The measurement of the circumference of a circle is found to be 64 centimeters, with a possible error of 0.9 centimeter. (a) Approximate the percent error in computing the area of the circle. (Round your answer to two decimal places.) 2.81 Correct: Your answer is correct. % (b) Estimate the maximum allowable percent error in measuring the circumference if the error in computing the area cannot exceed 1%. (Round your answer to one decimal place.)

Answers

Answer 1

Answer:

(a) 2.81%

(b) 0.5%

Step-by-step explanation:

We have the following information from the statement:

P = 64 + - 0.9

(a) We know that the perimeter is:

P = 2 * pi * r

if we solve for r, we have to:

r = P / 2 * pi

We have that the formula of the area is:

A = pi * r ^ 2

we replace r and we are left with:

A = pi * (P / 2 * pi) ^ 2

A = (P ^ 2) / (4 * pi)

We derive with respect to P, and we are left with:

dA = 2 * P / 4 * pi * dP

We know that P = 64 and dP = 0.9, we replace:

dA = 2 * 64/4 * 3.14 * 0.9

dA = 9.17

The error would come being:

dA / A = 9.17 / (64 ^ 2/4 * 3.14) = 0.02811

In other words, the error would be 2.81%

(b) tell us that dA / A <= 0.01

we replace:

[P * dP / 2 * pi] / [P ^ 2/4 * pi] <= 0.01

solving we have:

2 * dP / P <= 0.01

dP / P <= 0.01 / 2

dP / P <= 0.005

Which means that the answer is 0.5%


Related Questions

A study conducted at a certain college shows that "53%" of the school's graduates find a job in their chosen field within a year after graduation. Find the probability that among 6 randomly selected graduates, at least one finds a job in his or her chosen field within a year of graduating. 0.989 0.978 0.927 0.167 0.530

Answers

Answer:

0.989

Step-by-step explanation:

For each graduate, there are only two possible outcomes. Either they find a job in their chosen field within a year after graduation, or they do not. The probability of a graduate finding a job is independent of other graduates. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

A study conducted at a certain college shows that "53%" of the school's graduates find a job in their chosen field within a year after graduation.

This means that [tex]p = 0.53[/tex]

6 randomly selected graduates

This means that [tex]n = 6[/tex]

Probability that at least one finds a job in his or her chosen field within a year of graduating:

Either none find a job, or at least one does. The sum of the probabilities of these outcomes is 1. So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

We want [tex]P(X \geq 1)[/tex]

So

[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]

In which

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{6,0}.(0.53)^{0}.(0.47)^{6} = 0.011[/tex]

So

[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.011 = 0.989[/tex]

Decide whether the method of undetermined coefficients together with superposition can be applied to find a particular solution of the given equation. Do not solve the equation Can the method of undetermined coefficients together with superposition be applied to find a particular solution of the given equation?
A. No, because the right side of the given equation is not the correct type of function
B, Yes °
C. No, because the differential equation is not linear.
D. No, because the differential equation does not have constant coefficients.

Answers

Answer:

D. No, because the differential equation does not have constant coefficients.

Step-by-step explanation:

The undetermined coefficient method cannot be applied to non homogeneous variables. The differential equation does not have constant variables therefore the method of undetermined superposition can not be applied. To complete a solution of non homogeneous equation the particular solution must be added to the homogeneous equation.

Let x1 = 12, y1 = 15, and y2 = 3. Let y vary inversely with x. Find x2.

Answers

Answer:

x2 = 60

Step-by-step explanation:

If the variables x and y are inversely proportional, the product x * y is a constant.

So using x1 and y1 we can find the value of this constant:

[tex]x1 * y1 = k[/tex]

[tex]12 * 15 = k[/tex]

[tex]k = 180[/tex]

Now, we can use the same constant to find x2:

[tex]x2 * y2 = k[/tex]

[tex]x2 * 3 = 180[/tex]

[tex]x2 = 180 / 3 = 60[/tex]

So the value of x2 is 60.

