The leneth of a steel bear increases by 0.73 mm when its temperature is raised from 22°C to 35°C. what
is the length of the beam at 22°C? What would the leneth be at 15°C?

Answers

Answer 1

The steel beam's length at 22°C can be found using the temperature coefficient of linear expansion, and the length at 15°C can be calculated similarly.

To find the length of the steel beam at 22°C, we can use the given information about its temperature coefficient of linear expansion. Let's assume that the coefficient is α (alpha) in units of per degree Celsius.

The change in length of the beam, ΔL, can be calculated using the formula:

ΔL = α * L0 * ΔT,

where L0 is the original length of the beam and ΔT is the change in temperature.

We are given that ΔL = 0.73 mm, ΔT = (35°C - 22°C) = 13°C, and we need to find L0.

Rearranging the formula, we have:

L0 = ΔL / (α * ΔT).

To find the length at 15°C, we can use the same formula with ΔT = (15°C - 22°C) = -7°C.

Please note that we need the value of the coefficient of linear expansion α to calculate the lengths accurately.

To know more about linear expansion, click here:

brainly.com/question/32547144

#SPJ11


Related Questions

Two equal charges of magnitude 1.8 x 10-7C experience an electrostatic force of 4.5 x 10-4 N. How far apart are the centers of the two charges?

Answers

The distance between the centers of the two charges is 5.4 x 10⁻³ m.

Two equal charges of magnitude q = 1.8 x 10⁻⁷ C experience an electrostatic force F = 4.5 x 10⁻⁴ N.

To find, The distance between two charges.

The electrostatic force between two charges q1 and q2 separated by a distance r is given by Coulomb's law as:

F = (1/4πε₀) (q1q2/r²)

Where,ε₀ is the permittivity of free space,ε₀ = 8.85 x 10⁻¹² C² N⁻¹ m⁻².

Substituting the given values in the Coulomb's law

F = (1/4πε₀) (q1q2/r²)⇒ r² = (1/4πε₀) (q1q2/F)⇒ r = √[(1/4πε₀) (q1q2/F)]

The distance between the centers of the two charges is obtained by multiplying the distance between the two charges by 2 since each charge is at the edge of the circle.

So, Distance between centers of the charges = 2r

Here, q1 = q2 = 1.8 x 10⁻⁷ C andF = 4.5 x 10⁻⁴ Nε₀ = 8.85 x 10⁻¹² C² N⁻¹ m⁻²

Now,The distance between two charges, r = √[(1/4πε₀) (q1q2/F)]= √[(1/4π x 8.85 x 10⁻¹² x 1.8 x 10⁻⁷ x 1.8 x 10⁻⁷)/(4.5 x 10⁻⁴)] = 2.7 x 10⁻³ m

Therefore,The distance between centers of the charges = 2r = 2 x 2.7 x 10⁻³ m = 5.4 x 10⁻³ m.

Hence, The distance between the centers of the two charges is 5.4 x 10⁻³ m.

Learn more about magnitude at: https://brainly.com/question/30337362

#SPJ11

1- Electromagnetic spectrum (complete), 2- Properties of waves, 3- Properties of particles, 4- Where does the classical model fail? 5- Express the wave-particle duality nature, 6- Express (in equation form): - particle properties of waves, -wave properties of particles; 7- Express the uncertainty principle (in equation forms); 8- Bohr's postulates, 9- Where did the Bohr model fail? 10- Wave function: - what is it? - what does it describe? - what information can we find using it 11- The requirements that a wave function must fulfill?? 12- Schrodinger equation,

Answers

The electromagnetic spectrum refers to the range of all possible electromagnetic waves, including radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays.Waves possess properties such as wavelength, frequency, amplitude, and speed, and they can exhibit phenomena like interference, diffraction, and polarization.Particles have properties like mass, charge, and spin, and they can exhibit behaviors such as particle-wave duality and quantum effects.

The classical model fails to explain certain phenomena observed at the atomic and subatomic levels, such as the quantization of energy and the wave-particle duality nature of particles.

The wave-particle duality nature expresses that particles can exhibit both wave-like and particle-like properties, depending on how they are observed or measured.

The wave-particle duality is expressed through equations like the de Broglie wavelength (λ = h / p) that relates the wavelength of a particle to its momentum, and the Einstein's energy-mass equivalence (E = mc²) which shows the relationship between energy and mass.

The uncertainty principle, formulated by Werner Heisenberg, states that the simultaneous precise measurement of certain pairs of physical properties, such as position and momentum, is impossible. It is mathematically expressed as Δx * Δp ≥ h/2, where Δx represents the uncertainty in position and Δp represents the uncertainty in momentum.

Bohr's postulates were proposed by Niels Bohr to explain the behavior of electrons in atoms. They include concepts like stationary orbits, quantization of electron energy, and the emission or absorption of energy during transitions between energy levels.

The Bohr model fails to explain more complex atoms and molecules and does not account for the wave-like behavior of particles.

The wave function is a fundamental concept in quantum mechanics. It is a mathematical function that describes the quantum state of a particle or a system of particles. It provides information about the probability distribution of a particle's position, momentum, energy, and other observable quantities.

A wave function must fulfill certain requirements, such as being continuous, single-valued, and square integrable. It must also satisfy normalization conditions to ensure that the probability of finding the particle is equal to 1.

The Schrödinger equation is a central equation in quantum mechanics that describes the time evolution of a particle's wave function. It relates the energy of the particle to its wave function and provides a mathematical framework for calculating various properties and behaviors of quantum systems.

Learn more about Electromagnetic spectrum:

https://brainly.com/question/23727978

#SPJ11

QUESTION 3 What is the mutual inductance in nk of these two loops of wire? Loop 1 Leop 44 20 Both loops are rectangles, but the length of the horizontal components of loop 1 are infinite compared to the size of loop 2 The distance d-5 cm and the system is in vacuum

Answers

Mutual inductance is an electromagnetic quantity that describes the induction of one coil in response to a variation of current in another nearby coil.

Mutual inductance is denoted by M and is measured in units of Henrys (H).Given that both loops are rectangles, the length of the horizontal components of loop 1 are infinite compared to the size of loop 2. The distance d-5 cm and the system is in vacuum, we are to calculate the mutual inductance of both loops.

The formula for calculating mutual inductance is given as:

[tex]M = (µ₀ N₁N₂A)/L, whereµ₀ = 4π × 10−7 H/m[/tex] (permeability of vacuum)

N₁ = number of turns of coil

1N₂ = number of turns of coil 2A = area of overlap between the two coilsL = length of the coilLoop 1,Leop 44,20 has a rectangular shape with dimensions 44 cm and 20 cm, thus its area

[tex]A1 is: A1 = 44 x 20 = 880 cm² = 0.088 m²[/tex].

Loop 2, on the other hand, has a rectangular shape with dimensions 5 cm and 20 cm, thus its area A2 is:

[tex]A2 = 5 x 20 = 100 cm² = 0.01 m².[/tex]

To know more about electromagnetic visit:

https://brainly.com/question/23727978

#SPJ11

< Question 11 of 16 > You have a string with a mass of 0.0137 kg. You stretch the string with a force of 8.51 N, giving it a length of 1.87 m. Then, you vibrate the string transversely at precisely the frequency that corresponds to its fourth normal mode; that is, at its fourth harmonic. What is the wavelength 24 of the standing wave you create in the string? What is the frequency f4? 24 m f4= Hz =

Answers

The wavelength of the standing wave created in the string is 0.124 meters (m), and the frequency of the fourth harmonic, denoted as [tex]f_4[/tex], is 64.52 Hz.

The speed of a wave on a string is given by the equation [tex]v = \sqrt{(T/\mu)}[/tex], where v represents the velocity of the wave, T is the tension in the string, and μ is the linear mass density of the string. Linear mass density (μ) is calculated as μ = m/L, where m is the mass of the string and L is the length of the string.

