The magnetic flux through a coil containing 10 loops changes
from 20W b to −20W b in 0.03s. Find the induced voltage .

Answers

Answer 1

The induced voltage in the coil is approximately 13333.33 volts. The induced voltage in a coil can be determined using Faraday's law of electromagnetic induction.

The induced voltage in a coil can be determined using Faraday's law of electromagnetic induction, which states that the induced voltage is equal to the rate of change of magnetic flux through the coil. The formula to calculate the induced voltage is:
V = -NΔΦ/Δt where V is the induced voltage, N is the number of loops in the coil, ΔΦ is the change in magnetic flux, and Δt is the time interval over which the change occurs.
In this case, the coil contains 10 loops, and the change in magnetic flux is from 20 Wb to -20 Wb. The time interval over which this change occurs is 0.03 s. Substituting these values into the formula, we have:
V = -10 (-20 - 20) / 0.03
Simplifying the calculation, we find: V = 13333.33 volts

Therefore, the induced voltage in the coil is approximately 13333.33 volts.

Learn more about Faraday's law here:

https://brainly.com/question/11903316

#SPJ11


Related Questions

A closed box is filled with dry ice at a temperature of -91.7 °C, while the outside temperature is 29.2 °C. The box is cubical, measuring 0.284 m on a side, and the thickness of the walls is 3.62 x 102 m. In one day, 3.02 x 106 J of heat is conducted through the six walls. Find the thermal conductivity of the material from which the box is made.

Answers

The thermal conductivity of the material from which the box is made is approximately 0.84 W/(m·K).

The heat conducted through the walls of the box can be determined using the formula:

Q = k * A * (ΔT / d)

Where:

Q is the heat conducted through the walls,

k is the thermal conductivity of the material,

A is the surface area of the walls,

ΔT is the temperature difference between the inside and outside of the box, and

d is the thickness of the walls.

Given that the temperature difference ΔT is (29.2 °C - (-91.7 °C)) = 121.7 °C and the heat conducted Q is 3.02 x [tex]10^{6}[/tex] J, we can rearrange the formula to solve for k:

k = (Q * d) / (A * ΔT)

The surface area A of the walls can be calculated as:

A = 6 * [tex](side length)^{2}[/tex]

Substituting the given values, we have:

A = 6 * (0.284 m)2 = 0.484 [tex]m^{2}[/tex]

Now we can substitute the values into the formula:

k = (3.02 x [tex]10^{6}[/tex] J * 3.62 x [tex]10^{-2}[/tex] m) / (0.484 [tex]m^{2}[/tex] * 121.7 °C)

Simplifying the expression, we find:

k = 0.84 W/(m·K)

Therefore, the thermal conductivity of the material from which the box is made is approximately 0.84 W/(m·K).

To learn more about thermal conductivity click here:

brainly.com/question/30207644

#SPJ11

A ball of mass 100g is dropped from a hight of 12.0 m. What is the ball's linear momentum when it strikes the ground? Input the answer in kgm/s using 3 significant fugures

Answers

The linear momentum of the ball is 1.534 kg m/s.

The mass of the ball is 100 g, and the height from which it is dropped is 12.0 m. We have to calculate the linear momentum of the ball when it strikes the ground. To find the velocity of the ball, we have used the third equation of motion which relates the final velocity, initial velocity, acceleration, and displacement of an object.

Let's substitute the given values in the equation, we get:

v² = u² + 2asv² = 0 + 2 × 9.8 × 12.0v² = 235.2v = √235.2v ≈ 15.34 m/s

Now we can find the linear momentum of the ball by using the formula p = mv. We get:

p = 0.1 × 15.34p = 1.534 kg m/s

Therefore, the ball's linear momentum when it strikes the ground is 1.534 kg m/s.

Learn more about linear momentum:

https://brainly.com/question/30767107

#SPJ11

A cylinder of 10cm radius has a thread wound at its edge. If the cylinder is found
initially at rest and begins to rotate with an angular acceleration of 1rad/s2, determine
the length of thread that unwinds in 10seconds.

Answers

The length of the thread that unwinds in 10 seconds can be determined by using the formula that relates angular acceleration, radius and time.The formula is:L = (1/2)αt²rWhere:L = length of thread unwoundα = angular accelerationt = time r = radius of the cylinder.

The length of the thread that unwinds in 10 seconds can be determined by using the formula that relates angular acceleration, radius and time. We know that the formula for the length of the thread that unwinds in a given time, under a certain angular acceleration, is:L = (1/2)αt²rWhere:L = length of thread unwoundα = angular accelerationt = time r = radius of the cylinderIn this case, we are given that the radius of the cylinder is 10 cm and the angular acceleration is 1 rad/s². We need to find the length of the thread that unwinds in 10 seconds.

Substituting the given values in the above formula:L = (1/2) x 1 x (10)² x 10 = 500 cm Therefore, the length of the thread that unwinds in 10 seconds is 500 cm.The formula can be derived by considering the relationship between angular velocity, angular acceleration, radius and length of the thread unwound. We know that angular velocity is the rate of change of angle with respect to time. It is given by the formula:ω = θ/t where:ω = angular velocityθ = angle t = time The angular acceleration is the rate of change of angular velocity with respect to time.

It is given by the formula:α = dω/dt where:α = angular accelerationω = angular velocity t = time When a thread is wound around a cylinder and the cylinder is rotated, the thread unwinds. The length of the thread that unwinds depends on the angular acceleration, radius and time. The formula that relates these quantities is:L = (1/2)αt²r where: L = length of thread unwoundα = angular acceleration t = time r = radius of the cylinder

Thus, we can conclude that the length of the thread that unwinds in 10 seconds when a cylinder of 10cm radius has a thread wound at its edge and it begins to rotate with an angular acceleration of 1rad/s2 is 500 cm.

To know more about angular acceleration visit:

brainly.com/question/32463200

#SPJ11

At a fabrication plant, a hot metal forging has a mass of 70.3 kg, and a specific heat capacity of 434 J/(kg C°). To harden it, the forging is quenched by immersion in 834 kg of oil that has a temperature of 39.9°C and a specific heat capacity of 2680 J/(kg C°). The final temperature of the oil and forging at thermal equilibrium is 68.5°C. Assuming that heat flows only between the forging and the oil, determine the initial temperature in degrees Celsius of the forging.

Answers

Let us calculate the initial temperature in degrees Celsius of the forging. We know that the hot metal forging has a mass of 70.3 kg and a specific heat capacity of 434 J/(kg C°).

Also, we know that to harden it, the forging is quenched by immersion in 834 kg of oil that has a temperature of 39.9°C and a specific heat capacity of 2680 J/(kg C°).

The final temperature of the oil and forging at thermal equilibrium is 68.5°C. Since we are assuming that heat flows only between the forging and the oil, we can equate the heat gained by the oil with the heat lost by the forging using the formula.

To know more about metal visit:

https://brainly.com/question/29404080

#SPJ11

Suppose a point dipole is located at the center of a conducting spherical shell connected
the land. Determine the potential inside the shell. (Hint: Use zonal harmonics that are
regular at the origin to satisfy the boundary conditions in the shell.)