Which of the following is a polynomial with roots: − square root of 3 , square root of 3, and −2? (6 points) Question 7 options: 1) x3 − 2x2 − 3x + 6 2) x3 − 3x2 − 5x + 15 3) x3 + 2x2 − 3x − 6 4) x3 + 3x2 − 5x − 15

Answers

Answer:

The polynomial is [tex]x^{3} - 1.46x^{2} - 3.93x + 6[/tex]

Step-by-step explanation:

A nth order polynomial f(x) has roots [tex]x_{1}, x_{2}, ..., x_{n}[/tex] such that [tex]f(x) = (x - x_{1})*(x - x_{2})*...*(x - x_{n}}[/tex],

Which of the following is a polynomial with roots: − square root of 3 , square root of 3, and −2?

So

[tex]x_{1} = x_{2} = \sqrt{3}[/tex]

[tex]x_{3} = -2[/tex]

Then

[tex](x - \sqrt{3})^{2}*(x - (-2)) = (x - \sqrt{3})^{2}*(x + 2) = (x^{2} -2x\sqrt{3} + 3)*(x + 2) = x^{3} + 2x^{2} - 2x^{2}\sqrt{3} - 4x\sqrt{3} + 3x + 6[/tex]

Since [tex]\sqrt{3} = 1.73[/tex]

[tex]x^{3} + 2x^{2} - 3.46x^{2} - 6.93x + 3x + 6 = x^{3} - 1.46x^{2} - 3.93x + 6[/tex]

The polynomial is [tex]x^{3} - 1.46x^{2} - 3.93x + 6[/tex]

Find f(x) - g(x) when f(x) = 2x^2 - 4x g(x) = x^2 + 6x
3x^2

x^2 + 2x


x^2 - 10x


3x^2 + 2x

Answers

the last one 3x^ + 2x

Answer:

x^2 - 10x

Step-by-step explanation:

2x^2 - 4x - x^2 +6x

You subtract x^2 from 2x^2 and you get x^2

Then you add 6x and 4x together and get 10x

So then you have x^2 - 10x

(plus I took the test and this was the correct answer.)

A ladder leans against the side of a house. The angle of elevation of the ladder is 66 degrees, and the top of the ladder is 15 ft above the ground. Find the distance from the bottom of the ladder to the side of the house. Round your answer to the nearest tenth.

Answers

Answer:

x ≈ 6.7 ft

Step-by-step explanation:

We are going to use tan∅ to find our answer:

tan66° = 15/x

xtan66° = 15

x = 15/tan66°

x = 6.67843 ft

hey guys please help ​

Answers

Answer:

[tex]7.98 \:m[/tex]

Step-by-step explanation:

Area of a triangle is base times height divided by 2.

[tex]A= \frac{bh}{2}[/tex]

[tex]69.6= \frac{b \times 17.45}{2}[/tex]

[tex]69.6 \times 2= b \times 17.45[/tex]

[tex]139.2=b \times 17.45[/tex]

[tex]\frac{17.45b}{17.45}=\frac{139.2}{17.45}[/tex]

[tex]b=\frac{2784}{349}[/tex]

[tex]b=7.97707[/tex]

The appropriate unit is meters.

Answer:

7.98 m

Step-by-step explanation:


Find the LCM of the set of algebraic expressions.
28x2,49xy, 28y
Answer

Answers

Answer:

196x^2y

Step-by-step explanation: The least common multiple (LCM) of two or more non-zero whole numbers is the smallest whole number that is divisible by each of those numbers. In other words, the LCM is the smallest number that all of the numbers divide into evenly.

Write the Algebraic expression for each of the following.
1. Sum of 35 and 65
2. Take away 14 from y
3. Subtract 3 from the product of 6 and s
4. 10 times the sum of x and 8 5. Take away p from 6

Answers

Step-by-step explanation:

1. 35 + 65

2. y - 14

3. (6 x s) - 3

4. 10(x+8.5).. 6-p

Write the expression in simplest form 3(5x) + 8(2x)

Answers

Answer:

31x

[tex]solution \\ 3(5x) + 8(2x) \\ = 3 \times 5x + 8 \times 2x \\ = 15x + 16x \\ = 31x[/tex]

hope this helps...

Good luck on your assignment...

The expression  [tex]3(5x) + 8(2x)[/tex] in simplest form is 31x.