Using the given values, we can calculate the linear mass density:

μ = 0.0137 kg / 1.87 m = 0.00732 kg/m.

Next, we need to determine the speed of the wave. The tension in the string (T) is provided as 8.51 N. Plugging in the values,

we have v = √(8.51 N / 0.00732 kg/m) ≈ 42.12 m/s.

For a standing wave, the relationship between wavelength (λ), frequency (f), and velocity (v) is given by the formula λ = v/f. In this case, we are interested in the fourth harmonic, which means the frequency is four times the fundamental frequency.

Since the fundamental frequency (f1) is the frequency of the first harmonic, we can find it by dividing the velocity (v) by the wavelength (λ1) of the first harmonic. However, the wavelength of the first harmonic corresponds to the length of the string,

so [tex]\lambda_ 1 = L = 1.87 m.[/tex]

Now we can calculate the wavelength of the fourth harmonic (λ4). Since the fourth harmonic is four times the fundamental frequency,

we have λ4 = λ1/4 = 1.87 m / 4 ≈ 0.4675 m.

Finally, we can calculate the frequency of the fourth harmonic (f4) using the equation [tex]f_4[/tex]= v/λ4 = 42.12 m/s / 0.4675 m ≈ 64.52 Hz.

Therefore, the wavelength of the standing wave is approximately 0.124 m, and the frequency of the fourth harmonic is approximately 64.52 Hz.

To learn more about frequency here brainly.com/question/14316711

#SPJ11

A lamp located 3 m directly above a point P on the floor of a
room produces at P an illuminance of 100 lm/m2. (a) What is the
luminous intensity of the lamp? (b) What is the illuminance
produced at an

Answers

A lamp located 3 m directly above a point P on the floor of a room produces at P an illuminance of 100 lm/[tex]m^2[/tex], the illuminance at the point 1 m distant from point P is 56.25  lm/[tex]m^2[/tex].

We can utilise the inverse square law for illuminance to address this problem, which states that the illuminance at a point is inversely proportional to the square of the distance from the light source.

(a) To determine the lamp's luminous intensity, we must first compute the total luminous flux emitted by the lamp.

Lumens (lm) are used to measure luminous flux. Given the illuminance at point P, we may apply the formula:

Illuminance = Luminous Flux / Area

Luminous Flux = Illuminance * Area

Area = 4π[tex]r^2[/tex] = 4π[tex](3)^2[/tex] = 36π

Luminous Flux = 100 * 36π = 3600π lm

Luminous Intensity = Luminous Flux / Solid Angle = 3600π lm / 4π sr = 900 lm/sr

Therefore, the luminous intensity of the lamp is 900 lumens per steradian.

b. To find the illuminance at a point 1 m distant from point P:

Illuminance = Illuminance at point P * (Distance at point P / Distance at new point)²

= 100  * [tex](3 / 4)^2[/tex]

= 100 * (9/16)

= 56.25 [tex]lm/m^2[/tex]

Therefore, the illuminance at the point 1 m distant from point P is 56.25  [tex]lm/m^2[/tex]

For more details regarding illuminance, visit:

https://brainly.com/question/29156148

#SPJ4

Your question seems incomplete, the probable complete question is:

A lamp located 3 m directly above a point P on the floor of a room produces at Pan illuminance of 100 lm/m2. (a) What is the luminous intensity of the lamp? (b) What is the illuminance produced at another point on the floor, 1 m distant from P.

a) I = (100 lm/m2) × (3 m)2I = 900 lm

b) Illuminance produced at a distance of 5 m from the lamp is 36 lm/m2.

(a) The luminous intensity of the lamp is given byI = E × d2 where E is the illuminance, d is the distance from the lamp, and I is the luminous intensity. Hence,I = (100 lm/m2) × (3 m)2I = 900 lm

(b) Suppose we move to a distance of 5 m from the lamp. The illuminance produced at this distance will be

E = I/d2where d = 5 m and I is the luminous intensity of the lamp. Substituting the values, E = (900 lm)/(5 m)2E = 36 lm/m2

Therefore, the illuminance produced at a distance of 5 m from the lamp is 36 lm/m2. This can be obtained by using the formula E = I/d2, where E is the illuminance, d is the distance from the lamp, and I is the luminous intensity. Luminous intensity of the lamp is 900 lm.

Learn more about luminous intensity

brainly.com/question/32005476

#SPJ11

Question 10 Bi-214 has a half-life of 19.7 minutes. A sample of 100g of Bi-124 is present initially. What mass of Bi-124 remains 98.5 minutes later? a A. 6.25 g B. 19,7 g C. 3.125g D. 20 g

Answers

10 Bi-214 has a half-life of 19.7 minutes. A sample of 100g of Bi-124 is present initially, the mass of Bi-124 remains 98.5 minutes later is C. 3.125g.

The half-life of a substance is the time it takes for the quantity of that substance to reduce to half of its original quantity. In this case, we are looking at the half-life of Bi-214, which is 19.7 minutes. This means that if we start with 100g of Bi-214, after 19.7 minutes, we will have 50g left. After another 19.7 minutes, we will have 25g left, and so on. Now, we are asked to find out what mass of Bi-214 remains after 98.5 minutes.

We can do this by calculating the number of half-lives that have passed, and then multiplying the initial mass by the fraction remaining after that many half-lives. In this case, we have: 98.5 / 19.7 = 5 half-lives.

So, after 5 half-lives, the fraction remaining is (1/2)^5 = 1/32.

Therefore, the mass remaining is: 100g x 1/32 = 3.125g. Hence, the correct option is C. 3.125g.

Learn more about fraction at:

https://brainly.com/question/29766013

#SPJ11

In an RC series circuit, ε = 12.0 V, R = 1.49 MQ, and C= 1.64 F. (a) Calculate the time constant. (b) Find the maximum charge that will appear on the capacitor during charging. (c) How long does it take for the charge to build up to 11.5C? (a) Number i Units (b) Number i Units (c) Number i Units

Answers

Therefore, it takes approximately 1.218 × 10⁶ seconds for the charge to build up to 11.5 C.

To calculate the time constant in an RC series circuit, you can use the formula:

τ = R * C

ε = 12.0 V

R = 1.49 MQ (megaohm)

C = 1.64 F (farad)

(a) Calculate the time constant:

τ = R * C

= 1.49 MQ * 1.64 F

τ = (1.49 × 10⁶ Ω) * (1.64 C/V)

= 2.4436 × 10⁶ s (seconds)

Therefore, the time constant is approximately 2.4436 × 10⁶ seconds.

(b) To find the maximum charge that will appear on the capacitor during charging, you can use the formula:

Q = C * ε

= 1.64 F * 12.0 V

= 19.68 C (coulombs)

Therefore, the maximum charge that will appear on the capacitor during charging is approximately 19.68 coulombs.

(c) To calculate the time it takes for the charge to build up to 11.5 C, you can use the formula:

t = -τ * ln(1 - Q/Q_max)

t = - (2.4436 × 10⁶s) * ln(1 - 11.5 C / 19.68 C)

t ≈ - (2.4436 ×10⁶ s) * ln(0.4157)

t ≈ 1.218 × 10^6 s (seconds)

Learn more about series circuit here : brainly.com/question/14997346
#SPJ11

Suppose the magnetic field along an axis of a cylindrical region is given by B₂ = Bo(1 + vz²) sin wt, where is a constant. Suppose the o-component of B is zero, that is B = 0. (a) Calculate the radial B,(s, z) using the divergence of the magnetic field. (b) Assuming there is zero charge density p, show the electric field can be given by 1 E = (1 + vz²) Bow coswto, using the divergence of E and Faraday's Law. (c) Use Ampere-Maxwell's Equation to find the current density J(s, z).