Answers

When a point dipole is situated at the center of a conducting spherical shell connected to the land, the potential inside the shell can be determined using zonal harmonics that are regular at the origin to satisfy the boundary conditions.

To find the potential inside the conducting spherical shell, we can make use of the method of images. By placing an image dipole with opposite charge at the center of the shell, we create a symmetric system. This allows us to satisfy the boundary conditions on the shell surface. The potential inside the shell can be expressed as a sum of two contributions: the potential due to the original dipole and the potential due to the image dipole.

The potential due to the original dipole can be calculated using the standard expression for the potential of a point dipole. The potential due to the image dipole can be found by taking into account the image dipole's distance from any point inside the shell and the charges' signs. By summing these two contributions, we obtain the total potential inside the shell.

To know more about dipole here https://brainly.com/question/20813317

#SPJ4

An image formed by a convex mirror (f = -32.8 cm) has a magnification of 0.148. How much should the object be moved to double the size of the image? (Give the displacement with a sign that indicates the direction. Assume that the displacement toward the mirror is positive.)

Answers

The object should be moved 16.4 cm towards the mirror to double the size of the image.

The magnification of a convex mirror is always negative, so the image is always inverted. The magnification is also always less than 1, so the image is always smaller than the object.

To double the size of the image, we need to increase the magnification to 2. This can be done by moving the object closer to the mirror. The distance between the object and the mirror is related to the magnification by the following equation:

m = -f / u

where:

m is the magnification

f is the focal length of the mirror

u is the distance between the object and the mirror

If we solve this equation for u, we get:

u = -f / m

In this case, we want to double the magnification, so we need to move the object closer to the mirror by a distance of f / m. For a focal length of -32.8 cm and a magnification of 0.148, this means moving the object 16.4 cm towards the mirror.

Learn more about convex mirror here; brainly.com/question/33230797

#SPJ11

Figure 3.2 F2 F₁ 60⁰ F3 35% F4 10.0 cm 12.5 cm I Radius of gear cog Four Forces acting on gear cog at various positions (b) Figure 3.2 is the top view of a gear cog with a smaller inner radius of 10.0 cm and an outer radius of 12.5 cm (Refer to picture on the left: Radius of gear cog). This gear cog can rotate around its axle (as axis of rotation) located at the center of the gear cog (point O). Four forces (F1, F2, F3 & F4) act simultaneously on the gear cog. Description of the four forces is given below: F₁ (100 N) acts perpendicularly to the horizontal & acts 12.5 cm from the axle's centre. F₂ (140 N) acts at an angle of 60° above the horizontal & acts 10.0 cm from the axle's centre. F3 (120 N) acts parallel to the horizontal & acts 10.0 cm from the axle's centre. F4 (125 N) acts at an angle of 35° below the horizontal & acts 12.5 cm from the axle's centre. (i) Based on this information and Figure 3.2, find the net torque about the axle (as axis of rotation). Indicate the direction of the net torque (Show your calculation). (3 x 1 mark) (ii) Which of the four forces (F1, F2, F3 or F4) gives the biggest torque in any one direction (either clockwise or counterclockwise direction) (Show your calculation)? (1 mark) (iii) If you can remove only ONE (1) of the four forces (F1, F2, F3 or F4) so that you can get the biggest net torque (out of the three remaining forces that are not removed) in any one direction (either clockwise or counterclockwise direction), which force would you remove? (1 mark)

Answers

In the given scenario, a gear cog is subjected to four forces (F1, F2, F3, and F4) at different positions. We need to determine the net torque about the axle, identify the force that generates the biggest torque, and determine which force should be removed to maximize the net torque in one direction.

(i) To calculate the net torque about the axle, we need to consider the torque produced by each individual force. The torque produced by a force is given by the equation τ = r × F, where r is the distance from the point of rotation to the line of action of the force, and F is the magnitude of the force. The direction of torque follows the right-hand rule, where the thumb points in the direction of the force and the fingers curl in the direction of the torque.

(ii) To identify the force that generates the biggest torque in any one direction, we compare the magnitudes of the torques produced by each force. By calculating the torques produced by F1, F2, F3, and F4, we can determine which force results in the largest magnitude of torque. The direction of the torque can be determined based on the right-hand rule.

(iii) To determine which force should be removed to maximize the net torque in one direction, we need to analyze the torques produced by each force. By removing one force, we alter the torque balance. We can compare the torques produced by the remaining three forces and identify which combination of forces generates the maximum net torque in one specific direction.

Learn more about torque here;

https://brainly.com/question/17512177

#SPJ11

A very long right circular cylinder of uniform permittivity €, radius a, is placed into a vacuum containing a previously uniform electric field E = E, oriented perpendicular to the axis of the cylinder. a. Ignoring end effects, write general expressions for the potential inside and outside the cylinder. b. Determine the potential inside and outside the cylinder. c. Determine D, and P inside the cylinder.

Answers

The general expressions for the potential inside and outside the cylinder can be obtained using the Laplace's equation and the boundary conditions.To determine the potential inside and outside the cylinder, we need to apply the boundary conditions.

a. Ignoring end effects, the general expressions for the potential inside and outside the cylinder can be written as:

Inside the cylinder (r < a):

ϕ_inside = ϕ0 + E * r

Outside the cylinder (r > a):

ϕ_outside = ϕ0 + E * a^2 / r

Here, ϕ_inside and ϕ_outside are the potentials inside and outside the cylinder, respectively. ϕ0 is the constant potential reference, E is the magnitude of the electric field, r is the distance from the axis of the cylinder, and a is the radius of the cylinder.

b. To determine the potential inside and outside the cylinder, substitute the given values into the general expressions:

Inside the cylinder (r < a):

ϕ_inside = ϕ0 + E * r

Outside the cylinder (r > a):

ϕ_outside = ϕ0 + E * a^2 / r

c. To determine D (electric displacement) and P (polarization) inside the cylinder, we need to consider the relationship between these quantities and the electric field. In a linear dielectric material, the electric displacement D is related to the electric field E and the polarization P through the equation:

D = εE + P

where ε is the permittivity of the material. Since the cylinder is in a vacuum, ε = ε0, the permittivity of free space. Therefore, inside the cylinder, we have:

D_inside = ε0E + P_inside

where D_inside and P_inside are the electric displacement and polarization inside the cylinder, respectively.

To learn more about potential,   click here: https://brainly.com/question/4305583

#SPJ11

A simple flashlight is a single loop circuit of a battery and a light bulb. There are no other
components. The light bulb's resistance is 212 Ohms and the battery is 1.50 Volts. Assuming that the battery can maintain its 1.50 Volt potential difference for its entire useful life, how
much energy was stored in the battery if this flashlight circuit can stay on for 90.0 minutes?

Answers

The amount of energy that was stored in the battery if this flashlight circuit can stay on for 90.0 minutes is 57.5 J.

A flashlight is a circuit that consists of a battery and a light bulb. If we assume that the battery can maintain its 1.50 volt potential difference throughout its entire useful life.

