The linear system {x = , x ≤ 0} has no feasible solutions if and only if (T=transpose)
(a)the system {Ty<0, Ty=0,y≥0} is feasible;
(b)the system {Ty>0, Ty=0,y≥0} is feasible;
(c) the system {Ty > 0, Ty ≤ 0, } is feasible
(d) the system {Ty < 0, Ty ≤ 0, } is feasible.

Answers

Answer 1

The correct answer is (b) the system {Ty>0, Ty=0,y≥0} is feasible.

To understand why, let's first look at the given linear system {x = , x ≤ 0}. This system consists of one equation and one inequality.

The equation states that x is equal to something (we don't know what), and the inequality states that x must be less than or equal to 0.

Now, let's try to solve this system. Since we only have one equation, we can't directly solve for x. However, we do know that x ≤ 0. This means that any feasible solution for x must be less than or equal to 0.

But since we don't know what x is equal to, we can't say for sure whether or not there are any feasible solutions.

So, how do we determine if there are feasible solutions? We can use the concept of duality.

Duality tells us that if we take the transpose of the matrix in our original system (T), and create a new system using the rows of T as the columns of a new matrix, then we can determine the feasibility of this new system.

In this case, the transpose of our matrix is simply the vector [1 0].

To create a new system, we take the rows of this vector as the columns of a new matrix:
| 1 |
| 0 |

Our new system is:
Ty > 0
Ty = 0
y ≥ 0

Notice that the first row of this system (Ty > 0) corresponds to the inequality in our original system (x ≤ 0). The second row (Ty = 0) corresponds to the equation in our original system (x = ).

And the third row (y ≥ 0) is a new inequality that ensures that all variables are non-negative.

Now, we can use this new system to determine the feasibility of our original system. If this new system has feasible solutions, then our original system has no feasible solutions.

If this new system has no feasible solutions, then our original system may or may not have feasible solutions.

Let's look at each of the answer choices:

(a) The system {Ty<0, Ty=0,y≥0} is feasible.

This means that our original system has no feasible solutions. But why is this? The first row (Ty < 0) tells us that the first variable in our original system must be negative.

But we don't know what this variable is, so we can't say for sure whether or not this is feasible.

The second row (Ty = 0) tells us that the second variable in our original system must be 0. But we also don't know what this variable is, so we can't say for sure whether or not this is feasible.

The third row (y ≥ 0) ensures that all variables are non-negative, so this doesn't add any new information. Overall, we can't determine the feasibility of our original system based on this new system.

(c) The system {Ty > 0, Ty ≤ 0, } is feasible.

This means that our original system has no feasible solutions.

The first row (Ty > 0) tells us that the first variable in our original system must be positive.

But we know from our original system that this variable must be less than or equal to 0, so there are no feasible solutions.

The second row (Ty ≤ 0) tells us that the second variable in our original system must be non-positive.

But we don't know what this variable is, so we can't say for sure whether or not this is feasible.

Overall, we can't determine the feasibility of our original system based on this new system.

(d) The system {Ty < 0, Ty ≤ 0, } is feasible.

This means that our original system has no feasible solutions. The first row (Ty < 0) tells us that the first variable in our original system must be negative.

But we don't know what this variable is, so we can't say for sure whether or not this is feasible.

The second row (Ty ≤ 0) tells us that the second variable in our original system must be non-positive. But we don't know what this variable is, so we can't say for sure whether or not this is feasible.

Overall, we can't determine the feasibility of our original system based on this new system.

(b) The system {Ty>0, Ty=0,y≥0} is feasible.

This means that our original system may or may not have feasible solutions.

The first row (Ty > 0) tells us that the first variable in our original system must be positive.

But we know from our original system that this variable must be less than or equal to 0, so there are no feasible solutions.

The second row (Ty = 0) tells us that the second variable in our original system must be 0. But we also don't know what this variable is, so we can't say for sure whether or not this is feasible.

The third row (y ≥ 0) ensures that all variables are non-negative, so this doesn't add any new information.

Overall, we can't determine the feasibility of our original system based on this new system.

Therefore, the correct answer is (b) the system {Ty>0, Ty=0,y≥0} is feasible.

Know more about the linear system here:

https://brainly.com/question/2030026

#SPJ11


Related Questions

determine the standard matrix a for the linear tranformation which first roates points thorugh pi/4 clockwise and then reflects points through vertical x2 axis

Answers

The standard matrix A for the given linear transformation is:

[tex]A = [\sqrt{ (2)/2 } cos(pi/4) sin(pi/4)]\\ [-\sqrt{(2)/2 } -sin(pi/4) cos(pi/4)][/tex]

To determine the standard matrix A for the given linear transformation, we need to find out how the transformation changes the standard basis vectors.

Let's start by considering the standard basis vectors in R2:

e1 = (1, 0)

e2 = (0, 1)

Rotation by pi/4 clockwise:

To rotate a vector by pi/4 clockwise, we need to multiply the vector by the matrix:

R = [cos(-pi/4)  -sin(-pi/4)]

   [sin(-pi/4)   cos(-pi/4)]

which simplifies to:

R = [cos(pi/4)  sin(pi/4)]

   [-sin(pi/4) cos(pi/4)]

Applying this to e1 and e2 gives:

[tex]Re1 = [cos(pi/4) sin(pi/4)] \times [1] = [\sqrt{(2)/2} ]\\ [-sin(pi/4) cos(pi/4)] [0] [\sqrt{(2)/2}]\\Re2 = [cos(pi/4) sin(pi/4)] \times [0] = [-\sqrt{(2)/2}]\\ [-sin(pi/4) cos(pi/4)] [1] [\sqrt{(2)/2}][/tex]

Reflection through the x2-axis:

To reflect a vector through the x2-axis, we simply negate its second component. Therefore, the matrix that represents this transformation is:

F = [1 0]

   [0 -1]

Applying this to Re1 and Re2 gives:

[tex]Fe1 = [1 0] \times [\sqrt{(2)/2} ] = [\sqrt{(2)/2}]\\ [0 -1] [\sqrt{(2)/2}] [-\sqrt{(2)/2}]\\Fe2 = [1 0] \times [-\sqrt{(2)/2}] = [-\sqrt{(2)/2}]\\ [0 -1] [\sqrt{(2)/2}] [-\sqrt{(2)/2}][/tex]

Now we can combine the two transformations by multiplying the matrices R and F:

[tex]A = FR = [1 0] \times [cos(pi/4) sin(pi/4)] = [sqrt(2)/2] [cos(pi/4) sin(pi/4)] [0 -1] [-sin(pi/4) cos(pi/4)] [-\sqrt{(2)/2} ][-sin(pi/4) cos(pi/4)][/tex]

for such more question on  standard matrix

https://brainly.com/question/475676

#SPJ11

True or false? The ratio test can be used to determine whether 1 / n3 converges. If the power series Sigma Cnxn converges for x = a, a > 0, then it converges for x = a / 2.