To simplify the expression [tex]3(5x) + 8(2x)[/tex], we can apply the distributive property:

[tex]3(5x) + 8(2x)[/tex]

[tex]= 15x + 16x[/tex]

Combining like terms, we have:

[tex]15x + 16x = 31x[/tex]

Therefore, the expression [tex]3(5x) + 8(2x)[/tex] simplifies to [tex]31x.[/tex]

To learn more on Expressions click:

https://brainly.com/question/14083225

#SPJ6

In an office complex of 1110 employees, on any given day some are at work and the rest are absent. It is known that if an employee is at work today, there is an 77% chance that she will be at work tomorrow, and if the employee is absent today, there is a 54% chance that she will be absent tomorrow. Suppose that today there are 899 employees at work.

Required:
a. Find the transition matrix for this scenario.
b. Predict the number that will be at work five days from now.
c. Find the steady-state vector.

Answers

Answer:

B

Step-by-step explanation:

2x^2+8x = x^2-16
Solve for x

Answers

Answer:

x=-4

Step-by-step explanation:

[tex]2x^2+8x=x^2-16[/tex]

Move everything to one side:

[tex]x^2+8x+16=0[/tex]

Factor:

[tex](x+4)^2=0[/tex]

By the zero product rule, x=-4. Hope this helps!

Answer:

x=-4

Step-by-step explanation:

Move everything to one side and combine like-terms

x²+8x+16

Factor

(x+4)²

x=-4

An economist at Vanderbilt University devised a study to compare different types of online auctions. In one experiment he compared a Dutch auction to a first-place sealed bid auction. In the Dutch auction the item for sale starts at a very high price and is lowered gradually until someone finds the price low enough to buy. In the first-price sealed bid auction each bidder submits a single sealed bid before a particular deadline. After the deadline, the person with the highest bid wins. The researcher auctioned off collectible trading cards from the game Magic: The Gathering. He placed pairs of identical cards up for auction; one would go into Dutch auction and the other to the first-price sealed bid auction. He then looked at the difference in the prices he received on the pair. He repeated this for a total of 88 pairs.
[a] Explained why the data should be analyzed using paired samples as opposed to two independent samples.
[b] What makes a pair?
[c] What is the explanatory variable? Is it categorical or quantitative?
[d] What is the response variable? Is it categorical or quantitative?
[e] State the relevant hypotheses in words:
Null hypothesis:
Alternative hypothesis:
[f] Define the parameter of interest and give the symbol that should be assigned to it.
[g] State the relevant hypotheses in symbols (using a parameter):
Null hypothesis:
Alternative hypothesis:
[h] Assume the p-value is 0.17 (write a conclusion).

Answers

Answer:

Step-by-step explanation:

a. The data should be analyzed using paired samples because the economist made two measurements (samples) drawn from the same pair of identical cards. Each data point in one sample is uniquely paired to a data point in the second sample.

b. A pair is made up of two identical cards where one would go into Dutch auction and the other to the first-price sealed bid auction.

c. The explanatory variables are the types of online auction which are the Dutch auction and the first price sealed bid auction. The explanation variable here is categorical: the Dutch auction and the first price sealed bid auction.

d. The response variable which is also known as the outcome variable is prices for the 2 different auction for each pair of identical cards. This variable is quantitative.

e. Null Hypothesis in words: There is no difference in the prices obtained in the two different online auction.

Alternative hypothesis: There is a difference in the prices obtained in the two different online auction.

f. The parameter of interest in this case is the mean prices of pairs of identical cards for both auction and is assigned p.

g. Null hypothesis: p(dutch) = p(first-price sealed auction)

Alternative hypothesis: p(dutch) =/ p(first-price sealed auction)

h. Assuming the p-value is 0.17 at an assed standard 0.05 significance level, our conclusion would be to fail to reject the null hypothesis as 0.17 is greater than 0.05 or even 0.01 and we can conclude that, there is no statistically significant evidence to prove that there is a difference in the prices obtained in the two different online auction.

combine like terms to create an equivalent expression -1/2(-3y+10)

Answers

Answer:

3/2y - 5

Step-by-step explanation:

-1/2(-3y+10)

Expand the brackets.

-1/2(-3y) -1/2(10)

Multiply.

3/2y - 5

Answer:

[tex]= \frac{ 3y}{2} - 5 \\ [/tex]

Step-by-step explanation:

we know that,

[tex]( - ) \times ( - ) = ( + ) \\ ( - ) \times ( + ) = ( - )[/tex]

Let's solve now,

[tex] - \frac{1}{2} ( - 3y + 10) \\ \frac{3y}{2} - \frac{10}{2} \\ = \frac{ 3y}{2} - 5[/tex]

Which of the following is the graph of y = negative StartRoot x EndRoot + 1?