The current that is passing through the circuit can be determined by using the Ohm's Law;

V= IR ⇒ I = V/R

Given,V = 1.50 V,

R = 212 Ω

⇒ I = V/R = (1.50 V) / (212 Ω) = 0.00708 A

The amount of charge that will flow in the circuit is given by;

Q = It = (0.00708 A)(90.0 min x 60 s/min) = 38.3 C

The energy that is stored in the battery can be calculated by using the formula for potential difference and the charge stored;

E = QV = (38.3 C)(1.50 V) = 57.5 J

Therefore, the amount of energy that was stored in the battery if this flashlight circuit can stay on for 90.0 minutes is 57.5 J.

Learn more about circuit at: https://brainly.com/question/2969220

#SPJ11

A smoke particle with a mass of 25 ug and charged at -9.0x10-1* C is falling straight downward at 2.0 mm/s, when it enters a magnetic field of 0.50 T pointed directly South. Determine the magnetic force (magnitude and direction) on the particle.

Answers

The magnitude of the magnetic force on the smoke particle is 9.0x10^(-4) N with the direction of the force towards the East.

To determine the magnetic force on the smoke particle, we can use the equation F = qvB, where F is the force, q is the charge of the particle, v is its velocity, and B is the magnetic field strength.

Given that the charge of the smoke particle is -9.0x10^(-1) C, its velocity is 2.0 mm/s (which can be converted to 2.0x10^(-3) m/s), and the magnetic field strength is 0.50 T, we can calculate the magnetic force.

Using the equation F = qvB, we can substitute the values: F = (-9.0x10^(-1) C) x (2.0x10^(-3) m/s) x (0.50 T). Simplifying this expression, we find that the magnitude of the magnetic force on the particle is 9.0x10^(-4) N.

The direction of the magnetic force can be determined using the right-hand rule. Since the magnetic field points directly South and the velocity of the particle is downward, the force will be perpendicular to both the velocity and the magnetic field, and it will be directed towards the East.

Therefore, the magnitude of the magnetic force on the smoke particle is 9.0x10^(-4) N, and the direction of the force is towards the East.

Learn more about magnetic force here; brainly.com/question/10353944

#SPJ11

A system of three wheels are connected by a lightweight belt. The angular velocity, radius and mass of the small wheels as well as the radius and mass of the large wheel are indicated in the figure. W

Answers


Answer: The angular velocity of the large wheel is 4.26 rad/s.

Angular velocity of the small wheel at the top w = 5 rad/s.  mass m1 = 5 kg.  radius r1 = 0.2 m.

Angular velocity of the small wheel on the left is w1 = 3 rad/s. mass m1 = 5 kg.  radius r1 = 0.2 m.

Angular velocity of the small wheel on the right is w2 = 4 rad/s. mass m1 = 5 kg.  radius r1 = 0.2 m.

The large wheel has a mass of m2 = 10 kg. radius of r2 = 0.4 m.

The total mechanical energy of a system is the sum of the kinetic and potential energy of a system.

kinetic energy is K.E = 1/2mv².

Potential energy is P.E = mgh.

In this case, there is no height change so there is no potential energy.

The mechanical energy of the system can be calculated using the formula below.

E = K.E(1) + K.E(2) + K.E(3)

where, K.E(i) = 1/2 m(i) v(i)² = 1/2 m(i) r(i)² ω(i)²

K.E(1) = 1/2 × 5 × (0.2)² × 5² = 1 J

K.E(2) = 1/2 × 5 × (0.2)² × 3² = 0.54 J

K.E(3) = 1/2 × 5 × (0.2)² × 4² = 0.8 J

Angular velocity of the large wheel  m1r1ω1 + m1r1ω + m1r1ω2 = (I1 + I2 + I3)α

Here, I1, I2 and I3 are the moments of inertia of the three small wheels.

The moment of inertia of a wheel is given by I = (1/2)mr²

Here, I1 = I2 = I3 = (1/2) (5) (0.2)² = 0.1 kg m².

The moment of inertia of the large wheel: I2 = (1/2) m2 r2² = (1/2) (10) (0.4)²

= 0.8 kg m²

Putting the values in the above equation and solving, we get,  α = 2.15 rad/s²ω = 4.26 rad/s

Therefore, the angular velocity of the large wheel is 4.26 rad/s.

Learn more about Angular velocity: https://brainly.com/question/20432894

#SPJ11

The plot below shows the vertical displacement vs horizontal position for a wave travelling in the positive x direction at time equal 0s(solid) and 2s(dashed). Which one of the following equations best describes the wave?

Answers

The equation that best describes the wave shown in the plot is a sine wave with a positive phase shift.

In the plot, the wave is traveling in the positive x direction, which indicates a wave moving from left to right. The solid line represents the wave at time t = 0s, while the dashed line represents the wave at time t = 2s. This indicates that the wave is progressing in time.

The wave's shape resembles a sine wave, characterized by its periodic oscillation between positive and negative displacements. Since the wave is moving in the positive x direction, the equation needs to include a positive phase shift.

Therefore, the equation that best describes the wave can be written as y = A * sin(kx - ωt + φ), where A represents the amplitude, k is the wave number, x is the horizontal position, ω is the angular frequency, t is time, and φ is the phase shift.

Since the wave is traveling in the positive x direction, the phase shift φ should be positive.

To learn more about phase shift click here:

brainly.com/question/23959972

#SPJ11

10 nC B + + 5.0 nC b -10 nC Given the figure above, if a = 12.9 cm and b = 9.65 cm, what would be the force (both magnitude and direction) on the 5.0 nC charge? Magnitude: Direction (specify as an angle measured clockwise from the positive x-axis):

Answers

The force on the 5.0 nC charge can be calculated using Coulomb's law, considering the charges and their distances. The magnitude and its direction can be determined by electrostatic force between the charges.

To find the force on the 5.0 nC charge, we can use Coulomb's law, which states that the force between two charges is given by the equation F = (k * |q1 * q2|) / r^2, where F is the force, k is the electrostatic constant, q1 and q2 are the charges, and r is the distance between them.

In this case, the 5.0 nC charge is negative, so its charge is -5.0 nC. The other charge, 10 nC, is positive. Given the distances a = 12.9 cm and b = 9.65 cm, we can calculate the force on the 5.0 nC charge.

Substituting the values into Coulomb's law equation and using the appropriate units, we can find the magnitude of the force. To determine the direction, we can calculate the angle measured clockwise from the positive x-axis using trigonometry.

Performing the calculations will yield the magnitude and direction of the force on the 5.0 nC charge.

To know more about magnitude, click here:

brainly.com/question/28173919

#SPJ11

A uniform magnetic field points directly into this page. A group of protons are moving toward the top of the page. What can you say about the magnetic force acting on the protons? A. toward the right B. toward the left C. toward the top of the page D. toward the bottom of the page E. directly into the page F. directly out of the page

Answers

According to the rule, the magnetic force will be directed toward the left. The correct answer is B. toward the left.

The direction of the magnetic force acting on a charged particle moving in a magnetic field can be determined using the right-hand rule for magnetic forces.

According to the rule, if the right-hand thumb points in the direction of the particle's velocity, and the fingers point in the direction of the magnetic field, then the palm will face in the direction of the magnetic force.