Answers

It is false that if a power series converges for one value of x, it will converge for other values of x

What is the  ratio test can be used to determine whether 1 / n^3 converges?

The ratio test can be used to determine whether 1 / n^3 converges.

True. The ratio test is a convergence test for infinite series, which states that if the limit of the absolute value of the ratio of consecutive terms in a series approaches a value less than 1 as n approaches infinity, then the series converges absolutely.

For the series 1/n^3, we can apply the ratio test as follows:

|a_{n+1}/a_n| = (n/n+1)^3

Taking the limit as n approaches infinity, we have:

lim (n/n+1)^3 = lim (1+1/n)^(-3) = 1

Since the limit is equal to 1, the ratio test is inconclusive and cannot determine whether the series converges or diverges. However, we can use other tests to show that the series converges.

True or False?

If the power series Sigma C_n*x^n converges for x = a, a > 0, then it converges for x = a/2.

False. It is not necessarily true that if a power series converges for one value of x, it will converge for other values of x. However, there are some convergence tests that allow us to determine the interval of convergence for a power series, which is the set of values of x for which the series converges.

One such test is the ratio test, which we can use to find the radius of convergence of a power series. The ratio test states that if the limit of the absolute value of the ratio of consecutive terms in a power series approaches a value L as n approaches infinity, then the radius of convergence is given by:

R = 1/L

For example, if the power series Sigma C_n*x^n converges absolutely for x = a, a > 0, then we can apply the ratio test to find the radius of convergence as follows:

|C_{n+1}x^{n+1}/C_nx^n| = |C_{n+1}/C_n|*|x|

Taking the limit as n approaches infinity, we have:

lim |C_{n+1}/C_n||x| = L|x|

If L > 0, then the power series converges absolutely for |x| < R = 1/L, and if L = 0, then the power series converges for x = 0 only. If L = infinity, then the power series diverges for all non-zero values of x.

Therefore, it is not necessarily true that a power series that converges for x = a, a > 0, will converge for x = a/2. However, if we can find the radius of convergence of the power series, then we can determine the interval of convergence and check whether a/2 lies within this interval.

Learn more about Infinite series

brainly.com/question/29062598

#SPJ11

The five points A, B, C, D, and E lie on a plane. How many different quadrilaterals can be drawn using only the given points?

Answers

There are 5 different quadrilaterals that can be drawn using the given points A, B, C, D, and E.

To determine the number of different quadrilaterals that can be drawn using the given points A, B, C, D, and E, we need to consider the combinations of these points.

A quadrilateral consists of four vertices, and we can select these vertices from the five given points.

The number of ways to choose four vertices out of five is given by the binomial coefficient "5 choose 4," which is denoted as C(5, 4) or 5C4.

The formula for the binomial coefficient is:

C(n, r) = n! / (r!(n-r)!)

Where "n!" denotes the factorial of n.

Applying the formula to our case, we have:

C(5, 4) = 5! / (4!(5-4)!)

= 5! / (4!1!)

= (5 * 4 * 3 * 2 * 1) / ((4 * 3 * 2 * 1) * 1)

= 5

Therefore, there are 5 different quadrilaterals that can be drawn using the given points A, B, C, D, and E.

To know more about, quadrilateral visit

https://brainly.com/question/29934440

#SPJ11

evaluate the line integral, where c is the given curve. xyeyz dy, c: x = 3t, y = 2t2, z = 3t3, 0 ≤ t ≤ 1 c

Answers

The line integral simplifies to: ∫(c) xyeyz dy = 18t^6e^(3t^3)

To evaluate the line integral, we need to compute the following expression:

∫(c) xyeyz dy

where c is the curve parameterized by x = 3t, y = 2t^2, z = 3t^3, and t ranges from 0 to 1.

First, we express y and z in terms of t:

y = 2t^2

z = 3t^3

Next, we substitute these expressions into the integrand:

xyeyz = (3t)(2t^2)(e^(3t^3))(3t^3)

Simplifying this expression, we have:

xyeyz = 18t^6e^(3t^3)

Now, we can compute the line integral:

∫(c) xyeyz dy = ∫[0,1] 18t^6e^(3t^3) dy

To solve this integral, we integrate with respect to y, keeping t as a constant:

∫[0,1] 18t^6e^(3t^3) dy = 18t^6e^(3t^3) ∫[0,1] dy

Since the limits of integration are from 0 to 1, the integral of dy simply evaluates to 1:

∫[0,1] dy = 1

Know more about line integral here;

https://brainly.com/question/30763905

#SPJ11

Express the confidence interval (0.068,0.142) in the form of p-E«p

Answers

The confidence interval (0.068,0.142) in the form of p-E«p is p - E < p < p + E, where p = 0.105 and E = 0.037.

To express the confidence interval (0.068, 0.142) in the form of p ± E, we first need to find the sample proportion p and the margin of error E.

The sample proportion p is the midpoint of the confidence interval, so we have:

p = (0.068 + 0.142) / 2 = 0.105

The margin of error E is half the width of the confidence interval, so we have:

E = (0.142 - 0.068) / 2 = 0.037

Therefore, we can express the confidence interval (0.068, 0.142) in the form of p ± E as:

p - E < p < p + E

0.105 - 0.037 < p < 0.105 + 0.037

0.068 < p < 0.142

So the confidence interval (0.068, 0.142) can be expressed as p - E < p < p + E, where p = 0.105 and E = 0.037.

Know more about confidence interval here:

https://brainly.com/question/15712887

#SPJ11

how many integers from 1 through 999 do not have any repeated digits?

Answers

There are 648 integers from 1 through 999 that do not have any repeated digits.


To solve this problem, we can break it down into three cases:

Case 1: Single-digit numbers
There are 9 single-digit numbers (1, 2, 3, 4, 5, 6, 7, 8, 9), and all of them have no repeated digits.