Answers

Answer:

see below

Step-by-step explanation:

y = -sqrt(x) +1

We know that the domain is from 0 to infinity

The range is from 1 to negative infinity

Answer:

b

Step-by-step explanation:

e2020

Need help ASAP!! thank you sorry if u can’t see it good :(

Answers

Answer/Step-by-step explanation:

==>Given:

=>Rectangular Pyramid:

L = 5mm

W = 3mm

H = 4mm

=>Rectangular prism:

L = 5mm

W = 3mm

H = 4mm

==>Required:

a. Volume of pyramid:

Formula for calculating volume of a rectangular pyramid us given as L*W*H

V = 5*3*4

V = 60 mm³

b. Volume of prism = ⅓*L*W*H

thus,

Volume of rectangular prism given = ⅓*5*3*4

= ⅓*60

= 20mm³

c. Volume of the prism = ⅓ x volume of the pyramid

Thus, 20 = ⅓ × 60

As we can observe from our calculation of the solid shapes given, the equation written above is true for all rectangular prism and rectangular pyramid of the same length, width and height.


someone pls help me! ❤️❤️❤️

Answers

Answer:

(x-1) ( x -i) (x+i)

Step-by-step explanation:

x^3 -2x^2 +x-2

Factor by grouping

x^3 -2x^2      +x-2

x^2(x-2)      +1(x-2)

Factor out (x-2)

(x-2) (x^2+1)

Rewriting

(x-1) ( x^2 - (-1)^2)

(x-1) ( x -i) (x+i)

Answer:

Should be b

Step-by-step explanation:

Since it's a multiple choice question you know that -2 or 2 has to be a root for the cubic.

You can test both -2 and 2 and see that replacing x for 2 has the expression evaluate to 0.

Then, since you know the imaginary roots have to be conjugates, you get B.

Given a normal distribution with (mean) μ= 50 and (standard deviation) σ = 4, what is the probability that:__________.
a) x>43
b) x<42
c) x>57.5
d) 42 e) x<40 or x>55
f) 5% of the values are less than what X value?
g) 60% of the values are between what two X values (symmetrically distributed around the mean)?
h) 85% of the values will be above what X value?

Answers

Answer:

a) P(x > 43) = 0.9599

b) P(x < 42) = 0.0228

c) P(x > 57.5) = 0.03

d) P(x = 42) = 0.

e) P(x<40 or x>55) = 0.1118

f) 43.42

g) Between 46.64 and 53.36.

h) Above 45.852.

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 50, \sigma = 4[/tex]

a) x>43

This is 1 subtracted by the pvalue of Z when X = 43. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{43 - 50}{4}[/tex]

[tex]Z = -1.75[/tex]

[tex]Z = -1.75[/tex] has a pvalue of 0.0401

1 - 0.0401 = 0.9599

P(x > 43) = 0.9599

b) x<42

This is the pvalue of Z when X = 42.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{42 - 50}{4}[/tex]

[tex]Z = -2[/tex]

[tex]Z = -2[/tex] has a pvalue of 0.0228

P(x < 42) = 0.0228

c) x>57.5

This is 1 subtracted by the pvalue of Z when X = 57.5. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{57.5 - 50}{4}[/tex]

[tex]Z = 1.88[/tex]

[tex]Z = 1.88[/tex] has a pvalue of 0.97

1 - 0.97 = 0.03

P(x > 57.5) = 0.03

d) P(x = 42)

In the normal distribution, the probability of an exact value is 0. So

P(x = 42) = 0.

e) x<40 or x>55

x < 40 is the pvalue of Z when X = 40. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{40 - 50}{4}[/tex]

[tex]Z = -2.5[/tex]

[tex]Z = -2.5[/tex] has a pvalue of 0.0062

x > 55 is 1 subtracted by the pvalue of Z when X = 55. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{55 - 50}{4}[/tex]

[tex]Z = 1.25[/tex]

[tex]Z = 1.25[/tex] has a pvalue of 0.8944

1 - 0.8944 = 0.1056

0.0062 + 0.1056 = 0.1118

P(x<40 or x>55) = 0.1118

f) 5% of the values are less than what X value?