Answers

a) The radial component of the magnetic field is:

                B_r = Bo(2vwtz + C₁)

b) The radial component of the electric field is:

        E_r = -2v Bow (vz/wt) sin(wt) - 2v Bow C₂

Comparing this with the given expression (1 + vz²) Bow cos(wt), we can equate the corresponding terms:

                     -2v Bow (vz/wt) sin(wt) = 0

This implies that either v = 0 or w = 0. However, since v is given as a constant, it must be that w = 0.

c) The current density J:

             J = ε₀ Bow (1 + vz²) sin(wt)

Explanation:

To solve the given problem, we'll go step by step:

(a) Calculate the radial B(r, z) using the divergence of the magnetic field:

The divergence of the magnetic field is given by:

∇ · B = 0

In cylindrical coordinates, the divergence can be expressed as:

∇ · B = (1/r) ∂(rB_r)/∂r + ∂B_z/∂z + (1/r) ∂B_θ/∂θ

Since B does not have any θ-component, we have:

∇ · B = (1/r) ∂(rB_r)/∂r + ∂B_z/∂z = 0

We are given that B_θ = 0, and the given expression for B₂ can be written as B_z = Bo(1 + vz²) sin(wt).

Let's find B_r by integrating the equation above:

∂B_z/∂z = Bo ∂(1 + vz²)/∂z sin(wt) = Bo(2v) sin(wt)

Integrating with respect to z:

B_r = Bo(2v) ∫ sin(wt) dz

Since the integration of sin(wt) with respect to z gives us wtz + constant, we can write:

B_r = Bo(2v) (wtz + C₁)

where C₁ is the constant of integration.

So, the radial component of the magnetic field is:

B_r = Bo(2vwtz + C₁)

(b) Assuming zero charge density p, show the electric field can be given by E = (1 + vz²) Bow cos(wt) using the divergence of E and Faraday's Law:

The divergence of the electric field is given by:

∇ · E = ρ/ε₀

Since there is zero charge density (ρ = 0), we have:

∇ · E = 0

In cylindrical coordinates, the divergence can be expressed as:

∇ · E = (1/r) ∂(rE_r)/∂r + ∂E_z/∂z + (1/r) ∂E_θ/∂θ

Since E does not have any θ-component, we have:

∇ · E = (1/r) ∂(rE_r)/∂r + ∂E_z/∂z = 0

Let's find E_r by integrating the equation above:

∂E_z/∂z = ∂[(1 + vz²) Bow cos(wt)]/∂z = -2vz Bow cos(wt)

Integrating with respect to z:

E_r = -2v Bow ∫ vz cos(wt) dz

Since the integration of vz cos(wt) with respect to z gives us (vz/wt) sin(wt) + constant, we can write:

E_r = -2v Bow [(vz/wt) sin(wt) + C₂]

where C₂ is the constant of integration.

So, the radial component of the electric field is:

E_r = -2v Bow (vz/wt) sin(wt) - 2v Bow C₂

Comparing this with the given expression (1 + vz²) Bow cos(wt), we can equate the corresponding terms:

-2v Bow (vz/wt) sin(wt) = 0

This implies that either v = 0 or w = 0. However, since v is given as a constant, it must be that w = 0.

(c) Use Ampere-Maxwell's Equation to find the current density J(s, z):

Ampere-Maxwell's equation in differential form is given by:

∇ × B = μ₀J + μ₀ε₀ ∂E/∂t

In cylindrical coordinates, the curl of B can be expressed as:

∇ × B = (1/r) ∂(rB_θ)/∂z - ∂B_z/∂θ + (1/r) ∂(rB_z)/∂θ

Since B has no θ-component, we can simplify the equation to:

∇ × B = (1/r) ∂(rB_z)/∂θ

Differentiating B_z = Bo(1 + vz²) sin(wt) with respect to θ, we get:

∂B_z/∂θ = -Bo(1 + vz²) w cos(wt)

Substituting this back into the curl equation, we have:

∇ × B = (1/r) ∂(rB_z)/∂θ = -Bo(1 + vz²) w (1/r) ∂(r)/∂θ sin(wt)

∇ × B = -Bo(1 + vz²) w ∂r/∂θ sin(wt)

Since the cylindrical region does not have an θ-dependence, ∂r/∂θ = 0. Therefore, the curl of B is zero:

∇ × B = 0

According to Ampere-Maxwell's equation, this implies:

μ₀J + μ₀ε₀ ∂E/∂t = 0

μ₀J = -μ₀ε₀ ∂E/∂t

Taking the time derivative of E = (1 + vz²) Bow cos(wt), we get:

∂E/∂t = -Bow (1 + vz²) sin(wt)

Substituting this into the equation above, we have:

μ₀J = μ₀ε₀ Bow (1 + vz²) sin(wt)

Finally, dividing both sides by μ₀, we obtain the current density J:

J = ε₀ Bow (1 + vz²) sin(wt)

To know more about Faraday's Law, visit:

https://brainly.com/question/32089008

#SPJ11

How long would it take for 4*10^20 atoms to decay to 1*10^19
atoms if their half life was 14.7 years?

Answers

It would take around 17.71 years for 4 × 10²⁰ atoms to decay to 1 × 10¹⁹ atoms if their half-life was 14.7 years.

Radioactive decay is a process in which the unstable atomic nuclei emit alpha, beta, and gamma rays and particles to attain a more stable state. Half-life is the time required for half of the radioactive material to decay.

The given information isNumber of atoms present initially, N₀ = 4 × 10²⁰

Number of atoms present finally, N = 1 × 10¹⁹

Half-life of the element, t₁/₂ = 14.7 years

To find the time required for the decay of atoms, we need to use the decay formula.N = N₀ (1/2)^(t/t₁/₂)

Here, N₀ is the initial number of atoms, and N is the number of atoms after time t.

Since we have to find the time required for the decay of atoms, rearrange the above formula to get t = t₁/₂ × log(N₀/N)

Substitute the given values, N₀ = 4 × 10²⁰N = 1 × 10¹⁹t₁/₂ = 14.7 years

So, t = 14.7 × log(4 × 10²⁰/1 × 10¹⁹)≈ 14.7 × 1.204 = 17.71 years (approx.)

Therefore, it would take around 17.71 years for 4 × 10²⁰ atoms to decay to 1 × 10¹⁹ atoms if their half-life was 14.7 years.

Learn more about half-life at: https://brainly.com/question/1160651

#SPJ11

(10%) Problem 2: The image shows a rocket sled, In the top image all four forward thrusters are engaged, creating a total forward thrust of magnitude 47, where T =519 N. In the bottom image, in addition to the four forward thrusters, one reverse thruster is engaged, creating a reverse thrust of magnitude 7. In both cases a backward force (friction and air drag) of magnitude f = 20 Nacts on the sled. 7 What is the ratio of the greater acceleration to the lesser acceleration?

Answers

The ratio of the greater acceleration to the lesser acceleration is approximately 0.985.

In the top image where all four forward thrusters are engaged, the total forward thrust exerted on the sled is 519 N. The backward force due to friction and air drag is 20 N. Using Newton's second law, we can calculate the acceleration in this case:

Forward thrust - Backward force = Mass * Acceleration

519 N - 20 N = Mass * Acceleration₁

In the bottom image, in addition to the four forward thrusters, one reverse thruster is engaged, creating a reverse thrust of magnitude 7 N. The backward force of friction and air drag remains the same at 20 N. The total forward thrust can be calculated as:

Total forward thrust = Forward thrust - Reverse thrust

Total forward thrust = 519 N - 7 N = 512 N

Again, using Newton's second law, we can calculate the acceleration this case:

Total forward thrust - Backward force = Mass * Acceleration

512 N - 20 N = Mass * Acceleration₂

To find the ratio of the greater acceleration (Acceleration₂) to the lesser acceleration (Acceleration₁), we can divide the equations:

(Acceleration₂) / (Acceleration₁) = (512 N - 20 N) / (519 N - 20 N)

Simplifying the expression, we get:

(Acceleration₂) / (Acceleration₁) = 492 N / 499 N

(Acceleration₂) / (Acceleration₁) ≈ 0.985

To learn more about magnitude -

brainly.com/question/32755502

#SPJ11

7. Calculate the centripetal force (in N) of a 2 kg object revolving in a circle with a radius of 0.5 m at a velocity of 6 m/s?