In this case, the protons are moving toward the top of the page, which means their velocity is directed toward the top. The uniform magnetic field points directly into the page. Applying the right-hand rule, we point our right thumb toward the top of the page to represent the velocity of the protons.

Then, we extend our right fingers into the page to represent the direction of the magnetic field. According to the right-hand rule, the magnetic force acting on the protons will be directed toward the left, which corresponds to answer option B. toward the left.

Learn more about magnetic force here; brainly.com/question/30532541

#SPJ11

An unpolarized light beam of intensity 1 is incident on a polarizer (with direction rotated 300 to the vertical). After passing through the polarizer, the intensity of the beam is?
c) 0.75
a) 0.25
b) 0.87
d) 0.50

Answers

The correct option is: a) 0.25

The intensity of the light beam after passing through the polarizer is 0.25.

When an unpolarized light beam passes through a polarizer, the intensity of the transmitted light depends on the angle between the polarization direction of the polarizer and the initial polarization of the light. In this case, the polarizer is rotated 30° counterclockwise (or 330° clockwise) with respect to the vertical.

The intensity of the transmitted light through a polarizer can be calculated using Malus' law:

I_transmitted = I_initial * cos²(θ)

Where:

I_transmitted is the intensity of the transmitted light

I_initial is the initial intensity of the light

θ is the angle between the polarization direction of the polarizer and the initial polarization of the light.

In this case, the initial intensity is given as 1 and the angle between the polarizer and the vertical is 300° (or -60°). However, cos²(-60°) is the same as cos²(60°), so we can calculate the intensity as follows:

I_transmitted = 1 * cos²(60°)

= 1 * (0.5)²

= 1 * 0.25

= 0.25

Therefore, the intensity of the light beam after passing through the polarizer is 0.25. Thus, the correct option is a. 0.25.

To know more about polarizer refer here: https://brainly.com/question/29217577#

#SPJ11

The parallel axis theorem: • A. Allows the calculation of the moment of inertia
between any two axes. •
B. Involves the distance between any two
perpendicular axes. •
C. Is useful in relating the moment of inertia about the
x-axis to that about the y-axis. •
D. Relates the moment of inertia about an axis to the moment of inertia about an axis through the centroid of the area that is parallel to the axis
through the centroid.

Answers

The moment of inertia about the desired axis without having to calculate the complex integral or summation involved in determining the moment of inertia directly about that axis.

The correct statement is:

D. Relates the moment of inertia about an axis to the moment of inertia about an axis through the centroid of the area that is parallel to the axis through the centroid.

The parallel axis theorem is a fundamental principle in rotational dynamics that relates the moment of inertia of an object about an axis to the moment of inertia about a parallel axis through the centroid of the object.

According to the parallel axis theorem, the moment of inertia (I) about an axis parallel to and a distance (d) away from an axis through the centroid can be calculated by adding the moment of inertia about the centroid axis (I_c) and the product of the mass of the object (m) and the square of the distance (d) between the two axes:

I = I_c + m * d^2

This theorem is useful in situations where it is easier to calculate the moment of inertia about an axis passing through the centroid of an object rather than a different arbitrary axis.

By using the parallel axis theorem, we can obtain the moment of inertia about the desired axis without having to calculate the complex integral or summation involved in determining the moment of inertia directly about that axis.

Learn more about moment of inertia from the given link

https://brainly.com/question/14460640

#SPJ11

Consider two objects of masses m₁= 8.775 kg and m₂ = 4.944 kg. The first mass (m₂) is traveling along the negative y-axis at 48.38 km/hr and strikes the second stationary mass m₂, locking the two masses together. What is the velocity of the first mass before the collision? What is the velocity of the second mass before the collision? What is the final velocity of the two masses? What is the total initial kinetic energy of the two masses? What is the total final kinetic energy of the two masses? How much of the mechanical energy is lost due to this collision?

Answers

The initial velocity of the second mass (m₂) is 0 as it is stationary. To find the initial velocity of the first mass (m₁), we will use the equation for kinetic energy.Kinetic energy = 1/2 mv²where m is the mass of the object and v is its velocity.

The kinetic energy of the first mass can be found by converting its velocity from km/hr to m/s.Kinetic energy = 1/2 (8.775 kg) (48.38 km/hr)² = 1/2 (8.775 kg) (13.44 m/s)² = 797.54 JSo the total initial kinetic energy of the two masses is the sum of the kinetic energies of the individual masses: 797.54 J + 0 J = 797.54 JThe final velocity of the two masses can be found using the law of conservation of momentum.

According to the law of conservation of momentum, the momentum before the collision is equal to the momentum after the collision.m₁v₁ + m₂v₂ = (m₁ + m₂)vfwhere m₁ is the mass of the first object, v₁ is its velocity before the collision, m₂ is the mass of the second object, v₂ is its velocity before the collision, vf is the final velocity of both objects after the collision.

Since the second mass is stationary before the collision, its velocity is 0.m₁v₁ = (m₁ + m₂)vf - m₂v₂Substituting the given values in the above equation and solving for v₁, we get:v₁ = [(m₁ + m₂)vf - m₂v₂]/m₁= [(8.775 kg + 4.944 kg)(0 m/s) - 4.944 kg (0 m/s)]/8.775 kg = 0 m/sSo the initial velocity of the first mass is 0 m/s.

The momentum of the system after the collision is:momentum = (m₁ + m₂)vfThe total final kinetic energy of the system can be found using the equation:final kinetic energy = 1/2 (m₁ + m₂) vf²Substituting the given values in the above equation, we get:final kinetic energy = 1/2 (8.775 kg + 4.944 kg) (0.9707 m/s)² = 25.28 JThe mechanical energy lost due to this collision is the difference between the initial kinetic energy and the final kinetic energy:energy lost = 797.54 J - 25.28 J = 772.26 JThus, the mechanical energy lost due to this collision is 772.26 J.

Initial velocity of the first mass = 0 m/sInitial velocity of the second mass = 0 m/sFinal velocity of the two masses = 0.9707 m/sTotal initial kinetic energy of the two masses = 797.54 JTotal final kinetic energy of the two masses = 25.28 JEnergy lost due to this collision = 772.26 J.

To know about velocity visit:

https://brainly.com/question/30559316

#SPJ11

Captain Proton confronts the flatulent yet eerily floral Doctor Yango in his throne room. Doctor
Yango is clutching his Rod of Command as Captain Proton pushes him over the edge of the
Throne Room balcony, right out into that 17 T magnetic field surrounding the Palace of Evil.
Doctor Yango activates his emergency escape rocket and flies off at 89.7 m/s. Assuming that the
Rod is conductive, 0.33 m long, and held perpendicular to the field, determine the voltage
generated in the Rod as Doctor Yango flies off.

Answers

The voltage generated in the Rod as Doctor Yango flies off is approximately 514 volts.

As we know, the voltage induced in a conductor moving through a magnetic field is given by this formula;

v = Bl

voltage induced = magnetic field × length of conductor × velocity

Now, substituting the values given in the question;

v = (17 T) (0.33 m) (89.7 m/s) = 514 T⋅m/s ≈ 514 V

Therefore, the voltage generated in the Rod as Doctor Yango flies off is approximately 514 volts.