X is the 5th percentile, which is X when Z has a pvalue of 0.05, so X when Z = -1.645.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.645 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -1.645*4[/tex]

[tex]X = 43.42[/tex]

43.42 is the answer.

g) 60% of the values are between what two X values (symmetrically distributed around the mean)?

Between the 50 - (60/2) = 20th percentile and the 50 + (60/2) = 80th percentile.

20th percentile:

X when Z has a pvalue of 0.2. So X when Z = -0.84.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-0.84 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -0.84*4[/tex]

[tex]X = 46.64[/tex]

80th percentile:

X when Z has a pvalue of 0.8. So X when Z = 0.84.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]0.84 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = 0.84*4[/tex]

[tex]X = 53.36[/tex]

Between 46.64 and 53.36.

h) 85% of the values will be above what X value?

Above the 100 - 85 = 15th percentile, which is X when Z has a pvalue of 0.15. So X when Z = -1.037.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.037 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -1.037*4[/tex]

[tex]X = 45.852[/tex]

Above 45.852.

Given z = 4x – 6y, solve for y.​

Answers

Answer:

Step-by-step explanation:

-6y+4x=z

-6y=z-4x

y=(z-4x)/-6

Answer:

[tex]y=\frac{z-4x}{-6}[/tex]

Step-by-step explanation:

Determine if the expressions are equivalent.

when w = 11:

2w + 3 + 4     4 + 2w + 3

2(11) + 3 + 4    4 + 2(11) + 3

22 + 3 + 4      4 + 22 + 3

25 + 4      26 + 3

29        29

Complete the statements.

Answers

Answer:

Determine if the expressions are equivalent.

when w = 11:

2w + 3 + 4     4 + 2w + 3

2(11) + 3 + 4    4 + 2(11) + 3

22 + 3 + 4      4 + 22 + 3

25 + 4      26 + 3

29        29

Complete the statements.

Now, check another value for the variable.

When w = 2, the first expression is  

11

.

When w = 2, the second expression is  

11

.

Therefore, the expressions are  

equivalent

.

Step-by-step explanation:

i did the math hope this helps

Answer:

Hii its Nat here to help! :)

Step-by-step explanation: A is 11 and b is 11.

C is Equal

Screenshot included.

Suppose that we want to generate the outcome of the flip of a fair coin, but that all we have at our disposal is a biased coin which lands on heads with some unknown probability p that need not be equal to1/2. Consider the following procedure for accomplishing our task:
1. Flip the coin.
2. Flip the coin again.
3. If both flips land on heads or both land on tails, return to step 1. 4. Let the result of the last flip be the result of the experiment.
(a) Show that the result is equally likely to be either heads or tails.
(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?

Answers

Answer:

Step-by-step explanation:

Given that;

the following procedure for accomplishing our task are:

1. Flip the coin.

2. Flip the coin again.

From here will know that the coin is first flipped twice

3. If both flips land on heads or both land on tails, it implies that we return to step 1 to start again. this makes the flip to be insignificant since both flips land on heads or both land on tails

But if the outcomes of the two flip are different i.e they did not land on both heads or both did not land on tails , then we will consider such an outcome.

Let the probability of head = p

so P(head) = p

the probability of tail be = (1 - p)

This kind of probability follows a conditional distribution and the probability  of getting heads is :

[tex]P( \{Tails, Heads\})|\{Tails, Heads,( Heads ,Tails)\})[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) \cap \{Tails, Heads,( Heads ,Tails)\})}{ {P( \{Tails, Heads,( Heads ,Tails)\}}}[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) }{ {P( \{Tails, Heads,( Heads ,Tails)\}}}[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) } { {P( Tails, Heads) +P( Heads ,Tails)}}[/tex]

[tex]=\dfrac{(1-p)*p}{(1-p)*p+p*(1-p)}[/tex]

[tex]=\dfrac{(1-p)*p}{2(1-p)*p}[/tex]

[tex]=\dfrac{1}{2}[/tex]

Thus; the probability of getting heads is [tex]\dfrac{1}{2}[/tex] which typically implies that the coin is fair

(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?

For a fair coin (0<p<1) , it's certain that both heads and tails at the end of the flip.

The procedure that is talked about in (b) illustrates that the procedure gives head if and only if the first flip comes out tail with probability 1 - p.

Likewise , the procedure gives tail if and and only if the first flip comes out head with probability of  p.