Answers

The centripetal force of the object is 144 Newtons.

The centripetal force (Fc) can be calculated using the following equation:

Fc = (m * v^2) / r

where:

- Fc is the centripetal force,

- m is the mass of the object (2 kg),

- v is the velocity of the object (6 m/s), and

- r is the radius of the circle (0.5 m).

Substituting the given values into the equation, we have:

Fc = (2 kg * (6 m/s)^2) / 0.5 m

Simplifying the equation further, we get:

Fc = (2 kg * 36 m^2/s^2) / 0.5 m

  = (72 kg * m * m/s^2) / 0.5 m

  = 144 N

Therefore, the centripetal force of the object is 144 Newtons.

To know more about centripetal force, refer here:

https://brainly.com/question/14021112#

#SPJ11

Question 21 () a) wider fringes will be formed by decreasing the width of the slits. increasing the distance between the slits. increasing the width of the slits. decreasing the distance between the slits. Question 22 () b) changing the color of the light from red to violet will make the pattern smaller and the fringes thinner. make the pattern larger and the fringes thicker. make the pattern larger and the fringes thinner. make the pattern smaller and the fringes thicker.

Answers

1) Wider fringes can be achieved by decreasing the width of the slits and increasing the distance between them, while narrower fringes are obtained by increasing the slit width and decreasing the slit distance.

2) Changing the color of the light from red to violet leads to smaller pattern size and thinner fringes, while switching from violet to red creates a larger pattern with thicker fringes.

1) When observing interference fringes produced by a double-slit setup, the width of the fringes can be affected by adjusting the parameters. The width of the fringes will increase by decreasing the width of the slits and increasing the distance between the slits. Conversely, the width of the fringes will decrease by increasing the width of the slits and decreasing the distance between the slits.

2) Changing the color of the light from red to violet in an interference pattern will influence the size and thickness of the fringes. Switching from red to violet light will make the pattern smaller and the fringes thinner. Conversely, changing the color from violet to red will result in a larger pattern with thicker fringes.

Learn more about fringes from the given link!

https://brainly.com/question/29487127

#SPJ11

Explain what invariants in special relativity mean, why they are
important, and give an example.

Answers

Invariants in special relativity are quantities that remain constant regardless of the frame of reference or the relative motion between observers.

These invariants play a crucial role in the theory as they provide consistent and universal measurements that are independent of the observer's perspective. One of the most important invariants in special relativity is the spacetime interval, which represents the separation between two events in spacetime. The spacetime interval, denoted as Δs, is invariant, meaning its value remains the same for all observers, regardless of their relative velocities. It combines the notions of space and time into a single concept and provides a consistent measure of the distance between events.

For example, consider two events: the emission of a light signal from a source and its detection by an observer. The spacetime interval between these two events will always be the same for any observer, regardless of their motion. This invariant nature of the spacetime interval is a fundamental aspect of special relativity and underlies the consistent measurements and predictions made by the theory.

Invariants are important because they allow for the formulation of physical laws and principles that are valid across different frames of reference. They provide a foundation for understanding relativistic phenomena and enable the development of mathematical formalisms that maintain their consistency regardless of the observer's motion. Invariants help establish the principles of relativity and contribute to the predictive power and accuracy of special relativity.

To know more about spacetime interval, visit:

https://brainly.com/question/28232104

#SPJ11

two converging lenses each with focal lengths f are a distance 4f apart. An object is placed at distance 2f. Determine the position and type of the final image. Also draw a ray diagram if possible

Answers

The final image is virtual and located at a distance of 2f from the second lens.

When two converging lenses are placed a distance of 4f apart and an object is placed at a distance of 2f from the first lens, we can determine the position and type of the final image by considering the lens formula and the concept of lens combinations.

Since the object is placed at 2f, which is equal to the focal length of the first lens, the light rays from the object will emerge parallel to the principal axis after passing through the first lens. These parallel rays will then converge towards the second lens.

As the parallel rays pass through the second lens, they will appear to diverge from a virtual image point located at a distance of 2f on the opposite side of the second lens. This virtual image is formed due to the combined effect of the two lenses and is magnified compared to the original object.

The final image is virtual because the rays do not actually converge at a point on the other side of the second lens. Instead, they appear to diverge from the virtual image point.

A ray diagram can be drawn to illustrate this setup, showing the parallel rays emerging from the first lens, converging towards the second lens, and appearing to diverge from the virtual image point.

Learn more about image visit

brainly.com/question/30725545

#SPJ11

A thin rod has a length of 0.233 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.464 rad/s and a moment of inertia of 1.25 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-3 kg) gets where it's going, what is the change in the angular velocity of the rod?

Answers

The change in the angular-velocity of the rod when the bug crawls from one end to the other is Δω = -0.271 rad/s and itcan be calculated using the principle of conservation of angular momentum.

The angular momentum of the system remains constant unless an external torque acts on it.In this case, when the bug moves from the axis to the other end of the rod, it changes the distribution of mass along the rod, resulting in a change in the moment of inertia. As a result, the angular velocity of the rod will change.

To calculate the change in angular velocity, we can use the equation:

Δω = (ΔI) / I

where Δω is the change in angular velocity, ΔI is the change in moment of inertia, and I is the initial moment of inertia of the rod.

The initial moment of inertia of the rod is given as 1.25 x 10^-3 kg·m^2, and when the bug reaches the other end, the moment of inertia changes. The moment of inertia of a thin rod about an axis perpendicular to its length is given by the equation:

I = (1/3) * m * L^2

where m is the mass of the rod and L is the length of the rod.

By substituting the given values into the equation, we can calculate the new moment of inertia. Then, we can calculate the change in angular velocity by dividing the change in moment of inertia by the initial moment of inertia.

The change in angular velocity of the rod is calculated to be Δω = -0.271 rad/s.

To learn more about angular-velocity , click here : https://brainly.com/question/31501255

#SPJ11

If you are using a motion encodr receiver to find the veloicty of a cart, how would you find the uncertainty in veloicty?

Answers

To find the uncertainty in velocity using a motion encoder receiver, you need to consider the uncertainties in the measurements, collect multiple measurements, calculate the standard deviation, and report the uncertainty as a range around the measured velocity.

To find the uncertainty in velocity when using a motion encoder receiver, you would need to consider the uncertainties associated with the measurements taken by the receiver. Here's how you can do it:

Determine the uncertainties in the measurements: This involves identifying the sources of uncertainty in the motion encoder receiver. It could be due to factors like resolution limitations, noise in the signal, or calibration errors. Consult the manufacturer's specifications or conduct experiments to determine these uncertainties.

Collect multiple measurements: Take several velocity measurements using the motion encoder receiver. It is important to take multiple readings to account for any random variations or errors.

Calculate the standard deviation: Calculate the standard deviation of the collected measurements. This statistical measure quantifies the spread of the data points around the mean. It provides an estimation of the uncertainty in the velocity measurements.

Report the uncertainty: Express the uncertainty as a range around the measured velocity. Typically, uncertainties are reported as a range of values, such as ± standard deviation or ± percentage. This range represents the potential variation in the velocity measurements due to the associated uncertainties.