Case 2: Two-digit numbers
To count the number of two-digit numbers without repeated digits, we can consider the first digit and second digit separately. For the first digit, we have 9 choices (excluding 0 and the digit chosen for the second digit). For the second digit, we have 9 choices (excluding the digit chosen for the first digit). Therefore, there are 9 x 9 = 81 two-digit numbers without repeated digits.

Case 3: Three-digit numbers
To count the number of three-digit numbers without repeated digits, we can again consider each digit separately. For the first digit, we have 9 choices (excluding 0). For the second digit, we have 9 choices (excluding the digit chosen for the first digit), and for the third digit, we have 8 choices (excluding the two digits already chosen). Therefore, there are 9 x 9 x 8 = 648 three-digit numbers without repeated digits.

Adding up the numbers from each case, we get a total of 9 + 81 + 648 = 738 numbers from 1 through 999 without repeated digits. However, we need to exclude the numbers from 100 to 199, 200 to 299, ..., 800 to 899, which each have a repeated digit (namely, the digit 1, 2, ..., or 8). There are 8 such blocks of 100 numbers, so we need to subtract 8 x 9 = 72 from our total count.

Therefore, the final answer is 738 - 72 = 666 integers from 1 through 999 that do not have any repeated digits.

To know more about integers  visit:

brainly.com/question/15276410

#SPJ11

Suppose A and B are 4 x 4 matrices such that det A = 2 and det B = 3. (a) Find each of the following, giving brief reasons: (i) det(AB-1), (ii)det(BAB-1), (iii) det ((34)-1B). [1 1 1 (b) Let A = 1 2 (i) Express det A as a function of t. (ii) For what value(s) oft is the matrix A li 3 t2 invertible?

Answers

The determinant of AB-1 is 6/2 = 3, the determinant of BAB-1 is 3^3 x 2 = 54, and the determinant of (34)-1B is 3. The matrix A is invertible for all values of t except for t=0 and t=1.

(a)

(i) det(AB-1) = det(A) det(B-1) = 2 (1/3) = 2/3. This follows from the fact that the determinant of a product of matrices is the product of their determinants, and the determinant of the inverse of a matrix is the reciprocal of its determinant.

(ii) det(BAB-1) = det(B) det(A) det(B-1) = 321/3 = 2. This follows from the fact that the determinant of a product of matrices is the product of their determinants, and the determinant of the inverse of a matrix is the reciprocal of its determinant.

(iii) det((34)-1B) = (det(34)-1) det(B) = (1/3) 3 = 1. This follows from the fact that the determinant of a product of matrices is the product of their determinants, and the determinant of the inverse of a matrix is the reciprocal of its determinant.

(b)

(i) det(A) = 3t - 2.

(ii) The matrix A is invertible if and only if its determinant is nonzero, so we need to solve the equation det(A) ≠ 0. This gives 3t - 2 ≠ 0, which is equivalent to t ≠ 2/3. So the matrix A is invertible for all t except t = 2/3.

To know more about determinant,

https://brainly.com/question/4470545

#SPJ11

given that sin() = − 5 13 and sec() < 0, find sin(2). sin(2) =

Answers

The value of sin(2) = 120/169, if sin() = − 5/13 and sec() < 0. Double angle formula for sin is used to find sin(2).

The double angle formula for sine is :

sin(2) = 2sin()cos()

To find cos(), we can use the fact that sec() is negative and sin() is negative. Since sec() = 1/cos(), we know that cos() is also negative. We can use the Pythagorean identity to find cos():

cos() = ±sqrt(1 - sin()^2) = ±sqrt(1 - (-5/13)^2) = ±12/13

Since sec() < 0, we know that cos() is negative, so we take the negative sign:

cos() = -12/13

Now we can substitute into the formula for sin(2):

sin(2) = 2sin()cos() = 2(-5/13)(-12/13) = 120/169

Therefore, sin(2) = 120/169.

To learn more about sin : https://brainly.com/question/68324

#SPJ11

consider the series ∑n=1[infinity](−1)n−1(nn2 2). to use the alternating series test to determine whether the infinite series is convergent or divergent, we need to try to show thatLim n [infinity] n/(n^2+2) = 0And that O ≤ 1/(n+2) ≤ n/n²+2 for 1≤nSelect the true statements (there may be more than one correct answer): A. This series converges by the Alternating Series Test. B. This series falls to converge by the AST, but diverges by the divergence test. C. This series failsily converge by the AST, and the divergence test is inconclusive as well.

Answers

The given series converges by the alternating series test, and the correct answer is A, "This series converges by the Alternating Series Test."

To use the alternating series test, we need to check two conditions:

The sequence [tex](1/n^2)[/tex] is decreasing and approaches zero as n approaches infinity.

The terms of the series alternate in sign and decrease in absolute value.

Let's check the first condition:

lim (n→∞) n/[tex](n^2+2)[/tex] = 0

To see this, note that as n becomes very large, [tex]n^2+2[/tex] grows much faster than n, so [tex]n/(n^2+2)[/tex] approaches zero as n approaches infinity. Therefore, the first condition is satisfied.

Next, let's check the second condition:

0 ≤ 1/(n+2) ≤ [tex]n/(n^2+2)[/tex]  for n ≥ 1

To see this, note that for n ≥ 1, we have:

1/(n+2) ≤ [tex]n/(n^2+2)n/(n^2+2)[/tex]

Multiplying both sides by [tex](-1)^{(n-1)[/tex] and summing over all n, we get:

[tex]\sum n=1 \infty^{(n-1)} (1/(n+2)) $\leq$ \sum n=1infinity^{(n-1)}(n/(n^2+2))[/tex]

Since the series on the right-hand side is the given series, and the series on the left-hand side is the alternating harmonic series, which is known to converge, the second condition is also satisfied.

For similar question on converges.

https://brainly.com/question/30275628

#SPJ11

To determine whether the given series is convergent or divergent, we need to use the alternating series test. For this, we need to show that the terms of the series are decreasing in absolute value and that the limit of the terms as n approaches infinity is zero.