In essence, NO, procedure (b) does not give a fair coin flip outcome.

Insurance companies track life expectancy information to assist in determining the cost of life insurance policies. AIB Insurance randomly sampled 100 recently paid policies and determined the average age of clients in this sample to be 77.7 years with a standard deviation of 3.6. The 90% confidence interval for the true mean age of its life insurance policy holders is
A. (76.87, 80.33)
B. (72.5, 82.9)
C. (77.1, 78.3)
D. (74.1, 81.3)
E. (74.5, 80)

Answers

Answer:

[tex]77.7-1.66\frac{3.6}{\sqrt{100}} =77.102[/tex]    

[tex]77.7+1.66\frac{3.6}{\sqrt{100}} =78.30[/tex]    

And the best option would be:

C. (77.1, 78.3)

Step-by-step explanation:

Information given

[tex]\bar X=77.7[/tex] represent the sample mean

[tex]\mu[/tex] population mean (variable of interest)

s=3.6 represent the sample standard deviation

n=100 represent the sample size  

Confidence interval

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

The degrees of freedom are given by:

[tex]df=n-1=100-1=99[/tex]

Since the Confidence is 0.90 or 90%, the significance would be [tex]\alpha=0.1[/tex] and [tex]\alpha/2 =0.05[/tex], and the critical value for this case would be [tex]t_{\alpha/2}=1.66[/tex]

And replacing we got:

[tex]77.7-1.66\frac{3.6}{\sqrt{100}} =77.10[/tex]    

[tex]77.7+1.66\frac{3.6}{\sqrt{100}} =78.30[/tex]    

And the best option would be:

C. (77.1, 78.3)

Find the equation of the line.
Use exact numbers.
y=

Answers

Answer:

y = 2x+4

Step-by-step explanation:

First we need to find the slope using two points

(-2,0) and (0,4)

m = (y2-y1)/(x2-x1)

m = (4-0)/(0--2)

   = 4/+2

   = 2

we have the y intercept  which is 4

Using the slope intercept form of the line

y = mx+b where m is the slope and b is the y intercept

y = 2x+4

An insurance company examines its pool of auto insurance customers and gathers the following information: (i) All customers insure at least one car. (ii) 70% of the customers insure more than one car. (iii) 20% of the customers insure a sports car. (iv) Of those customers who insure more than one car, 15% insure a sports car. Calculate the probability that a randomly se

Answers

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

An insurance company examines its pool of auto insurance customers and gathers the following information: (i) All customers insure at least one car. (ii) 70% of the customers insure more than one car. (iii) 20% of the customers insure a sports car. (iv) Of those customers who insure more than one car, 15% insure a sports car. Calculate the probability that a randomly selected customer insures exactly one car, and that car is not a sports car?

Answer:

P( X' ∩ Y' ) = 0.205

Step-by-step explanation:

Let X is the event that the customer insures more than one car.

Let X' is the event that the customer insures exactly one car.

Let Y is the event that customer insures a sport car.

Let Y' is the event that customer insures not a sport car.

From the given information we have

70% of customers insure more than one car.

P(X) = 0.70

20% of customers insure a sports car.

P(Y) = 0.20

Of those customers who insure more than one car, 15% insure a sports car.

P(Y | X) = 0.15

We want to find out the probability that a randomly selected customer insures exactly one car, and that car is not a sports car.

P( X' ∩ Y' ) = ?

Which can be found by

P( X' ∩ Y' ) = 1 - P( X ∪ Y )

From the rules of probability we know that,

P( X ∪ Y ) = P(X) + P(Y) - P( X ∩ Y )    (Additive Law)

First, we have to find out P( X ∩ Y )

From the rules of probability we know that,

P( X ∩ Y ) = P(Y | X) × P(X)       (Multiplicative law)

P( X ∩ Y ) = 0.15 × 0.70

P( X ∩ Y ) = 0.105

So,

P( X ∪ Y ) = P(X) + P(Y) - P( X ∩ Y )

P( X ∪ Y ) = 0.70 + 0.20 - 0.105

P( X ∪ Y ) = 0.795

Finally,

P( X' ∩ Y' ) = 1 - P( X ∪ Y )

P( X' ∩ Y' ) = 1 - 0.795

P( X' ∩ Y' ) = 0.205

Therefore, there is 0.205 probability that a randomly selected customer insures exactly one car, and that car is not a sports car.

