiguiente es menor, esto llega a confundir ya que tenemos la noción de que si vemos una cifra alta, por consiguiente es mayor, esto pasa en los positivos.
b) 12 > - 16
c) - 7 < 0
d) 35 > - 80
e) -37 < - 24
f) - 40 < 15
g) - 18 < 10
h) - 17 < 0
i) |-21| = |21|
El valor absoluto de un número negativo es su positivo, por lo que también puede ser:
21 = 21.
j) |176| > 0, o también 176 > 0
k) |-479| > |478|, o también 479 > 478
l) |-1375| = |1375|, o también 1375 = 1375
12. De menor a mayor.
a) - 8, - 7, - 4, 0, 3
b) - 16, - 12, - 7, 8, 9
c) - 15, - 13, 0, 9, 11
d) - 47, - 43, - 31, 14, 29
e) - 17, - 15, - 12, 16, 19
f) - 26, - 21, - 10, 17, 26
g) - 61, - 58, - 49, 30, 50
13. De mayor a menor.
a) 6, 4, - 1, - 5, - 7
b) 8, 0, - 7, - 11, - 13
c) 19, 6, - 8, - 10, - 17
d) 21, - 9, - 18, - 24, - 27
e) 53, 47, - 6, - 43, - 48
f) 14, 6, - 18, - 39, - 45
g) 24, 16, 12, - 12, - 17
Salu2
Find the perimeter and total area of the polygon shape shown below. All measurements are given in inches. Helps please !!!!
Answer:
perimeter = 56 in
area = 192 sq. in.
Step-by-step explanation:
area of a triangle = 0.5 * b * h
b = 12
h = 8
At = (0.5 * 12 * 8) = 48
Area of a square
As = 12 * 12 = 144
total area = At + As
total area = 48 + 144
total area = 192 sq. in.
perimeter = add all sides
12 + 12 + 12 + 10 + 10 = 56 in
hope it helps
17. An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours. How large a sample is need it if we wish to be 98% confident that our sample mean will be within 4 hours of the true mean
Answer:
A sample of at least 541 is needed if we wish to be 98% confident that our sample mean will be within 4 hours of the true mean.
Step-by-step explanation:
We are given that an electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours.
We have to find a sample such that we are 98% confident that our sample mean will be within 4 hours of the true mean.
As we know that the Margin of error formula is given by;
The margin of error = [tex]Z_(_\frac{\alpha}{2}_) \times \frac{\sigma}{\sqrt{n} }[/tex]
where, [tex]\sigma[/tex] = standard deviation = 40 hours
n = sample size
[tex]\alpha[/tex] = level of significance = 1 - 0.98 = 0.02 or 2%
Now, the critical value of z at ([tex]\frac{0.02}{2}[/tex] = 1%) level of significance n the z table is given as 2.3263.
So, the margin of error = [tex]Z_(_\frac{\alpha}{2}_) \times \frac{\sigma}{\sqrt{n} }[/tex]
[tex]4=2.3263 \times \frac{40}{\sqrt{n} }[/tex]
[tex]\sqrt{n}= \frac{40 \times 2.3263}{ 4}[/tex]
[tex]\sqrt{n}=23.26[/tex]
n = [tex]23.26^{2}[/tex] = 541.03 ≈ 541
Hence, a sample of at least 541 is needed if we wish to be 98% confident that our sample mean will be within 4 hours of the true mean.