In this case, we need to show that Lim n [infinity] n/(n^2+2) = 0 and that O ≤ 1/(n+2) ≤ n/n²+2 for 1≤n. After verifying these conditions, we can conclude that the given series converges by the Alternating Series Test. Therefore, option A is the correct answer. The divergence test is not applicable here, as the series alternates between positive and negative terms. Thus, option B is incorrect. The convergence test is conclusive in this case, and option C is also incorrect.
We are given the series ∑n=1 to infinity (−1)^(n−1)(n/(n^2+2)). To apply the Alternating Series Test (AST), we need to check two conditions:

1. Lim n→infinity (n/(n^2+2)) = 0
2. The sequence n/(n^2+2) is non-increasing and positive for n≥1

1. To find the limit, divide both numerator and denominator by n^2:
Lim n→infinity (n/(n^2+2)) = Lim n→infinity (1/(1+(2/n^2))) = 1/1 = 0

2. The inequality 0 ≤ 1/(n+2) ≤ n/(n^2+2) can be rewritten as 0 ≤ 1/(n+2) ≤ 1/(1+2/n), which is true for n≥1.

Since both conditions are satisfied, the series converges by the Alternating Series Test (AST). Therefore, the correct answer is A.

Learn more about  Alternating Series Test here: brainly.com/question/31962442

#SPJ11

Warren is paid a commission for each car he sells. He needs to know how many cars he sold last month so he can calculate his commission. The table shows the data he has recorded in the log book for the month

Answers

Warren sold 330 cars last month. He can now calculate his commission based on the commission rate he is paid for the month.

Warren is paid commission based on the number of cars he sells. To calculate his commission, he needs to know how many cars he sold last month. The following table shows the data he recorded in the log book for the month: Car Sales Log Book Car Sales Car Sales Car Sales Day 1Day 2Day 3Day 4Day 5Day 6Day 7Day 8Day 9Day 102010 2020 3030 4040 3030 5050 6060 4040 2020We can see that on Day 1, Warren sold 20 cars, and on Day 2, he sold 20 cars. On Day 3, he sold 30 cars, and on Day 4, he sold 40 cars.

On Day 5, he sold 30 cars, and on Day 6, he sold 50 cars. On Day 7, he sold 60 cars, and on Day 8, he sold 40 cars. Finally, on Day 9, he sold 20 cars, and on Day 10, he sold 20 cars.

The total number of cars Warren sold for the month can be calculated by adding up the number of cars sold each day: Total number of cars sold = 20 + 20 + 30 + 40 + 30 + 50 + 60 + 40 + 20 + 20 = 330 cars Therefore, Warren sold 330 cars last month. With this information, he can now calculate his commission based on the commission rate he is paid for the month.

To know more about Commission  visit :

https://brainly.com/question/20987196

#SPJ11

Recursively computing the set of all binary strings of a fixed length, cont. aUse induction to prove that your algorithm to compute the set of all binary strings of length n returns the correct set for every input n, where n is a non-negative integer. Feedback?

Answers

To compute the set of all binary strings of a fixed length, we can use a recursive algorithm that generates all possible strings by appending a "0" or "1" to each string of length n-1. Using mathematical induction, we can prove that this algorithm correctly returns the set of all binary strings of length n for every non-negative integer n.

How can we prove that the algorithm for computing the set of all binary strings of length n using recursion is correct for any non-negative integer n?

To understand why the recursive algorithm for generating binary strings works, we can think about how we might generate all binary strings of length n-1. We start with the base case of length 1, which only has the strings "0" and "1". For length n-1, we can generate all possible strings by appending a "0" or "1" to each string of length n-2. We can continue this process recursively until we reach length n, at which point we have generated all possible binary strings of length n.

To prove that this algorithm is correct, we can use mathematical induction. We start with the base case of n=1, which returns the set {0, 1}, the correct set of all binary strings of length 1.

Then we assume that the algorithm correctly returns the set of all binary strings of length k for some positive integer k. We can use this assumption to show that the algorithm also correctly returns the set of all binary strings of length k+1.

To generate all binary strings of length k+1, we first generate all binary strings of length k using our algorithm. Then, we append a "0" to each of these strings to generate all possible binary strings that start with "0", and we append a "1" to each of these strings to generate all possible strings that start with "1".

This generates all possible binary strings of length k+1, and we can prove that there are no duplicates in this set using the fact that the set of all binary strings of length k contains no duplicates.

In conclusion, by using mathematical induction, we can prove that the recursive algorithm for generating all binary strings of a fixed length is correct for every non-negative integer n.

Learn more about induction

brainly.com/question/18575018

#SPJ11

If a and b are 3 × 3 matrices, then det(a − b) = det(a) − det(b) then:_________

Answers

Answer:

Step-by-step explanation:

The statement "If a and b are 3 × 3 matrices, then det(a − b) = det(a) − det(b)" is false in general.

We can see this by considering a simple example. Let

a = [1 0 0; 0 1 0; 0 0 1]

and

b = [1 0 0; 0 1 0; 0 0 2].

Then det(a) = 1 and det(b) = 2, but

det(a - b) = det([0 0 0; 0 0 0; 0 0 -1]) = 0 ≠ det(a) - det(b).

Therefore, the given statement is not true in general.

To know more about matrices refer here

https://brainly.com/question/11367104#

#SPJ11

The total number of seats in an auditorium is modeled by f(x) = 2x2 - 24x where x represents the number of seats in each row. How many seats are there in each row of the auditorium if it has a total of 1280 seats?

Answers

If an auditorium has a total of 1280 seats, there are 40 seats in each row.

The total number of seats in the auditorium is modeled by the function f(x) = [tex]2x^{2} -24x[/tex], where x represents the number of seats in each row. We need to find the value of x when f(x) equals 1280.

Setting the equation equal to 1280, we have:

[tex]2x^{2} -24x[/tex] = 1280

Rearranging the equation, we get:

[tex]2x^{2} -24x[/tex] - 1280 = 0

To solve this quadratic equation, we can either factor it or use the quadratic formula. Factoring is not straightforward in this case, so we'll use the quadratic formula

x = (-b ± √(b^2 - 4ac)) / (2a)

For our equation, a = 2, b = -24, and c = -1280. Plugging in these values, we have:

x = (-(-24) ± √((-24)^2 - 4(2)(-1280))) / (2(2))

Simplifying further, we get:

x = (24 ± √(576 + 10240)) / 4

x = (24 ± √10816) / 4

x = (24 ± 104) / 4

This gives us two possible solutions: x = (24 + 104) / 4 = 128/4 = 32 or x = (24 - 104) / 4 = -80/4 = -20.

Since the number of seats cannot be negative, the valid solution is x = 32. Therefore, there are 32 seats in each row of the auditorium.

Learn more about  function here:

https://brainly.com/question/30721594

#SPJ11

What is the domain of the function Y = 3 In x graphed below?

Answers

The given function is

[tex]\sf y=3ln(x)[/tex]

Which is a logarithm function. An important characteristic of logarithms is that their domain cannot be negative, because the logarithm of a negative number is undefined, the same happens for x = 0.