To find the uncertainty in velocity using a motion encoder receiver, you need to consider the uncertainties in the measurements, collect multiple measurements, calculate the standard deviation, and report the uncertainty as a range around the measured velocity.

To know more about velocity visit:

brainly.com/question/30559316

#SPJ11

6) Find the buoyant force on a 0.1 m3 block of wood with density 700 kg/m3 floating in a freshwater lake. (5 pts)

Answers

The buoyant force on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.

Buoyancy is the upward force exerted on an object immersed in a liquid and is dependent on the density of both the object and the liquid in which it is immersed. The weight of the displaced liquid is equal to the buoyant force acting on an object. In this case, the volume of the block of wood is 0.1 m3 and its density is 700 kg/m3. According to Archimedes' principle, the weight of the displaced water is equal to the buoyant force. Therefore, the buoyant force on the block of wood floating in the freshwater lake can be calculated by multiplying the volume of water that the block of wood displaces (0.1 m3) by the density of freshwater (1000 kg/m3), and the acceleration due to gravity (9.81 m/s2) as follows:

Buoyant force = Volume of displaced water x Density of freshwater x Acceleration due to gravity

= 0.1 m3 x 1000 kg/m3 x 9.81 m/s2

= 981 N

However, since the density of the block of wood is less than the density of freshwater, the weight of the block of wood is less than the weight of the displaced water. As a result, the buoyant force acting on the block of wood is the difference between the weight of the displaced water and the weight of the block of wood, which can be calculated as follows:

Buoyant force = Weight of displaced water -

Weight of block of wood

= [Volume of displaced water x Density of freshwater x Acceleration due to gravity] - [Volume of block x Density of block x Acceleration due to gravity]

= [0.1 m3 x 1000 kg/m3 x 9.81 m/s2] - [0.1 m3 x 700 kg/m3 x 9.81 m/s2]

= 686 N

Therefore, the buoyant force acting on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.

To learn more about buoyant force click brainly.com/question/11884584

#SPJ11

A particle of mass m is trapped in a two dimensional box with sides L, and Ly. Within the box the potential is zero, while outside the box the potential is infinite, i.e V=0 for 0 < x < Lz,0 L, y < 0, y > Ly Using separation of variables, solve the 2 dimensional Schrodinger equation for normalized wave function and the possible energy of this particle.

Answers

The Schrodinger equation for a particle confined in a two-dimensional box with potential energy zero inside and infinite outside is solved using separation of variables.

The normalized wave function and possible energy levels are obtained.

The Schrödinger equation for a free particle can be written as Hψ = Eψ, where H is the Hamiltonian operator, ψ is the wave function, and E is the energy eigenvalue. For a particle confined in a potential well, the wave function is zero outside the well and its energy is quantized.

In this problem, we consider a two-dimensional box with sides L and Ly, where the potential is zero inside the box and infinite outside. The wave function for this system can be written as a product of functions of x and y, i.e., ψ(x,y) = X(x)Y(y). Substituting this into the Schrödinger equation and rearranging the terms, we get two separate equations, one for X(x) and the other for Y(y).

The solution for X(x) is a sinusoidal wave function with wavelength λ = 2L/nx, where nx is an integer. Similarly, the solution for Y(y) is also a sinusoidal wave function with wavelength λ = 2Ly/ny, where ny is an integer. The overall wave function ψ(x,y) is obtained by multiplying the solutions for X(x) and Y(y), and normalizing it. .

Therefore, the solutions for the wave function and energy levels for a particle confined in a two-dimensional box with infinite potential barriers are obtained by separation of variables. This problem has important applications in quantum mechanics and related fields, such as solid-state physics and materials science.

To learn more about Schrodinger equation click brainly.com/question/30884437

#SPJ11

Q/C S A glider of mass m is free to slide along a horizontal air track. It is pushed against a launcher at one end of the track. Model the launcher as a light spring of force constant k compressed by a distance x. The glider is released from rest. (c) Is more work done on a cart with a large or a small mass?

Answers

More work is done on a cart with a small mass. This relationship arises from the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy.

To understand why more work is done on a cart with a small mass, let's consider the work-energy principle. According to this principle, the work done on an object is equal to the change in its kinetic energy.

In this scenario, when the glider is released from rest, the compressed spring exerts a force on the glider, accelerating it along the air track. The work done by the spring force is given by the formula:

Work = (1/2) kx²

where k is the force constant of the spring and x is the distance the spring is compressed.

Now, the change in kinetic energy of the glider can be calculated using the formula:

ΔKE = (1/2) mv²

where m is the mass of the glider and v is its final velocity.

From the work-energy principle, we can equate the work done by the spring force to the change in kinetic energy:

(1/2) kx² = (1/2) mv²

Since the initial velocity of the glider is zero, the final velocity v is equal to the square root of (2kx²/m).

Now, let's consider the situation where we have two gliders with different masses, m₁ and m₂, and the same spring constant k and compression x. Using the above equation, we can see that the final velocity of the glider is inversely proportional to the square root of its mass:

v ∝ 1/√m

As a result, a glider with a smaller mass will have a larger final velocity compared to a glider with a larger mass. This indicates that more work is done on the cart with a smaller mass since it achieves a greater change in kinetic energy.

More work is done on a cart with a small mass compared to a cart with a large mass. This is because, in the given scenario, the final velocity of the glider is inversely proportional to the square root of its mass. Therefore, a glider with a smaller mass will experience a larger change in kinetic energy and, consequently, more work will be done on it.

This relationship arises from the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy. Understanding this concept helps in analyzing the energy transfer and mechanical behavior of objects in systems involving springs and masses.

To know more about kinetic energy ,visit:

https://brainly.com/question/8101588

#SPJ11

A long non-conducting cylinder has a charge density p = ar, where a = 6.19 C/m² and r is in meters. Concentric around it is a hollow metallic cylindrical shell. L ... 11.28 cm 23 cm 30.4 cmWhat is the surface charge density inside the hollow cylinder?
Answer in units of C/m^2.
Cannot get this one. And I know the answer is not 6.56 x 10^-3

Answers

To find the surface charge density inside the hollow metallic cylindrical shell surrounding the non-conducting cylinder, we need to consider the electric field inside the shell and its relation to the charge density.

Let's denote the radius of the non-conducting cylinder as R.

Inside a hollow metallic cylindrical shell, the electric field is zero. This means that the electric field due to the non-conducting cylinder is canceled out by the induced charges on the inner surface of the shell.

To find the surface charge density inside the hollow cylinder, we can equate the electric field inside the hollow cylinder to zero:

Electric field inside hollow cylinder = 0

Using Gauss's law, the electric field inside the cylinder can be expressed as:

E = (p * r) / (2 * ε₀),

where p is the charge density, r is the distance from the center, and ε₀ is the permittivity of free space.

Setting E to zero, we can solve for the surface charge density (σ) inside the hollow cylinder:

(p * r) / (2 * ε₀) = 0

Since the equation is set to zero, we can conclude that the surface charge density inside the hollow cylinder is zero.Therefore, the correct answer is 0 C/m².

To learn more about surface charge density click here.

brainly.com/question/17438818

#SPJ11

beginning with h=4.136x10-15 eV.s and c = 2.998x108 m/s , show that hc =1240 eV-nm.

Answers

Beginning with h=4.136x10-15 eV.s and c = 2.998x108 m/s , we have shown that hc is approximately equal to 1240 eV·nm

We'll start with the given values:

h =Planck's constant= 4.136 x 10^(-15) eV·s

c =  speed of light= 2.998 x 10^8 m/s

We want to show that hc = 1240 eV·nm.

We know that the energy of a photon (E) can be calculated using the formula:

E = hc/λ

where

h is Planck's constant

c is the speed of light

λ is the wavelength

E is the energy of the photon.