To learn more about voltage

https://brainly.com/question/1176850

#SPJ11

A ray of light origimates in glass and travels to ain. The angle of incidence is 36∘. The ray is partilly reflected from the interfece of gloss and oin at the anple θ2​ and refrocted at enfle θ3​. The index of refraction of the gless is 1.5. a) Find the speed of light in glass b) Find θ2​ c) Find θ3​ d). Find the critcal ancle

Answers

a) The speed of light in glass can be found using the formula v = c/n, where v is the speed of light in the medium (glass), c is the speed of light in vacuum (approximately 3x10^8 m/s), and n is the refractive index of glass (1.5). Therefore, the speed of light in glass is approximately 2x10^8 m/s.

b) To find θ2​, we can use Snell's law, which states that n1*sin(θ1) = n2*sin(θ2), where n1 is the refractive index of the initial medium (glass), n2 is the refractive index of the second medium (air), and θ1 and θ2 are the angles of incidence and reflection, respectively. Given that θ1 is 36∘ and n1 is 1.5, we can solve for θ2:

1.5*sin(36∘) = 1*sin(θ2)

θ2 ≈ 23.49∘

c) To find θ3​, we can use Snell's law again, but this time with the refractive index of air (approximately 1) and the refractive index of glass (1.5). Given that θ2 is 23.49∘ and n1 is 1.5, we can solve for θ3:

1*sin(23.49∘) = 1.5*sin(θ3)

θ3 ≈ 15.18∘

d) The critical angle is the angle of incidence at which the refracted angle becomes 90∘. Using Snell's law with n1 (glass) and n2 (air), we can find the critical angle (θc):

n1*sin(θc) = n2*sin(90∘)

1.5*sin(θc) = 1*sin(90∘)

θc ≈ 41.81∘

Therefore, the critical angle is approximately 41.81∘.

 To  learn  more  about light click on:brainly.com/question/29994598

#SPJ11

A 230 kg cast-iron car engine contains wa- ter as a coolant. Suppose the engine's tem- perature is 34°C when it is shut off and the air temperature is 6°C. The heat given off by the engine and water in it as they cool to air temperature is 4.3 x 106 J. What mass of water is used to cool the engine?

Answers

The mass of water used to cool a 230 kg cast-iron car engine from 34°C to 6°C is approximately 3.86 kg. The heat given off during the cooling process is 4.3 x 10^6 J.

The calculation is based on the equation Q = mcΔT, where Q is the heat, m is the mass of water, c is the specific heat capacity, and ΔT is the change in temperature.

To find the mass of water used to cool the engine, we can use the equation:

Q = mcΔT

Where Q is the heat given off by the engine and water, m is the mass of water, c is the specific heat capacity of water (4.18 J/g°C), and ΔT is the change in temperature.

Given:

Q = 4.3 x 10^6 J

ΔT = (34°C - 6°C) = 28°C

c = 4.18 J/g°C

We can rearrange the equation to solve for mass:

m = Q / (cΔT)

Substituting the given values:

m = (4.3 x 10^6 J) / (4.18 J/g°C * 28°C)

m ≈ 3860 g

Therefore, approximately 3860 grams (or 3.86 kg) of water is used to cool the engine.

Learn more about mass from the given link:

https://brainly.com/question/11954533

#SPJ11

A block is sliding with constant acceleration down. an incline. The block starts from rest at f= 0 and has speed 3.40 m/s after it has traveled a distance 8.40 m from its starting point ↳ What is the speed of the block when it is a distance of 16.8 m from its t=0 starting point? Express your answer with the appropriate units. μA 3 20 ? 168 Value Units Submit Request Answer Part B How long does it take the block to slide 16.8 m from its starting point? Express your answer with the appropriate units.

Answers

Part A: The speed of the block when it is a distance of 16.8 m from its starting point is 6.80 m/s. Part B: The time it takes for the block to slide 16.8 m from its starting point is 2.47 seconds.

To find the speed of the block when it is a distance of 16.8 m from its starting point, we can use the equations of motion. Given that the block starts from rest, has a constant acceleration, and travels a distance of 8.40 m, we can find the acceleration using the equation v^2 = u^2 + 2as. Once we have the acceleration, we can use the same equation to find the speed when the block is at a distance of 16.8 m. For part B, to find the time it takes to slide 16.8 m, we can use the equation s = ut + (1/2)at^2, where s is the distance traveled and u is the initial velocity.

Learn more about acceleration:

https://brainly.com/question/2303856

#SPJ11

Question 16 In a Compton scattering experiment, an x-ray photon of wavelength 0.0122 nm was scattered through an angle of 41.7°. a. [2] Show that the wavelength of the photon changed by approximately 6.15 x 10-13 m as a result of being scattered. b. [2] Find the wavelength of the scattered photon. c. [2] Find the energy of the incident photon. Express your answer in eV. d. [2] Find the energy of the scattered photon. Express your answer in eV. e. [2] Find the kinetic energy of the scattered electron. Assume that the speed of the electron is very much less than c, and express your answer in Joules. f. [2] Hence, find the speed of the scattered electron. Again, assume that the speed of the electron is very much less than c. Total: 12 Marks

Answers

The energy of the scattered photon is approximately 10.6 x 10^3 eV.

a. To calculate the change in wavelength of the photon, we can use the Compton scattering formula:

Δλ = λ' - λ = (h / (m_e * c)) * (1 - cos(θ))

where:

Δλ is the change in wavelength

λ' is the wavelength of the scattered photon

λ is the wavelength of the incident photon

h is the Planck's constant (6.626 x 10^-34 J*s)

m_e is the mass of the electron (9.10938356 x 10^-31 kg)

c is the speed of light (3 x 10^8 m/s)

θ is the scattering angle (41.7°)

Plugging in the values:

Δλ = (6.626 x 10^-34 J*s) / ((9.10938356 x 10^-31 kg) * (3 x 10^8 m/s)) * (1 - cos(41.7°))

Calculating the result:

Δλ = 6.15 x 10^-13 m

Therefore, the wavelength of the photon changed by approximately 6.15 x 10^-13 m.

b. The wavelength of the scattered photon can be found by subtracting the change in wavelength from the wavelength of the incident photon:

λ' = λ - Δλ

Given the incident wavelength is 0.0122 nm (convert to meters):

λ = 0.0122 nm * 10^-9 m/nm = 1.22 x 10^-11 m

Substituting the values:

λ' = (1.22 x 10^-11 m) - (6.15 x 10^-13 m)

Calculating the result:

λ' = 1.16 x 10^-11 m

Therefore, the wavelength of the scattered photon is approximately 1.16 x 10^-11 m.

c. The energy of the incident photon can be calculated using the formula:

E = h * c / λ

Substituting the values:

E = (6.626 x 10^-34 J*s) * (3 x 10^8 m/s) / (1.22 x 10^-11 m)

Calculating the result:

E ≈ 1.367 x 10^-15 J

To convert the energy to electron volts (eV), we can use the conversion factor:

1 eV = 1.602 x 10^-19 J

Dividing the energy by the conversion factor:

E ≈ (1.367 x 10^-15 J) / (1.602 x 10^-19 J/eV)

Calculating the result:

E ≈ 8.53 x 10^3 eV

Therefore, the energy of the incident photon is approximately 8.53 x 10^3 eV.

d. The energy of the scattered photon can be calculated using the same formula as in part c:

E' = h * c / λ'

Substituting the values:

E' = (6.626 x 10^-34 J*s) * (3 x 10^8 m/s) / (1.16 x 10^-11 m)

Calculating the result:

E' ≈ 1.70 x 10^-15 J

Converting the energy to electron volts:

E' ≈ (1.70 x 10^-15 J) / (1.602 x 10^-19 J/eV)

Calculating the result:

E' ≈ 10.6 x 10^3 eV

Therefore, the energy of the scattered photon is approximately 10.6 x 10^3 eV.

e. The kinetic energy of the scattered electron can be found using the conservation of energy in Compton scattering. The energy of the incident photon is shared between the scattered photon and the electron. The kinetic energy of the scattered electron can be calculated as:

K.E. = E - E'

Substituting the values:

K.E. ≈ (8.53 x 10^3 eV) - (10.6 x 10^3 eV)

Calculating the result:

K.E. ≈ -2.07 x 10^3 eV

Note that the negative sign indicates a decrease in kinetic energy.

To convert the kinetic energy to joules, we can use the conversion factor:

1 eV = 1.602 x 10^-19 J

Multiplying the kinetic energy by the conversion factor:

K.E. ≈ (-2.07 x 10^3 eV) * (1.602 x 10^-19 J/eV)

Calculating the result:

K.E. ≈ -3.32 x 10^-16 J

Therefore, the kinetic energy of the scattered electron is approximately -3.32 x 10^-16 J.

f. The speed of the scattered electron can be found using the relativistic energy-momentum relationship:

E = sqrt((m_e * c^2)^2 + (p * c)^2)

where:

E is the energy of the scattered electron

m_e is the mass of the electron (9.10938356 x 10^-31 kg)

c is the speed of light (3 x 10^8 m/s)

p is the momentum of the scattered electron

Since the speed of the electron is much less than the speed of light, we can assume its relativistic mass is its rest mass, and the equation simplifies to: E ≈ m_e * c^2

Rearranging the equation to solve for c: c ≈ E / (m_e * c^2)

Substituting the values: c ≈ (-3.32 x 10^-16 J) / ((9.10938356 x 10^-31 kg) * (3 x 10^8 m/s)^2)

Calculating the result: c ≈ -3.86 x 10^5 m/s

Therefore, the speed of the scattered electron is approximately -3.86 x 10^5 m/s.

learn more about photon

https://brainly.com/question/31811355

#SPJ11

An electron microscope produces electrons with a 2.25 pm wavelength. If there are passed through a 1.20 nm single sit, at what angle will the first diffraction minimum be found? 0.115 Additional Mater

Answers

The first diffraction minimum of electrons passing through a 1.20 nm single slit with a 2.25 pm wavelength will be found at an angle of 0.115 radians.

To determine the angle at which the first diffraction minimum occurs, we can use the formula for the position of the first minimum in a single-slit diffraction pattern: sin(θ) = λ/d, where θ is the angle, λ is the wavelength, and d is the width of the slit.

First, let's convert the given values to meters: 2.25 pm = 2.25 × 10^(-12) m and 1.20 nm = 1.20 × 10^(-9) m.

Substituting the values into the formula, we get sin(θ) = (2.25 × 10^(-12) m) / (1.20 × 10^(-9) m).

Taking the inverse sine of both sides, we find θ = sin^(-1)((2.25 × 10^(-12) m) / (1.20 × 10^(-9) m)).

Evaluating this expression, we obtain θ ≈ 0.115 radians. Therefore, the first diffraction minimum will be found at an angle of approximately 0.115 radians.

To learn more about wavelength click here brainly.com/question/31143857

#SPJ11

In a region of space, a quantum particle with zero total energy has a wave functionψ(x) = Axe⁻ˣ²/L²

(b) Make a sketch of U(x) versus x .

Answers

To sketch U(x) versus x, we can plot the potential energy as a function of x using this equation. Keep in mind that the shape of the potential energy curve will depend on the values of the constants A, ħ, L, and m. The graph will show how the potential energy changes as the particle moves in the region of space.

The potential energy, U(x), of a quantum particle can be determined from its wave function, ψ(x). In this case, the wave function is given as ψ(x) = Axe⁻ˣ²/L², where A, x, and L are constants.

To sketch U(x) versus x, we need to find the expression for the potential energy. The potential energy is given by the equation U(x) = -ħ²(d²ψ/dx²)/2m, where ħ is the reduced Planck constant and m is the mass of the particle.

First, we need to find the second derivative of ψ(x). Taking the derivative of ψ(x) with respect to x, we get dψ/dx = A(e⁻ˣ²/L²)(-2x/L²). Taking the derivative again, we get [tex]d²ψ/dx² = A(e⁻ˣ²/L²)(4x²/L⁴ - 2/L²).[/tex]

Now, we can substitute the expression for the second derivative into the equation for the potential energy.

U(x) = -ħ²(d²ψ/dx²)/2m

= -ħ²A(e⁻ˣ²/L²)(4x²/L⁴ - 2/L²)/2m.

Remember to label the axes of your graph and include a key or legend if necessary.

To know more about potential energy visit:

https://brainly.com/question/24284560

#SPJ11

A jet engine emits sound uniformly in all directions, radiating an acoustic power of 2.85 x 105 W. Find the intensity I of the sound at a distance of 57.3 m from the engine and calculate the corresponding sound intensity level B. m I = W/m2 B = dB

Answers

A jet engine emits sound uniformly in all directions, radiating an acoustic power of 2.85 x 105 W. The intensity of the sound at a distance of 57.3 m from the engine is 6.91 W/m^2, and the corresponding sound intensity level is 128.4 dB.

The intensity of sound I is inversely proportional to the square of the distance from the source. The sound intensity level B is calculated using the following formula:

B = 10 log10(I/I0)

where I0 is the reference intensity of 10^-12 W/m^2.

Here is the calculation in detail:

Intensity I = 2.85 x 105 W / (4 * pi * (57.3 m)^2) = 6.91 W/m^2

Sound intensity level B = 10 log10(6.91 W/m^2 / 10^-12 W/m^2) = 128.4 dB

To learn more about sound intensity click here: brainly.com/question/32194259

#SPJ11

Weight and mass are directly proportional to each other. True False

Answers

Weight and mass are not directly proportional to each other. Weight and mass are two different physical quantities. The given statement is false

Mass refers to the amount of matter an object contains, while weight is the force exerted on an object due to gravity. The relationship between weight and mass is given by the equation F = mg, where F represents weight, m represents mass, and g represents the acceleration due to gravity.

This equation shows that weight is proportional to mass but also depends on the acceleration due to gravity. Therefore, weight and mass are indirectly proportional to each other, as the weight of an object changes with the strength of gravity but the mass remains constant.