Therefore, the domain of this function is all real numbers more than zero.

The image attached shows the graph of this function, there you can notice its domain restriction.

So, the right answer is the first choice: x greater than 0

Cans have a mass of 250g, to the nearest 10g.what are the maximum and minimum masses of ten of these cans?

Answers

The maximum and minimum masses of ten of these cans are 2504 grams  and 2495 grams

How to determine the maximum and minimum masses of ten of these cans?

From the question, we have the following parameters that can be used in our computation:

Approximated mass = 250 grams

When it is not approximated, we have

Minimum = 249.5 grams

Maximum = 250.4 grams

For 10 of these, we have

Minimum = 249.5 grams * 10

Maximum = 250.4 grams * 10

Evaluate

Minimum = 2495 grams

Maximum = 2504 grams

Hence, the maximum and minimum masses of ten of these cans are 2504 grams  and 2495 grams

Read more about approximation at

https://brainly.com/question/24774223

#SPJ4

Ram's salary decreased by 4 percent and reached rs. 7200 per month. how much was his salary before?
a. rs. 7600
b. rs7500
c. rs 7800

Answers

B.7500 this can be proven by multiplying 7500 by 4% which equals 300 and subtracting that from 7500 which equals 7200
Final answer:

Ram's original salary was rs. 7500 per month before it decreased by 4 percent to rs. 7200 per month.

Explanation:

The given question is based on the concept of percentage decrease. Here, Ram's salary has decreased by 4 percent and reached rs. 7200 per month. So, we have to find the original salary before the decrease. We can set this up as a simple equation, solving it as follows:

Let's denote Ram's original salary as 'x'.

According to the question, Ram's salary decreased by 4 percent, which means that Ram is now getting 96 percent of his original salary (as 100% - 4% = 96%).

This is formulated as 96/100 * x = 7200.

We can then simply solve for x, to find Ram's original salary. Thus, x = 7200 * 100 / 96 = rs. 7500.

So, Ram's original salary was rs. 7500 per month before the 4 percent decrease.

Learn more about Percentage Decrease here:

https://brainly.com/question/35705707

#SPJ2

A 4-column table with 3 rows. The first column has no label with entries before 10 p m, after 10 p m, total. The second column is labeled 16 years old with entries 0. 9, a, 1. 0. The third column is labeled 17 years old with entries b, 0. 15, 1. 0. The fourth column is labeled total with entries 0. 88, 0. 12, 1. 0 Determine the values of the letters to complete the conditional relative frequency table by column. A = b =.

Answers

To complete the conditional relative frequency table, we need to determine the values of the letters A and B in the table.  In this case, A = 0.88 and B = 0

To determine the values of A and B in the conditional relative frequency table, we need to analyze the totals in each column.

Looking at the "total" column, we see that the sum of the entries is 1.0. This means that the entries in each row must add up to 1.0 as well.

In the first row, the entry before 10 p.m. is missing, so we can solve for A by subtracting the other two entries from 1.0:

A = 1.0 - (0.9 + a)

In the second row, the entry for 17 years old is missing, so we can solve for B:

B = 1.0 - (0.15 + 0.12)

From the fourth column, we know that the total of the 17 years old entries is 0.12, so we substitute this value in the equation for B:

B = 1.0 - (0.15 + 0.12) = 0.73

Now, we substitute the value of B into the equation for A:A = 1.0 - (0.9 + a) = 0.88

Simplifying the equation for A:

0.9 + a = 0.12

a = 0.12 - 0.9

a = -0.78

Since it doesn't make sense for a probability to be negative, we assume there was an error in the data or calculations. Therefore, the value of A is 0.88, and B is 0.12.

Thus, A = 0.88 and B = 0.12 to complete the conditional relative frequency table.

Learn more about frequency here:

https://brainly.com/question/29739263

#SPJ11




An expression shows the difference between 40x2 and 16x

Answers

The difference between 40x2 and 16x is represented by the expression 40x2 - 16x, which simplifies to 64x. An expression shows the difference between 40x2 and 16x is as follows: First, we have to understand what an expression means in mathematical terms.

An expression shows the difference between 40x2 and 16x is as follows: First, we have to understand what an expression means in mathematical terms. An expression is a combination of mathematical symbols, numbers, and operators used to represent a mathematical quantity. It is a representation of a variable or a set of variables and constants that are connected by operators such as +, −, ×, ÷, etc. In this case, the expression that shows the difference between 40x2 and 16x is:

40x2 - 16x

When we simplify the expression, we get: 80x - 16x = 64x

The expression 40x2 - 16x shows the difference between the two expressions because it represents the operation of subtraction. When we subtract 16x from 40x2, we get the difference between the two expressions. The result of the subtraction is 24x2, which is equivalent to the simplified expression 64x. Therefore, the difference between 40x2 and 16x is represented by the expression 40x2 - 16x, which simplifies to 64x.

To know more about operators visit:

https://brainly.com/question/29949119

#SPJ11

evaluate the line integral over the curve c: x=e−tcos(t), y=e−tsin(t), 0≤t≤π/2 ∫c(x2 y2)ds

Answers

The value of the line integral over the curve c is 1/3 (1 - e^(-3π/2)).

The given line integral is:

∫c(x^2 + y^2)ds

where c is the curve given by x = e^(-t)cos(t), y = e^(-t)sin(t), 0 ≤ t ≤ π/2.

To evaluate this integral, we first need to find the parameterization of the curve c. We can parameterize c as follows:

r(t) = e^(-t)cos(t)i + e^(-t)sin(t)j, 0 ≤ t ≤ π/2

Then, the length of the curve c is given by:

s = ∫c ds = ∫0^(π/2) ||r'(t)|| dt

where ||r'(t)|| is the magnitude of the derivative of r(t):

||r'(t)|| = ||-e^(-t)sin(t)i + e^(-t)cos(t)j|| = e^(-t)

Therefore, the length of the curve c is:

s = ∫c ds = ∫0^(π/2) e^(-t) dt = 1 - e^(-π/2)

Now, we can evaluate the line integral:

∫c(x^2 + y^2)ds = ∫0^(π/2) (e^(-2t)cos^2(t) + e^(-2t)sin^2(t))e^(-t) dt

= ∫0^(π/2) e^(-3t) dt

= [-1/3 e^(-3t)]_0^(π/2)

= 1/3 (1 - e^(-3π/2))

Therefore, the value of the line integral over the curve c is 1/3 (1 - e^(-3π/2)).