To prove hc = 1240 eV·nm, we'll substitute the given values into the equation:

hc = (4.136 x 10^(-15) eV·s) ×(2.998 x 10^8 m/s)

Let's multiply these values:

hc ≈ 1.241 x 10^(-6) eV·m

Now, we want to convert this value from eV·m to eV·nm. Since 1 meter (m) is equal to 10^9 nanometers (nm), we can multiply the value by 10^9:

hc ≈ 1.241 x 10^(-6) eV·m × (10^9 nm/1 m)

hc ≈ 1.241 x 10^3 eV·nm

Therefore, we have shown that hc is approximately equal to 1240 eV·nm

To learn more about  Planck's constant visit: https://brainly.com/question/28060145

#SPJ11

If the charge is -33_ μC, the speed is 1500_m/s, the strength of the magnetic field is 1_T, and the angle is 150∘, then find the force (magnitude and direction) on the charge. 2. magnitude A. 0.01548_N D. 0.02896_N B. 0.02475 N E. 0.03607 N C. 0.02817_N F. 0.02976_N 3. direction A. Left B. Into the paper C. Right D. Out of the paper

Answers

Given the charge, speed, magnetic field strength, and angle, we can calculate the force on the charge using the equation F = q * v * B * sin(θ). The magnitude of the force is 0.02896 N, and the direction is out of the paper.

The equation to calculate the force (F) on a moving charge in a magnetic field is given by F = q * v * B * sin(θ), where q is the charge, v is the velocity, B is the magnetic field strength, and θ is the angle between the velocity and the magnetic field.

Given:

Charge (q) = -33 μC = -33 × 10^-6 C

Speed (v) = 1500 m/s

Magnetic field strength (B) = 1 T

Angle (θ) = 150°

First, we need to convert the charge from microcoulombs to coulombs:

q = -33 × 10^-6 C

Now we can substitute the given values into the equation to calculate the force:

F = q * v * B * sin(θ)

 = (-33 × 10^-6 C) * (1500 m/s) * (1 T) * sin(150°)

 ≈ 0.02896 N

Therefore, the magnitude of the force on the charge is approximately 0.02896 N.

To determine the direction of the force, we need to consider the right-hand rule. When the charge moves with a velocity (v) at an angle of 150° to the magnetic field (B) pointing into the paper, the force will be directed out of the paper.

Hence, the direction of the force on the charge is out of the paper.

To learn more about charge click here brainly.com/question/13871705

#SPJ11

Real images formed by a spherical mirror are always: A. on the side of the mirror opposite the source B. on the same side of the mirror as the source but closer to the mirror than the source C. on the same side of the mirror as the source but never any further from the mirror than the focal point D. on the same side of the mirror as the source but never any closer to the mirror than the focal point E. none of the above

Answers

The correct option is D. on the same side of the mirror as the source but never any closer to the mirror than the focal point.

A spherical mirror is a mirror that has a spherical shape like a ball. A spherical mirror is either concave or convex. The mirror has a center of curvature (C), a radius of curvature (R), and a focal point (F).

When a ray of light traveling parallel to the principal axis hits a concave mirror, it is reflected through the focal point. It forms an image that is real, inverted, and magnified when the object is placed farther than the focal point. If the object is placed at the focal point, the image will be infinite.

When the object is placed between the focal point and the center of curvature, the image will be real, inverted, and magnified, while when the object is placed beyond the center of curvature, the image will be real, inverted, and diminished.

In the case of a convex mirror, when a ray of light parallel to the principal axis hits the mirror, it is reflected as if it came from the focal point. The image that is formed by a convex mirror is virtual, upright, and smaller than the object.

The image is always behind the mirror, and the image distance (di) is negative. Therefore, the correct option is D. on the same side of the mirror as the source but never any closer to the mirror than the focal point.

Learn more About focal point from the given link

https://brainly.com/question/30761313

#SPJ11

Determine the number of electrons, protons, and neutrons in
argon
3818Ar
.
HINT
(a)
electrons
(b)
protons
(c)
neutrons

Answers

The number of electrons in Argon is 18, the number of protons is 18, and the number of neutrons is 20.

Now, let's proceed to the second part of the question. Here's how to determine the number of electrons, protons, and neutrons in Argon 38  :18 Ar :Since the atomic number of Argon is 18, it has 18 protons in its nucleus, which is also equal to its atomic number.

Since Argon is neutral, it has 18 electrons orbiting around its nucleus.In order to determine the number of neutrons, we have to subtract the number of protons from the atomic mass. In this case, the atomic mass of Argon is 38.

Therefore: Number of neutrons = Atomic mass - Number of protons Number of neutrons = 38 - 18 Number of neutrons = 20 Therefore, the number of electrons in Argon is 18, the number of protons is 18, and the number of neutrons is 20

Know more about electrons here:

https://brainly.com/question/12001116

#SPJ11

The Hamiltonian for a two-particle system is given by H = w(L12 + L22) + L₁ L₁. L2 ħ + w/h L₁, L2 denote the angular momentum of each particle. (a) Find the energy eigenvalues and the corresponding eigenstates. (b) The system is prepared to have l₁ = 1, l₂ = 2, m₁ = 0 and m₂ = 1. Find all the energy eigenvalues it can have and also find the probability to measure each energy eigenvalue.

Answers

The value is:

(a) The energy eigenvalues of the two-particle system are given by E = 2w(l₁(l₁+1) + l₂(l₂+1) - l₃(l₃+1)), where l₁, l₂, and l₃ are the quantum numbers associated with the angular momentum of each particle.

(b) For the specific case of l₁ = 1, l₂ = 2, m₁ = 0, and m₂ = 1, the possible energy eigenvalues are E = 12w, E = 8w, and E = 4w, corresponding to l₃ = 1, l₃ = 2, and l₃ = 3, respectively.

To find the energy eigenvalues and corresponding eigenstates, we need to solve the Schrödinger equation for the given Hamiltonian.

(a) Energy Eigenvalues and Eigenstates:

The Hamiltonian for the two-particle system is given by:

H = w(L₁² + L₂²) + (L₁ . L₂) ħ + (w/ħ) L₁ . L₂

To find the energy eigenvalues and eigenstates, we need to solve the Schrödinger equation:

H |ψ⟩ = E |ψ⟩

Let's assume that the eigenstate can be expressed as a product of individual angular momentum eigenstates:

|ψ⟩ = |l₁, m₁⟩ ⊗ |l₂, m₂⟩

where |l₁, m₁⟩ represents the eigenstate of the angular momentum of particle 1 and |l₂, m₂⟩ represents the eigenstate of the angular momentum of particle 2.

Substituting the eigenstate into the Schrödinger equation, we get:

H |l₁, m₁⟩ ⊗ |l₂, m₂⟩ = E |l₁, m₁⟩ ⊗ |l₂, m₂⟩

Expanding the Hamiltonian, we have:

H = w(L₁² + L₂²) + (L₁ . L₂) ħ + (w/ħ) L₁ . L₂

To simplify the expression, we can use the commutation relation between angular momentum operators:

[L₁, L₂] = iħ L₃

where L₃ is the angular momentum operator along the z-axis.

Using this relation, we can rewrite the Hamiltonian as:

H = w(L₁² + L₂²) + (L₁ . L₂) ħ + (w/ħ) L₁ . L₂

= w(L₁² + L₂²) + (L₁ . L₂) ħ + (w/ħ) (1/2)(L₁² + L₂² - L₃² - ħ²)

Substituting the eigenstates into the Schrödinger equation and applying the Hamiltonian, we get:

E |l₁, m₁⟩ ⊗ |l₂, m₂⟩ = w(l₁(l₁+1) + l₂(l₂+1) + (l₁(l₁+1) + l₂(l₂+1) - l₃(l₃+1) - 1/4) + w(l₁(l₁+1) + l₂(l₂+1) - l₃(l₃+1) - 1/4)) ħ² |l₁, m₁⟩ ⊗ |l₂, m₂⟩

Simplifying the equation, we obtain:

E = 2w(l₁(l₁+1) + l₂(l₂+1) - l₃(l₃+1))

The energy eigenvalues depend on the quantum numbers l₁, l₂, and l₃.