Learn more about physical quantities click here: brainly.com/question/31009595

#SPJ11

Light of two similar wavelengths from a single source shine on a diffraction grating producing an interference pattern on a screen. The two wavelengths are not quite resolved. λ B ​ λ A ​ ​ = How might one resolve the two wavelengths? Move the screen closer to the diffraction grating. Replace the diffraction grating by one with fewer lines per mm. Replace the diffraction grating by one with more lines per mm. Move the screen farther from the diffraction grating.

Answers

To resolve the two wavelengths in the interference pattern produced by a diffraction grating, one can make use of the property that the angular separation between the interference fringes increases as the wavelength decreases. Here's how the resolution can be achieved:

Replace the diffraction grating by one with more lines per mm.

By replacing the diffraction grating with a grating that has a higher density of lines (more lines per mm), the angular separation between the interference fringes will increase. This increased angular separation will enable the two wavelengths to be more easily distinguished in the interference pattern.

Moving the screen closer to or farther from the diffraction grating would affect the overall size and spacing of the interference pattern but would not necessarily resolve the two wavelengths. Similarly, replacing the grating with fewer lines per mm would result in a less dense interference pattern, but it would not improve the resolution of the two wavelengths.

To know more about wavelengths click this link -

brainly.com/question/32900586

#SPJ11

Monochromatic Night is incident on and perpendicular to) two sits Separated by 0.200 mm, which causes an interference better on a screen Soton way. The light sa wavelength of 656.3 m (a) What is the fraction of the maximum intensity at a distance of 600 cm from the central maximum of the interference 2 X You may have treated the argument of the scured cosine function as having a degrees rather than one vure to set your color to non mode (b) What What the minimum distance (absolute in mm) from the contrat maximum where you would find the intent to be at the found in part)

Answers

The minimum distance (absolute value) from the central maximum is approximately 8.55 × 10−5 mm.

(a)Fraction of maximum intensity at a distance of 600 cm from the central maximum of the interference. Consider that monochromatic light of wavelength λ is incident on and perpendicular to two slits separated by a distance d. This causes an interference pattern on a screen some distance away.

The pattern will have alternating light and dark fringes, with the central maximum being the brightest and the fringe intensities decreasing with distance from the central maximum.

The distance from the central maximum to the first minimum (the first dark fringe) is given by:$$sin\theta_1=\frac{\lambda}{d}$$$$\theta_1=\sin^{-1}\frac{\lambda}{d}$$Similarly, the distance from the central maximum to the nth minimum is given by:$$sin\theta_n=n\frac{\lambda}{d}$$$$\theta_n=\sin^{-1}(n\frac{\lambda}{d})$$At a distance x from the central maximum, the intensity of the interference pattern is given by:$$I(x)=4I_0\cos^2(\frac{\pi dx}{\lambda D})$$where I0 is the maximum intensity, D is the distance from the slits to the screen, and x is the distance from the central maximum. At a distance of 600 cm (or 6 m) from the central maximum, we have x = 6 m, λ = 656.3 nm = 6.563 × 10−7 m, d = 0.200 mm = 2 × 10−4 m, and we can assume that D ≈ 1 m (since the distance to the screen is much larger than the distance between the slits).

Substituting these values into the equation for intensity gives:$$I(6\ \text{m})=4I_0\cos^2(\frac{\pi (2\times 10^{-4})(6.563\times 10^{-7})}{(1)})$$$$I(6\ \text{m})=4I_0\cos^2(0.000412)$$$$I(6\ \text{m})=4I_0\times 0.999998$$$$I(6\ \text{m})\approx 4I_0$$Therefore, the intensity at a distance of 600 cm from the central maximum is approximately 4 times the maximum intensity.(b) Minimum distance (absolute in mm) from the central maximum where the intensity is at the value found in part (a)At the distance from the central maximum where the intensity is 4I0, we have x = 6 m and I(x) = 4I0.

Substituting these values into the equation for intensity gives:$$4I_0=4I_0\cos^2(\frac{\pi (2\times 10^{-4})(6.563\times 10^{-7})}{(1)})$$$$1=\cos^2(0.000412)$$$$\cos(0.000412)=\pm 0.999997$$$$\frac{\pi dx}{\lambda D}=0.000412$$$$d=\frac{0.000412\lambda D}{\pi x}$$$$d=\frac{0.000412(656.3\times 10^{-9})(1)}{\pi(6)}$$$$d\approx 8.55\times 10^{-8}$$The minimum distance from the central maximum where the intensity is 4 times the maximum intensity is approximately 8.55 × 10−8 m = 0.0855 μm = 8.55 × 10−5 mm.

Therefore, the minimum distance (absolute value) from the central maximum is approximately 8.55 × 10−5 mm.

Know more about Interference

https://brainly.com/question/31228426

#SPJ11

The wall of a small storage building measures 2.0 m × 3.0 m and consists of bricks of thickness 8.0 cm. On a day when the outside temperature is -9.5 degC, the temperature on the inside of the wall is maintained at 15 degC using a small heater, a) Determine the rate of heat transfer (W) by conduction through the wall and b) the total heat (J) transferred through the wall in 45 minutes. The thermal conductivity of the
brick is 0.15 W/m-K.

Answers

a) The rate of heat transfer (W) by conduction through the wall is 14.40 W.

b) The total heat (J) transferred through the wall in 45 minutes is 32,400 J.


Given, Length (l) = 3.0 m, Breadth (b) = 2.0 m, Thickness of brick (d) = 8.0 cm = 0.08 m, Thermal conductivity of brick (k) = 0.15 W/m-K, Temperature inside the room (T1) = 15 degC, Temperature outside the room (T2) = -9.5 degC, Time (t) = 45 minutes = 2700 seconds

(a) Rate of heat transfer (Q/t) by conduction through the wall is given by:

Q/t = kA (T1-T2)/d, where A = lb = 3.0 × 2.0 = 6.0 m2

Substituting the values, we get:

Q/t = 0.15 × 6.0 × (15 - (-9.5))/0.08 = 14.40 W

Therefore, the rate of heat transfer (W) by conduction through the wall is 14.40 W.

(b) The total heat (Q) transferred through the wall in 45 minutes is given by: Q = (Q/t) × t

Substituting the values, we get: Q = 14.40 × 2700 = 32,400 J

Therefore, the total heat (J) transferred through the wall in 45 minutes is 32,400 J.

Learn more about conduction:

https://brainly.com/question/13352036

#SPJ11

Calculate the energy, to the first order of approximation, of the excited states of the helium atom . To do this calculation it would be necessary to explicitly obtain the Coulomb and exchange integrals, and respectively.

Answers

The total energy of the helium atom to the first order approximation is given by:

E = 2T + J - K

Calculating the energy of the excited states of the helium atom to the first order of approximation involves considering the Coulomb and exchange integrals. Let's denote the wavefunctions of the two electrons in helium as ψ₁ and ψ₂.