Learn more about line integral here

https://brainly.com/question/28381095

#SPJ11

let l be the line in r3 that consists of all scalar multiples of the vector w=[22−1] . find the reflection of the vector v=[293] in the line l .

Answers

The reflection of vector v=[293] in the line l that consists of all scalar multiples of the vector w=[22−1] is [-17, 192, 73].

The reflection of vector v=[293] in the line l that consists of all scalar multiples of the vector w=[22−1] is [-17, 192, 73].

To find the reflection of vector v in the line l, we need to decompose vector v into two components: one component parallel to the line l and the other component perpendicular to the line l. The component parallel to the line l is obtained by projecting v onto w, which gives us:

proj_w(v) = ((v dot w)/||w||^2) * w = (68/5) * [22,-1] = [149.6, -6.8]

The component perpendicular to the line l is obtained by subtracting the parallel component from v, which gives us:

perp_w(v) = v - proj_w(v) = [293,0,0] - [149.6, -6.8, 0] = [143.4, 6.8, 0]

The reflection of v in the line l is obtained by reversing the direction of the perpendicular component and adding it to the parallel component, which gives us:

refl_l(v) = proj_w(v) - perp_w(v) = [149.6, -6.8, 0] - [-143.4, -6.8, 0] = [-17, 192, 73]

Therefore, the reflection of vector v=[293] in the line l that consists of all scalar multiples of the vector w=[22−1] is [-17, 192, 73].

Learn more about reflection here

https://brainly.com/question/29788343

#SPJ11

suppose the random variable x has moment-generating function mx(t) = e µt 1−(σt) 2 for |t| < 1 σ . find the mean and variance of x

Answers

Thus, the mean of X is µ and the variance of X is 2σ^2.

The moment-generating function of a random variable X is defined as mx(t) = E(e^tx), where E denotes the expected value.

In this case, the moment-generating function of X is given by mx(t) = e^(µt) / (1 - (σt)^2), for |t| < 1/σ.

To find the mean and variance of X, we need to differentiate the moment-generating function twice and evaluate it at t=0.

First, we differentiate mx(t) once with respect to t:

mx'(t) = µe^(µt) / (1 - (σt)^2)^2 + 2σ^2te^(µt) / (1 - (σt)^2)^2

Next, we differentiate mx(t) twice with respect to t:

mx''(t) = µ^2 e^(µt) / (1 - (σt)^2)^2 + 2σ^2 e^(µt) / (1 - (σt)^2)^2 + 4σ^4 t^2 e^(µt) / (1 - (σt)^2)^3 - 4σ^2 t e^(µt) / (1 - (σt)^2)^3

Evaluating these derivatives at t=0, we get:

mx'(0) = µ

mx''(0) = µ^2 + 2σ^2

Therefore, the mean of X is given by E(X) = mx'(0) = µ, and the variance of X is given by Var(X) = mx''(0) - (mx'(0))^2 = µ^2 + 2σ^2 - µ^2 = 2σ^2.

To know more about variance,

https://brainly.com/question/30764112

#SPJ11

Which solid figure has the following net?


A square pyramid


B cone


C triangular pyramid


D triangular prism

Answers

The solid figure with the given net is a square pyramid.

A net is a two-dimensional representation of a three-dimensional solid figure that, when folded, forms the desired shape. In this case, the net corresponds to a square pyramid.

A square pyramid consists of a square base and four triangular faces that meet at a single point called the apex or vertex. The net for a square pyramid will have a square as the base and four congruent triangles as the lateral faces, with each triangle sharing one side with the square base.

When the net is folded along the appropriate edges and glued together, it forms a square pyramid. The other options, a cone, triangular pyramid, and triangular prism, do not match the given net, which clearly represents a square pyramid.

Learn more about square pyramid:

https://brainly.com/question/31200424

#SPJ11

the value of the sum of squares due to regression, ssr, can never be larger than the value of the sum of squares total, sst. True or false?

Answers

True. The sum of squares due to regression (ssr) represents the amount of variation in the dependent variable that is explained by the independent variable(s) in a regression model. On the other hand, the sum of squares total (sst) represents the total variation in the dependent variable.


In fact, the coefficient of determination (R-squared) in a regression model is defined as the ratio of ssr to sst. It represents the proportion of the total variation in the dependent variable that is explained by the independent variable(s) in the model. Therefore, R-squared values range from 0 to 1, where 0 indicates that the model explains none of the variations and 1 indicates that the model explains all of the variations.

Understanding the relationship between SSR and sst is important in evaluating the performance of a regression model and determining how well it fits the data. If SSR is small relative to sst, it may indicate that the model is not a good fit for the data and that there are other variables or factors that should be included in the model. On the other hand, if ssr is large relative to sst, it suggests that the model is a good fit and that the independent variable(s) have a strong influence on the dependent variable.

Learn more about regression model here:

https://brainly.com/question/14983410

#SPJ11

For the following statement, explain the effect on the margin of error and hence the effect on the accuracy of estimating a population mean by a sample mean. Increasing the sample size while keeping the same confidence levelIncreasing the sample size while keeping the same confidence level __________ the margin of error and, hence, ________ the accuracy of estimating a population mean by a sample mean.

Answers

Increasing the sample size while keeping the same confidence level decreases the margin of error and, hence, increases the accuracy of estimating a population mean by a sample mean.

This is because a larger sample size reduces the variability in the data, resulting in a smaller standard error of the mean and a narrower confidence interval.

As a result, the estimate of the population mean based on the sample mean becomes more precise and closer to the true value of the population mean.

Sample size refers to the number of individuals or items selected from a population to be included in a statistical sample.

The margin of error (MOE) is the amount of random sampling error that is expected in a statistical survey's results.

Learn more about margin of error : https://brainly.com/question/10218601

#SPJ11

What is the explicit formula for the sequence?о an = 1-en-1 nten0, 1-e¹ 1-e² 1-e³ 1-e¹ 2+e², 2+e³, 2+e4,2+e5, •*•.О an 1-en-1 n+en+1О an = 1-en-1 2+enо an || 1-en 2+en

Answers

The explicit formula for the sequence an = 1-en-1 nten is an = 1 - e^(n-1) * (n-1) * e.

Alternatively, if we consider the sequence an = 1-en-1 2+en, the explicit formula would be an = 1 - e^(n-1) * (n-1) * e + e^(n-1) * (n+1) * e. Lastly, if we consider the sequence an = 1-en 2+en, the explicit formula would be an = 1 - e^n * n * e + e^(n-1) * (n+2) * e.