(b) Given l₁ = 1, l₂ = 2, m₁ = 0, and m₂ = 1, we can find the energy eigenvalues using the expression derived in part (a):

E = 2w(l₁(l₁+1) + l₂(l₂+1) - l₃(l₃+1))

Substituting the values, we have:

E = 2w(1(1+1) + 2(2+1) - l₃(l₃+1))

To find the possible energy eigenvalues, we need to consider all possible values of l₃. The allowed values for l₃ are given by the triangular inequality:

|l₁ - l₂| ≤ l₃ ≤ l₁ + l₂

In this case, |1 - 2| ≤ l₃ ≤ 1 + 2, which gives 1 ≤ l₃ ≤ 3.

Therefore, the possible energy eigenvalues for this system are obtained by substituting different values of l₃:

For l₃ = 1:

E = 2w(1(1+1) + 2(2+1) - 1(1+1))

= 2w(6) = 12w

For l₃ = 2:

E = 2w(1(1+1) + 2(2+1) - 2(2+1))

= 2w(4) = 8w

For l₃ = 3:

E = 2w(1(1+1) + 2(2+1) - 3(3+1))

= 2w(2) = 4w

To know more about energy:

https://brainly.com/question/1932868


#SPJ11

Physics
4. Define refraction, absorption, reflection, index of refraction, optically dense medium, optically less dense medium, monochromatic light.

Answers

Refraction refers to the bending or change in direction of a wave as it passes from one medium to another, caused by the difference in the speed of light in the two mediums. This bending occurs due to the change in the wave's velocity and is governed by Snell's law, which relates the angles and indices of refraction of the two mediums.

Absorption is the process by which light or other electromagnetic waves are absorbed by a material. When light interacts with matter, certain wavelengths are absorbed by the material, causing the energy of the light to be converted into other forms such as heat or chemical energy.

Reflection is the phenomenon in which light or other waves bounce off the surface of an object and change direction. The angle of incidence, which is the angle between the incident wave and the normal (a line perpendicular to the surface), is equal to the angle of reflection, the angle between the reflected wave and the normal.

Index of Refraction: The index of refraction is a property of a material that quantifies how much the speed of light is reduced when passing through that material compared to its speed in a vacuum. It is denoted by the symbol "n" and is calculated as the ratio of the speed of light in a vacuum to the speed of light in the material.

Optically Dense Medium: An optically dense medium refers to a material that has a higher index of refraction compared to another medium. When light travels from an optically less dense medium to an optically dense medium, it tends to slow down and bend towards the normal.

Optically Less Dense Medium: An optically less dense medium refers to a material that has a lower index of refraction compared to another medium. When light travels from an optically dense medium to an optically less dense medium, it tends to speed up and bend away from the normal.

Monochromatic Light: Monochromatic light refers to light that consists of a single wavelength or a very narrow range of wavelengths. It is composed of a single color and does not exhibit a broad spectrum of colors. Monochromatic light sources are used in various applications, such as scientific experiments and laser technology, where precise control over the light's characteristics is required.

In summary, refraction involves the bending of waves at the interface between two mediums, absorption is the process of light energy being absorbed by a material, reflection is the bouncing of waves off a surface, the index of refraction quantifies how light is slowed down in a material, an optically dense medium has a higher index of refraction, an optically less dense medium has a lower index of refraction, and monochromatic light consists of a single wavelength or a very narrow range of wavelengths.

Learn more about refraction here:

https://brainly.com/question/14760207

#SPJ11

Askater extends her arms horizontally, holding a 5-kg mass in each hand. She is rotating about a vertical axis with an angular velocity of one revolution per second. If she drops her hands to her sides, what will the final angular velocity (in rev/s) be if her moment of inertia remains approximately constant at 5 kg m and the distance of the masses from the axis changes from 1 m to 0.1 m? 6 4 19 7

Answers

Initial moment of inertia, I = 5 kg m. The distance of the masses from the axis changes from 1 m to 0.1 m.

Using the conservation of angular momentum, Initial angular momentum = Final angular momentum

⇒I₁ω₁ = I₂ω₂ Where, I₁ and ω₁ are initial moment of inertia and angular velocity, respectively I₂ and ω₂ are final moment of inertia and angular velocity, respectively

The final moment of inertia is given by I₂ = I₁r₁²/r₂²

Where, r₁ and r₂ are the initial and final distances of the masses from the axis respectively.

I₂ = I₁r₁²/r₂²= 5 kg m (1m)²/(0.1m)²= 5000 kg m

Now, ω₂ = I₁ω₁/I₂ω₂ = I₁ω₁/I₂= 5 kg m × (2π rad)/(1 s) / 5000 kg m= 6.28/5000 rad/s= 1.256 × 10⁻³ rad/s

Therefore, the final angular velocity is 1.256 × 10⁻³ rad/s, which is equal to 0.0002 rev/s (approximately).

Learn more about angular momentum: https://brainly.com/question/4126751

#SPJ11

Given the following simple circuit having 10.06 volts and a current of 2.52 amps, calculate the resistance in units of ohms. 1 Amp of current - 1 coulomb of charge 1 Volt - 1 Joule/Coulomb 1 Ohm - 1 Volt/1 Amp Report you numerical answer in the box below using two decimal places.

Answers

The resistance of the circuit is approximately 3.98 ohms. The resistance of the circuit can be calculated by dividing the voltage (10.06 volts) by the current (2.52 amps).

To calculate the resistance of the circuit, we can use Ohm's Law, which states that resistance (R) is equal to the ratio of voltage (V) to current (I), or R = V/I.

The formula for calculating resistance is R = V/I, where R is the resistance, V is the voltage, and I is the current. In this case, the voltage is given as 10.06 volts and the current is given as 2.52 amps.

Substituting the given values into the formula, we have R = 10.06 volts / 2.52 amps.

Performing the division, we get R ≈ 3.98 ohms.

To learn more about ohms law-

brainly.com/question/23579474

#SPJ11

A cylinder of radius 10 cm has a thread wrapped around its edge. If the cylinder is initially at rest and begins to rotate with an angular acceleration of 1 rad/s2, determine the length of thread that unwinds in 10 seconds.

Answers

Given

,Radius of cylinder

= r = 10 cm = 0.1 mAngular acceleration of cylinder = α = 1 rad/s²Time = t = 10s

Let’s find the angle covered by the cylinder in 10 seconds using the formula:θ = ωit + 1/2 αt²whereωi = initial angular velocity = 0 rad/st = time = 10 sα = angular acceleration = 1 rad/s²θ = 0 + 1/2 × 1 × (10)² = 50 rad

Now, let's find the length of the

thread

that unwinds using the formula:L = θrL = 50 × 0.1 = 5 mTherefore, the length of the thread that unwinds in 10 seconds is 5 meters.

Here, we used the formula for the arc

length of a circle

, which states that the length of an arc (in this case, the thread) is equal to the angle it subtends (in radians) times the radius.

to know more about

,Radius of cylinder

pls visit-

https://brainly.com/question/6499996

#SPJ11

A 110 kg man lying on a surface of negligible friction shoves a 155 g stone away from him, giving it a speed of 17.0 m/s. What speed does the man acquire as a result?

Answers

A 110 kg man lying on a surface of negligible friction shoves a 155 g stone away from him, giving it a speed of 17.0 m/s then the man's speed remains zero.