The Coulomb integral represents the electrostatic interaction between the electrons and is given by:

J = ∫∫ ψ₁*(r₁) ψ₂*(r₂) 1/|r₁ - r₂| ψ₁(r₁) ψ₂(r₂) dr₁ dr₂,

Where r₁ and r₂ are the positions of the first and second electrons, respectively. This integral represents the repulsion between the two electrons due to their electrostatic interaction.

The exchange integral accounts for the quantum mechanical effect called electron exchange and is given by:

K = ∫∫ ψ₁*(r₁) ψ₂*(r₂) 1/|r₁ - r₂| ψ₂(r₁) ψ₁(r₂) dr₁ dr₂,

Where ψ₂(r₁) ψ₁(r₂) represents the probability amplitude for electron 1 to be at position r₂ and electron 2 to be at position r₁. The exchange integral represents the effect of the Pauli exclusion principle, which states that two identical fermions cannot occupy the same quantum state simultaneously.

The total energy of the helium atom to the first order approximation is given by:

E = 2T + J - K,

Where T is the kinetic energy of a single electron.

To know more about total energy here

https://brainly.com/question/14062237

#SPJ4

Other Questions
Choose one of your relationships, and at the start of your answers indicate the relationship thatyou are planning to analyze (eg. My relationship with my best friend, or with my mother etc.)1. What type of control would best describe your relationship is it symmetrical,complementary, or meta-complementary? Explain your rationale.2. In terms of Knapps 10 stages describe the current stage(s) of your relationship and thebehaviors that characterize your communication in this stage. Give specific examples tosupport your answer.3. Are you likely to remain at the current stage, or do you anticipate moving to anotherstage? Which one? Explain your answer.4. Are you happy at the current stage? If you are happy, describe what you can do toincrease the likelihood that the relationship will remain at this stage. If you are nothappy, discuss what you can do to move the relationship to a more satisfying stage.5. Because it takes two people to create a relationship, try to define your "partnersperspective. What stage do you think that your "partner" would describe the relationshipas being at currently. Explain your answer. (What does your partner do to put therelationship at the current stagewhat would you like them to do to maintain it at thisstage or to move it to a new stage?) An n=6 to n=2 transition for an electron trapped in aninfinitely deep square well produces a 532-nm photon. What is thewidth of the well? Howmany grams of NaCL are needed to make 4000 mL of a 9% w/vsolution? You have a monthly line of credit with the local bank. Please forecast the maximum line of credit you will need available, and what month that will be if: Sale price per unit is $28 /unit and is immediately available for your use (cash) Inventory carrying cost is 25% of average 12 month forecasted inventory worth, charged monthly. The Raw material is $10 /unit The profit on umbrella sales is $5/unit (the owner takes that cash out of the business each month). The plants conversion cost is $3.85/unit (includes your salary, your worker's salaries, healthcare, vacation, plant heat/air, plant electric, plant water/sewer, taxes, insur. and other miscellaneous manufacturing cost etc.) The plants scrap & return scrap cost is $15/unit (Raw + conversion) The manufacturing rework cost is $2/unit The business return and rework cost is $10/unit (you pay customers shipping) Sales returns are immediately refunded full sales price Cost of rework is paid the month it comes out of the process (workers pre-paid monthly) > Bank Loans are immediately payable when excess cash exist (no interest rate being charged) 6. What month will you have the most money tied up in inventory? 7. Would you want this business based on its ROI (Return/ Investment)? Income. Losses. Investment Suppose A,B,C are events such that A C=B C. Show that P[A]P[B]P[C] In the following case, which cognitive bias, if any, is it reasonable to conclude is occurring in Nora?Nora goes to a sports bar to watch the NBA Championship game between the Golden State Warriors and the Cavaliers. She is a big fan of Golden State Warriors. At the bar, there are some fans of the Cavaliers who are cheering and getting rowdy when the Cavaliers score points. Nora immediately thinks that Cavaliers fans are annoying and rude. However, whenever the Golden State Warriors score points, fans of the Golden State Warriors, including Nora, cheer and get rowdy as well. Despite acting similarly to Cavaliers fans, Nora thinks that fans of Golden State Warriors are just polite but passionately loyal fans.a. In-Group Biasb. Confirmation Biasc. Availability Heuristicd. Plausible that there is no cognitive biase. Fundamental Attribution Error You bought a house 3 years ago. To finance the purchase, you took out a mortgage for $911,316.22. The interest rate on the mortgage is 2.75% and the amortization period is 30 years. You chose to make 26 payments per year and each payment is $1,712.56. Your last payment was yesterday. How much principal remains owingtoday? A magnetic field strength of 5uA/m is required at a point on 8 = /2, 2 km from an antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is? a. A hertzian dipole of length /25? b. /2 C. /4 Discuss the extent to which the loanable funds are cleared tothe interest rate system.Increasing the size of the market and balancing investment andsaving can help to attainmacroeconomic balance. Discuss a challenge you encountered as you worked through the project. What was the challenge? What were the available options to solve the problem? What did you do? How did it turn out?Discuss a positive aspect of working on the project. What went well? What did you enjoy? Why?What was the most valuable, useful, or relevant aspect of this project for you? Why?What did you learn about yourself as you worked on this group project? Consider major concepts from the course in your responseWhat learning will you bring forward from this project (content, presentation skills, group work strategies, etc)? How will you use it in the future? Problem 1. Consider a market in which the supply and demand sets are S={(q,p):q3p7},D={(q,p):q=3812p}. Write down the recurrence equation which determines the sequence pt of prices, assuming that the suppliers operate according to the cobweb model. Find the explicit solution given that p0=4, and describe in words how thw sequence pt behaves. Write down a formula for qt, the quantity on the market in year t. A contract that is designed to accumulate value over time with the intent to provide a stream of income over the lifetime of an individual is called _________. An engineer is designing a conical container it needs needs to hold a specific volume and have a specific height. she needs to know the radius of the container r in terms of its volume, v, and height, h. create an equation that the engineer can use to determine the radius. the formula for v= 1/3 pie r2 h Which statement best describes why homelessness increased during theGreat Depression?A. Many Americans had no jobe or savings they could use to pay their mortgages B. Many Americans thought there were more job opportunities asmigrants c. Many Americans had no opportunity to invest in real estate.D. Many Americans invested all their money in the stock market, A standing wave is set up on a string of length L, fixed at both ends. If 5-loops are observed when the wavelength is 1 = 1.5 m, then the length of the string is: Pat Johannsen earns RM35,000 per year and takes home RM2,300 per month after taxes. She has total monthly expenses of RM1,800. How much of an emergency fund should she have? What factors should she consider in deciding how much is necessary? A converging lens has a focal length of 15.9 cm. (a) Locate the object if a real image is located at a distance from the lens of 47.7 cm. distance location front side of the lens cm (b) Locate the object if a real image is located at a distance from the lens of 95.4 cm. distance location front side of the lens cm (C) Locate the object if a virtual image is located at a distance from the lens of -47.7 cm. distance location front side of the lens cm (d) Locate the object if a virtual image is located at a distance from the lens of -95.4 cm. distance cm location front side of the lens How many liters of oxygen will be required to react with .56 liters of sulfur dioxide? The measure of an angle in standard position is given. 180b. Find the exact values of cos and sin for each angle measure. what is personification