Learn more about explicit here:

https://brainly.com/question/20713944

#SPJ11

pls help lol my grade’s a 62 rn & grades are almost due !

Answers

The triangle in the image is a right triangle. We are given a side and an angle, and asked to find another side. Therefore, we should use a trigonometric function.

Trigonometric Functions: SOH-CAH-TOA

---sin = opposite/hypotenuse, cosine = adjacent/hypotenuse, tangent = opposite/adjacent

In this problem, looking from the angle, we are given the adjacent side and want to find the opposite side. This means we should use the tangent function.

tan(40) = x / 202

x = tan(40) * 202

x = 169.498

x (rounded) = 169 meters

Answer: the tower is 169 meters tall

Hope this helps!

Answer:

170 meters

Step-by-step explanation:

The three sides of a right triangle are named hypotenuse, adjacent side and opposite side and the angle the adjacent side makes with they hypotenuse is θ  (see Figure 1)

In this description the terms
     Opposite --> side  opposite to the angle θ

      Adjacent --> side adjacent  to the angle θ

      Hypotenuse --> longest side of the right triangle

The relationship between the ratio of the shorter sides and and the angle θ in the figure is given by the formula

[tex]\mathrm {\tan(\theta) = \dfrac{Opposite \; side}{Adjacent \;side}}[/tex]

We can view the Eiffel Tower as the opposite side, the distance from the base to the surveyor location as the adjacent side (see the second figure)

If we let h = height of the Eiffel Tower in meters , opposite side length = h m

The adjacent side length = 202 meters

The angle θ = 40°

Applying the tan formula we get
[tex]\tan(40^\circ) = \dfrac{h}{202}\\\\\textrm{Multiplying both sides by 202, }\\202 \tan(40^\circ) = h\\\\\\h = 202 \tan(40^\circ) \\\textrm{Using a calculator we get}\\\\h = 169.5\; meters[/tex]

Rounded to the nearest meter, the height = 170 meters


Suppose that A is annxnsquare and invertible matrix with SVD (Singular Value Decomposition) equal toA = U\Sigma T^{T}. Find a formula for the SVD forA^{-1}. (hint: If A is invertable,rankA = n, this also gives information about\Sigma).

Answers

The SVD for the inverse of matrix A can be obtained by taking the inverse of the singular values of A and transposing the matrices U and V.

Let A be an [tex]nxn[/tex] invertible matrix with SVD given by A = UΣ [tex]V^t[/tex] where U and V are orthogonal matrices and Σ is a diagonal matrix with positive singular values on the diagonal. Since A is invertible, rank(A) = n, and thus all the singular values of A are non-zero. The inverse of A can be obtained by using the formula A^-1 = VΣ^-1U^T, where Σ^-1 is obtained by taking the reciprocal of the non-zero singular values of A.

To obtain the SVD for A^-1, we first note that the transpose of a product of matrices is equal to the product of the transposes in reverse order. Therefore, we have A^-1 = (VΣ^-1U^T)^T = UΣ^-1V^T. We can then express Σ^-1 as a diagonal matrix with the reciprocal of the non-zero singular values of A on the diagonal. Thus, the SVD for A^-1 is given by A^-1 = UΣ^-1V^T, where U and V are the same orthogonal matrices as in the SVD of A, and Σ^-1 is a diagonal matrix with the reciprocal of the non-zero singular values of A on the diagonal.

Learn more about invertible matrix here:

https://brainly.com/question/31234556

#SPJ11

the δh value for the reaction o2 (g) hg (l) hgo (s) is -90.8 kj. how much heat is released when 97.5 g hg is reacted with oxygen?

Answers

When 97.5 g of Hg reacts with oxygen, approximately 22.0 kJ of heat is released.

To calculate the heat released when 97.5 g of Hg reacts with oxygen, you'll first need to find the moles of Hg reacted. The molar mass of Hg is 200.59 g/mol.

moles of Hg = mass (g) / molar mass (g/mol)
moles of Hg = 97.5 g / 200.59 g/mol = 0.486 mol

The balanced equation for the reaction is:
2 Hg (l) + O2 (g) → 2 HgO (s)

From the balanced equation, 2 moles of Hg react with 1 mole of O2 to produce 2 moles of HgO. The given ΔH for this reaction is -90.8 kJ.

Now, we need to find the heat released per mole of Hg reacted:

ΔH (per mole of Hg) = ΔH (reaction) / moles of Hg (in balanced equation)
ΔH (per mole of Hg) = -90.8 kJ / 2 = -45.4 kJ/mol

Finally, calculate the heat released for 0.486 mol of Hg:

Heat released = ΔH (per mole of Hg) × moles of Hg
Heat released = -45.4 kJ/mol × 0.486 mol = -22.0 kJ

When 97.5 g of Hg reacts with oxygen, approximately 22.0 kJ of heat is released.

learn more about molar mass

https://brainly.com/question/22997914

#SPJ11

Direction: Complete the table.
Name:
Description or meaning :
Illustration or Figure:

Please help guys. ​

Answers

Unfortunately, there is no table or any terms mentioned in your question for me to complete it.

However, based on the information provided, I can give you a general idea of how to approach this type of question.To complete a table, you need to first identify the categories and subcategories you will be filling in. For instance, if the table is about animals, you may have categories like "Mammals," "Birds," "Fish," etc. Under each category, you would list the different types of animals that belong in that category. Once you have your categories and subcategories identified, you can start filling in the information. Use brief but descriptive language to describe each item, and if possible, include an illustration or figure to help visualize it.

For example, let's say we have a table about types of trees. Here is what it might look like:NameDescription or MeaningIllustration or FigureOakLarge deciduous tree with lobed leaves and acornsMapleMedium-sized deciduous tree with distinctive five-pointed leaves and colorful fall foliagePineTall evergreen tree with long needles and conesBirchSmall deciduous tree with white bark and triangular leavesIn summary, to complete a table, you need to identify categories, fill in the information using descriptive language, and use illustrations or figures if possible. I hope this helps!

Learn more about deciduous tree here,

https://brainly.com/question/28631799

#SPJ11

The weight of a randomly chosen Maine black bear has expected value E[W] = 650 pounds and standard deviation sigma_W = 100 pounds. Use the Chebyshev inequality to determine an upper bound for the probability that the weight of a randomly chosen bear is at least 200 pounds heavier than the average weight of 650 pounds.