We have to determine the speed that the man acquires as a result when he shoves the 155 g stone away from him. Since there is no external force acting on the system, the momentum will be conserved. So, before the man shoves the stone, the momentum of the system will be:

m1v1 = (m1 + m2)v,

where v is the velocity of the man and m1 and m2 are the masses of the man and stone respectively. After shoving the stone, the system momentum becomes:(m1)(v1) = (m1 + m2)v where v is the final velocity of the system. Since momentum is conserved:m1v1 = (m1 + m2)v Hence, the speed that the man acquires as a result when he shoves the 155 g stone away from him is given by v = (m1v1) / (m1 + m2)= (110 kg)(0 m/s) / (110 kg + 0.155 kg)= 0 m/s

Therefore, the man's speed remains zero.

To learn more about friction visit

https://brainly.com/question/28356847

#SPJ11

Other Questions
Part A The observer in (Figure 1) is positioned so that the far edge of the bottom of the empty glass (not to scale) is just visible. When the glass is filled to the top with water, the center of the bottom of the glass is just visible to the observer. Find the height, H, of the glass, given that its width is W = 7.0 cm. Express your answer using two significant figures. || ? H = 3.874 cm Submit Previous Answers Request Answer Figure X Incorrect; Try Again; 5 attempts remaining 1 of 1 Provide Feedback H W- 1. State and explain Huygens' Wave Model. 2. Discuss about Young's Double-Slit Experiment. 3. The wavelength of orange light is 6.0x10 m in air. Calculate its frequency. 4. What do you understand by the term polarization? How polarization takes place? Explain. 17. Name the specific tissue for each location:Lining of oral cavity =Muscle of intestine =Lining of intestine =Trachea =Lining of blood vessel =Tendon =Lining of esophagus =Muscle of biceps brachSpinal cord =Hypodermis =Skin connective tissue =Lining of urinary bladder =Center of lymph node =External ear =Intervertebral disc =Lining of sweat gland =Serous membrane =Lining of primary bronchi =Femur =Larynx =Heart = Why it is important to you Poverty? Why it is important to you prejudice and discrimination? Why it is important to you Gender and Violence? Why it is important to you world economic systems? Why it is important to you Marriage and Family? Why it is important to you Education in global perspective? Why it is important to you City life? Why it is important to you How Technology Is Changing Our Lives? Why it is important to you Cultural universals? Why it is important to you Socialization into the Self and Mind? Why it is important to you Theories and processes of social change? Why it is important to you Fundamentalism? Why it is important to you Urban problems and social policy? Why it is important to you divorce and remarriage? Why it is important to you A scientific model? Why it is important to you values in U.S. society? Why it is important to you Inequalities of Gender? how respiratory competent wild-type yeast cells would reduce TTC dye in liquid culture? after prolonged fasting (more than a week), blood glucose is higher than before the fast, and erratic, what is the basis of this? Question 6 Ahmed is willing to mow lawns for $10 each, Boris is willing to mow lawns for $20 each, and Chelsea is willing to mow lawns for $30 each. If the going rate for lawn mowing is $23, what is the total producer surplus received by the three of them Radiation Safety 1. How far should the operator be when making an exposure? 2. How much more radiation will the operator receive if he/she holds the film or any part of the unit during the exposure? 4,000 x the amount than if the parent or guardian holding the film (not in book) 3. What is the function of the aluminum filter and how thick should it be? 4. What is the function of the collimator? 5. What is used to make a collimator? 6. What is the maximum diameter of the collimated x-ray beam when it exits the PID? 7. What is the purpose of the lead apron and what size should it be? 8. What does a thyrocervical collar do? 9. What can the operator do to further protecting the patient? 10. What is a dosimeter and what does it do? 11. List some common questions the patient may have regarding X-rays Give suggested answers 12. What image recording factors can be controlled by the office personnel? 13. What are the acceptable criteria for a complete radiographic survey? An RLC series circuit has a 1.00 k resistor, a 130 mHinductor, and a 25.0 nF capacitor.(a)Find the circuit's impedance (in ) at 490 Hz.(b)Find the circuit's impedance (in ) at 7.50 k Part A How long does it take light to reach us from the Sun, 1.50 x X10 8km away? t = A village recently completed the construction of a new water tower. The entire cost of the water tower was $933,000, and the government paid 5310,000 of the total cost through the awarding of a grant. In addition, the village can delay paying the balance of the cost for 40 years (without paying any interest during the 40 years). To finance the balance, the village board will at this time assess its 696 homeowners a one-time flat fee surcharge and then invest this money in a 40y ear CD paying 5.3% interest compounded monthly, Determine: 1. What is the balance due on the water tower? 2. How much will the village need to invest at this time to raise the balance due in 40 years? 3. What amount should each homeowner pay as a surcharge? Parents indirectly contribute to children's peer relationships through: their warmth and acceptance the quality of attachment with the child all answers are correct their negative and controlling behavior Answering with one of the following:O+ Cash Inflow from Operating ActivitiesO- Cash Outflow from Operating ActivitiesI+ Cash Inflow from Investing ActivitiesI- Cash Outflow from Investing ActivitiesF+ Cash Inflow from Financing ActivitiesF- Cash Outflow from Financing ActivitiesHow do we record decrease in inventory?______________________________________________Answering with one of the following:O+ Cash Inflow from Operating ActivitiesO- Cash Outflow from Operating ActivitiesI+ Cash Inflow from Investing ActivitiesI- Cash Outflow from Investing ActivitiesF+ Cash Inflow from Financing ActivitiesF- Cash Outflow from Financing ActivitiesHow do we record increase in accounts payable?______________________________________________Answering with one of the following:O+ Cash Inflow from Operating ActivitiesO- Cash Outflow from Operating ActivitiesI+ Cash Inflow from Investing ActivitiesI- Cash Outflow from Investing ActivitiesF+ Cash Inflow from Financing ActivitiesF- Cash Outflow from Financing ActivitiesHow do we record amortization of an asset?______________________________________________Answering with one of the following:O+ Cash Inflow from Operating ActivitiesO- Cash Outflow from Operating ActivitiesI+ Cash Inflow from Investing ActivitiesI- Cash Outflow from Investing ActivitiesF+ Cash Inflow from Financing ActivitiesF- Cash Outflow from Financing ActivitiesHow do we record net income?______________________________________________Answering with one of the following:O+ Cash Inflow from Operating ActivitiesO- Cash Outflow from Operating ActivitiesI+ Cash Inflow from Investing ActivitiesI- Cash Outflow from Investing ActivitiesF+ Cash Inflow from Financing ActivitiesF- Cash Outflow from Financing ActivitiesHow do we record the proceeds from the issuance of new common shares? Select the buffer systems that operate in the extracellular fluidplasma protein buffershemoglobin buffercarbonic acid bicarbonate buffer systemphosphate buffer system homeopathy is a popular complementary or alternative medicine. Applying the knowledge gained in the module about evidence and biases,discuss why patients might believe homeopathy to be an effective treatment for a named disease or condition (25 marks ) typically, users or user groups are given account numbers protected by passwords, which they can use to gain access to the database. a dbms should provide a When modeling an engineering process, the right choice between a simple but crude and a complex but accurate model is usually the _____. you must provide an answer before moving to the next part. It is well established that deep level diversitycharacteristics often form the basis for stereotypes.True or false? Watters Umbrella Corp. issued 14-year bonds four years ago at a coupon rate of 7.8 percent. The bonds make semiannual payments If these bonds currently sell for 119 percent of par value, what is the YTM? (Do not round intermediate calculations. Round the final answer to 2 decimal places.) YTM In what ways did enslaved peoples demonstrate their agency in colonial America?A. RebellionB. Instigating legal casesC. Laying groundwork for political movementsD. All of the above