Let the sample space be
S = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Suppose the outcomes are equally likely. Compute the probability of the event E = 1, 2.

Answers

Answer:

probability of the event E = 1/5

Step-by-step explanation:

We are given;

Sample space, S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

Number of terms in sample S is;

n(S) = 10

We are given the event; E = {1, 2}

Thus, number of terms in event E is;

n(E) = 2

Now, Probability = favorable outcomes/total outcomes

Thus, the probability of the event E is;

P(E) = n(E)/n(S)

P(E) = 2/10

P(E) = 1/5

SOMEONE PLEASE HELP ME ASAP PLEASE!!!​

Answers

Answer:

38 units

Step-by-step explanation:

We can find the perimeter of the shaded figure be finding out the number of unit lengths we have along the boundary of the given figure.

Thus, see attachment below for the number of units of each length of the figure that we have counted.

The perimeter of the figure = sum of all the lengths = 7 + 7 + 10 + 2 + 2 + 6 + 2 + 2 = 38

Perimeter of the shaded figure = 38 units

A basketball coach is looking over the possessions per game during last season. Assume that the possessions per game follows an unknown distribution with a mean of 56 points and a standard deviation of 12 points. The basketball coach believes it is unusual to score less than 50 points per game. To test this, she randomly selects 36 games. Use a calculator to find the probability that the sample mean is less than 50 points. Round your answer to three decimal places if necessary.

Answers

Answer:

The probability that the sample mean is less than 50 points = 0.002    

Step-by-step explanation:

Step(i):-

Given mean of the normal distribution = 56 points

Given standard deviation of the normal distribution = 12 points

Random sample size 'n' = 36 games

Step(ii):-

Let x⁻ be the random variable of normal distribution

Let x⁻ = 50

[tex]Z = \frac{x^{-}-mean }{\frac{S.D}{\sqrt{n} } }[/tex]

[tex]Z = \frac{50-56 }{\frac{12}{\sqrt{36} } }= -3[/tex]

The probability that the sample mean is less than 50 points

P( x⁻≤ 50) = P( Z≤-3)

                = 0.5 - P(-3 <z<0)

               = 0.5 -P(0<z<3)

               =  0.5 - 0.498

               = 0.002

Final answer:-

The probability that the sample mean is less than 50 points = 0.002

Answer:

56

2

.001

Step-by-step explanation:

The Central Limit Theorem for Means states that the mean of any sampling distribution of the means is equal to the mean of the population distribution. The standard deviation is equal to the standard deviation of the population divided by the square root of the sample size. So, the mean of this sampling distribution of the means with sample size 36 is 56 points and the standard deviation is 1236√=2 points. The z-score for 50 using the formula z=x¯¯¯−μσ is −3.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-3.0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

-2.9 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001

-2.8 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

-2.7 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

-2.6 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

-2.5 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005

Using the Standard Normal Table, the area to the left of −3 is approximately 0.001. Therefore, the probability that the sample mean will be less than 50 points is approximately 0.001.

A triangular window has an area of 594 square meters. The base is 54 meters. What is the height?

Answers

Answer:

  22 m

Step-by-step explanation:

Use the formula for the area of a triangle. Fill in the known values and solve for the unknown.

  A = (1/2)bh

  594 m^2 = (1/2)(54 m)h

  h = (594 m^2)/(27 m) = 22 m

The height of the window is 22 meters.

AC =
Round your answer to the nearest hundredth.
с
6
B
40°
А

Answers

Answer:

  5.03

Step-by-step explanation:

Answer:

5.03 = AC

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

tan theta = opp/ adj

tan 40 = AC /6

6 tan 40 = AC

5.034597787 = AC

To the nearest hundredth

5.03 = AC

Can someone please help

Use the In key on your calculator to estimate
the logarithm.
In 44
Round your answer to the nearest thousandth.