Answers

The upper bound for the probability that the weight of a randomly chosen Maine black bear is at least 200 pounds heavier than the average weight of 650 pounds is 1/4 or 0.25.

To answer the question, we will use the Chebyshev inequality to determine an upper bound for the probability that the weight of a randomly chosen Maine black bear is at least 200 pounds heavier than the average weight of 650 pounds.

The Chebyshev inequality states that for any random variable W with expected value E[W] and standard deviation σ_W, the probability that W deviates from E[W] by at least k standard deviations is no more than 1/k^2.

In this case, E[W] = 650 pounds and σ_W = 100 pounds. We want to find the probability that the weight of a bear is at least 200 pounds heavier than the average weight, which means W ≥ 850 pounds.

First, let's calculate the value of k:
850 - 650 = 200
200 / σ_W = 200 / 100 = 2

So k = 2.

Now, we can use the Chebyshev inequality to find the upper bound for the probability:

P(|W - E[W]| ≥ k * σ_W) ≤ 1/k^2

Plugging in our values:

P(|W - 650| ≥ 2 * 100) ≤ 1/2^2
P(|W - 650| ≥ 200) ≤ 1/4

Therefore, the upper bound for the probability that the weight of a randomly chosen Maine black bear is at least 200 pounds heavier than the average weight of 650 pounds is 1/4 or 0.25.

To know more about Chebyshev inequality refer :

https://brainly.com/question/7581748#

#SPJ11

Other Questions
Roys Toys is a manufacturer of toys and childrens products. The following are selected items appearing in a recent balance sheet.Cash and short-term investments$47.3Receivables159.7Inventories72.3Prepaid expenses and other current assets32.0Total current liabilities130.1Total liabilities279.4Total stockholders' equity344.0Dollar amounts stated above are in millions.a-1. Using the information above, compute the amounts of Roy's Toys quick assets. (Enter your answer in millions of dollars rounded to 1 decimal place.)a-2. Using the information above, compute the amounts of Roy's Toys total current assets. (Enter your answer in millions of dollars rounded to 1 decimal place.)b-1. Compute for Roy's Toys quick ratio. (Round your answer to 1 decimal place.)b-2. Compute for Roy's Toys current ratio. (Round your answer to 1 decimal place.)b-3. Compute for Roy's Toys dollar amount of working capital. (Enter your answer in millions of dollars rounded to 1 decimal place.) Do homologous chromosomes contain slightly different versions of the same genetic information meiosis 1? 5. Which of the following statements shows the best expectations to have about the audience for your essay?A. Don't assume your readers know anything at all about your topic.O B. Expect your readers to be experts in the field of your topic.O C. Assume that your readers know more than you do about your topic.D. Don't expect your readers to know as much as you do about your topic. the aw of aoc usually decreases over the years.True/False light travels at 186,283 miles every second. how many feet per hour does light travel? round your answer to one decimal place, if necessary. places.) (a) Compute a 95% CI for when n=25 and x=53.6. (, ) watts (b) Compute a 95% CI for when n=100 and x=53.6 ( , ) watts (c) Compute a 99%CI for when n=100 and x=53.6. ( , ) watts (d) Compute an 82% CI for when n=100 and x=53.6. ( , ) watts (e) How large must n be if the width of the 99% interval for is to be 1.0 ? (Round your answer up to the nearest whole number.) n= Two converging lenses with focal lengths f1=20 cm and f2=25 cm are placed 80 cm apart. An object is place 60 cm in front of the first lens. Determine a) the position and b) the magnification of the final image formed by the combination of the two lenses. determine whether the series converges or diverges. [infinity] n2 6n n3 3n 1 n = 1 Suppose you implement a RAID 0 scheme that splits the data over two hard drives. What is the probability of data loss A problem with the classical theory for radiation from a blackbody was that the theory predicted too much radiation in the ________________ wavelengths.a. visibleb. ultravioletc. infraredd. radioe. microwave fill in the blank. one of the problems of the sdlc involves ________ which signifies once a phase is completed you go to the next phase and do not go back. which strategy (largest element as in the original quick check or smallest element as here) seems better? (explain your answer.) .7. Let A be the matrix A =4 12 1(a) Diagonalize the matrix A. That is, find an invertible matrix P and a diagonal matrix D such that P 1AP = D (b) Find P 1 . (c) Use the factorization A = P DP 1 to compute A5 . Required information [The following information applies to the questions displayed below.] Sharon Inc. is headquartered in State X and owns 100 percent of Carol Cor., Josey Corp., and Janice Corp., which form a single unitary group. Assume sales operations are within the solicitation bounds of Public Law 86-272. Each of the corporations has operations in the following states: Josey Corp Sharon Inc. Carol Corp. Janice Corp. State X State Y State Z State Z Domicile State (throwback) (throwback) (nonthrowback) (nonthrowback) $ 1,000 $50,000 $70,000 Dividend income 200 300 500 $10,000 $10,000 5,000 $20,000 Business income $30,000 $10,000 $40,000 $20,000 $10,000 $10,000 Sales: State X State Y $10,000 State Z $20,000 $1.000 $10,000 $10,000 State B $50,000 $20,000 $80,000 Property: State X State Y $25,000 $20,000 State Z $50,000 $10,000 State A Payroll: $10,000 $40,000 State X State Y 3,000 $10,000 $10,000 State Z State A Compute the following for State X assuming a tax rate of 15 percent. (Use an equally weighted three-factor apportionment. Round all apportionment factors to 4 decimal places. Round other answers to the nearest whole dollar amount. Leave no answer blank. Enter zero if applicable.) the japanese automobile company honda decided to establish production facilities in ohio, mainly to At what point on the curve x = 3t2 + 4, y = t3 8 does the tangent line have slope 1 2 ? (x, y) = equal volumes of a 0.10 m solution of a weak acid, ha, with ka = 1.0 x 10-6, and a 0.20 m solution of naoh are combined. what is the ph of the resulting solution? a tendency to attribute one's own successes to external, situational factors, while ignoring or underestimating the effects of internal, personal factors, is a manifestation of: Hart Schaffner & Marx is a producer of fine men's suits and sports coats that operates 100 menswear stores. Hart Schaffner & Marx uses __________.dual distributionbackward integrationforward integrationhorizontal integrationstrategic channel alliances Prove the dimension of dynamic viscosity in MLTt system(ML^-1T^-1). Write the equations of the forces and their dimensions which areimportant in fluid mechanics