Answers

Answer:

3.784

Step-by-step explanation:

Other Questions
s the last book a person in City Upper A read a discrete random variable, continuous random variable, or not a random variable? A. It is a continuous random variable. B. It is a discrete random variable. A carbon atom can bond with other atoms in a variety of ways. Which set of bonds would a typical carbon atom form in a compound? three double bonds and a single bond two double bonds and two single bonds a triple bond and a single bond a double bond and a triple bond. Mars Corp. is choosing between two different capital investment proposals. Machine A has a useful life of four years, and machine B has a useful life of six years. Each proposal requires an initial investment of $200,000, and the company desires a rate of return of 10 percent. Although machine B has a useful life of six years, it could be sold at the end of four years for $35,000. Year Present Value of $1 at 10 Percent 1 0.909 2 0.826 3 0.751 4 0.683 5 0.621 6 0.513 Machine A will generate net cash flow of $70,000 in each of the four years. Machine B will generate $80,000 in year 1, $70,000 in year 2, $60,000 in year 3, and $40,000 per year for the remaining three years of its useful life. Which of the following statements portrays the most accurate analysis between the two proposals?a. Mars should invest in Machine A becuase the net present value of Machine A after 4 years is higher than the net present value of Machine B after 4 years.b. Mars should invest in Machine B becuase the net present value of Machine A after 4 years is lower than the net present value of Machine B after 6 years.c. Mars should invest in Machine B becuase the net present value of Machine A after 4 years is lower than the net present value of Machine B after 4 years.d. Mars should invest in Machine A becuase the net present value of Machine A after 4 years is higher than the net present value of Machine B after 6 years. Which factor does the moment magnitude scale estimate? damage location wave strength energy released Which benefit results from dating? Synovec Co. is growing quickly. Dividends are expected to grow at a rate of 24 percent for the next three years, with the growth rate falling off to a constant 7 percent thereafter. If the required return is 11 percent, and the company just paid a dividend of $2.05, what is the current share price? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) A rock falls from a vertical cliff that is 4.0 m tall and experiences no significant air resistance as it falls. At what speed will its gravitational potential energy (relative to the base of the cliff) be equal to its kinetic energy The city of Oakdale wishes to see if there is a linear relationship between the temperature and the amount of electricity used (in kilowatts). Using the estimated regression equation found by using Temperature as the predictor variable, find a point estimate Kilowatt usage when the Temperature is 90 degrees outside? Need so help. REally appreciate it 10. Problems and Applications Q10 High-income people are willing to pay more than lower-income people to avoid the risk of death. For example, they are more likely to pay for safety features on cars. True or False: One reason a rich town may put in a traffic light while a poor town does not is that the rich town may value a human life more highly in its cost-benefit analysis. True False 5. Sarasota Bicycles has been manufacturing its own wheels for its bikes. The company is currently operating at 100% capacity, and variable manufacturing overhead is charged to production at the rate of 30% of direct labor cost. The direct materials and direct labor cost per unit to make the wheels are $3.00 and $3.60 respectively. Normal production is 200,000 wheels per year. A supplier offers to make the wheels at a price of $8 each. If the bicycle company accepts this offer, all variable manufacturing costs will be eliminated, but the $84,000 of fixed manufacturing overhead currently being charged to the wheels will have to be absorbed by other products. Required: a. Prepare an incremental analysis for the decision to make or buy the wheels. b. Should Sarasota Bicycles buy the wheels from the outside supplier A game require rolling a six sided die numbered fro 1 to 6. What is the probability of rolling a 1 or a 2? Which sentence from "The Treasure of Lemon Brown" contains indirect characterization?He was an old man.O Greg felt himself near panic.The old man looked out, then beckoned frantically for Greg to follow him.O One of the clippings said he had been the hit of the show, although not the headliner NU YU announced today that it will begin paying annual dividends. The first dividend will be paid next year in the amount of $.27 a share. The following dividends will be $.32, $.47, and $.77 a share annually for the following three years, respectively. After that, dividends are projected to increase by 2.3 percent per year. How much are you willing to pay today to buy one share of this stock if your desired rate of return is 12 percent Which statement describes what happens to the carbon dioxide produced in cellular respiration?It is broken down to get oxygen.It is used to produce glucose.It is used to store energy.It is breathed out. For the murder of John Lennon, Mark Chapman was sentenced in 1981 to 20-years-to-life in prison. About every four years, he attends parole hearings that determine whether he will be released. Which term best describes this type of sentence? Find the values of a and b such that x^2 + 3x + 4 = (x + a)^2 + bURGENT! *silly answers will be reported If HK is an altitude of triangle HIJ, IKH = (4x + 50), HIK = 43, and KI = x - 7, find Kl.Plz help now plz What do microbiologist do ? how many 3/8s are in 3