Answer:
b ❤❤❤❤❤❤❤❤❤ yes
Explanation:
yes b❤❤❤❤❤❤❤❤❤❤❤
Answer:
False
Explanation:
Each of the different colors that make up white light has a different ___________________.
Answer:
Wavelength?
Explanation:
A radio station broadcasts with a carrier frequency of 920 kHz. What is the wavelength of the radio waves?
a. 276 m
b. 175 m
c. 22.6 m
d. 326 m
e. 226 m
Answer: 326m
Explanation:
To find the the wavelength of the radio waves, we can use the equation:
Wavelength = c/f
where,
c = 3 × 10^8 m/s
f = 920 × 10^3 kHz
Wavelength = 3 × 10^8 / 920 × 10³
Wavelength = 326.08696
Wavelength = 326m
Facts about ecstasy
100 g of Ice at -10°C is added into a
liquid juice at 20°c . The temperature of Juice
dropped to l0°c after all the Ice has melted.
Calculate the mass of the Juice responsible
for metting an Ice
Answer:
The mass of the juice responsible for melting the ice is 949.043 grams.
Explanation:
By the First Law of Thermodynamics, we understand that juice releases heat to the ice, which turns into water under the assumption that interactions between the ice-juice system and surroundings are negligible and energy processes are done in steady-state. Since juice is done with water, its specific heat will be taken as of the water. The process is described by the following formula:
[tex]m_{i} \cdot [c_{i}\cdot (T_{1}-T_{2}) - L_{f} + c_{w}\cdot (T_{2}-T_{3})] + m_{w} \cdot c_{w}\cdot (T_{4}-T_{3}) = 0[/tex] (1)
Where:
[tex]m_{i}[/tex] - Mass of ice, in grams.
[tex]m_{w}[/tex] - Mass of the juice, in grams.
[tex]c_{i}[/tex] - Specific heat of ice, in joules per gram-degree Celsius.
[tex]c_{w}[/tex] - Specific heat of water, in joules per gram-degree Celsius.
[tex]L_{f}[/tex] - Latent heat of fusion, in joules per gram.
[tex]T_{1}[/tex] - Initial temperature of ice, in degrees Celsius.
[tex]T_{2}[/tex] - Melting point of water, in degrees Celsius.
[tex]T_{3}[/tex] - Final temperature of the ice-juice system, in degrees Celsius.
[tex]T_{4}[/tex] - Initial temperature of the juice, in degrees Celsius.
If we know that [tex]m_{i} = 100\,g[/tex], [tex]c_{i} = 2.090\,\frac{J}{g\cdot ^{\circ}C}[/tex], [tex]c_{w} = 4.18\,\frac{J}{g\cdot ^{\circ}C}[/tex], [tex]L_{f} = 334\,\frac{J}{g}[/tex], [tex]T_{1} = -10\,^{\circ}C[/tex], [tex]T_{2} = 0\,^{\circ}C[/tex], [tex]T_{3} = 10\,^{\circ}C[/tex] and [tex]T_{4} = 20\,^{\circ}C[/tex], then the mass of the juice is:
[tex]m_{w} = \frac{m_{i}\cdot [c_{i}\cdot (T_{1}-T_{2}) - L_{f} + c_{w}\cdot (T_{2}-T_{3})]}{c_{w} \cdot (T_{3}-T_{4})}[/tex]
[tex]m_{w} = \frac{(100\,g)\cdot \left[\left(2.090\,\frac{J}{g\cdot ^{\circ}C} \right)\cdot (-10\,^{\circ}C) - 334\,\frac{J}{g} +\left(4.18\,\frac{J}{g\cdot ^{\circ}C} \right)\cdot (-10\,^{\circ}C) \right]}{\left(4.180\,\frac{J}{g\cdot ^{\circ}C} \right)\cdot (-10\,^{\circ}C)}[/tex]
[tex]m_{w} = 949.043\,g[/tex]
The mass of the juice responsible for melting the ice is 949.043 grams.
HELPPP 40 POINTS!!!! Mr. Tedesco has two metal cubes, one made of
tin and the other made of silver. He heats the tin
cube to 80°C and places the silver one in the
freezer until it reaches 5°C. He places the cubes
in a beaker containing water at 20°C. The cubes
do not touch. Which best describes how heat
will flow in the system?
Answer: Heat energy is transferred from warmer objects to cooler objects.
Explanation:
What is the total amount of force needed to keep a 6.0 kg object moving at speed
of 5.0 m/s? (F=ma)
A. 30 N
B. 60 N
C.ON
D. 10 N
In a photoelectric effect experiment you illuminate a metal with light of an unknown wavelength and measure the maximum kinetic energy of the photoelectrons to be 0.75 eV. Then you illuminate the same metal with light of a wavelength known to be 2/3 of the first wavelength and measure a maximum kinetic energy of 1.8 eV for the photoelectrons.
Required:
a. Find the first wavelength, in nanometers
b. Find the metals work function, in electron volts
Answer:
A.) 1658 nm
B.) 1.05 ev
Explanation:
Given that in a photoelectric effect experiment you illuminate a metal with light of an unknown wavelength and measure the maximum kinetic energy of the photoelectrons to be 0.75 eV. Then you illuminate the same metal with light of a wavelength known to be 2/3 of the first wavelength and measure a maximum kinetic energy of 1.8 eV for the photoelectrons.Required:
a. Find the first wavelength, in nanometers
The formula to use is:
E = hf
Where f = c/ wavelength.
C = speed of light.
Convert the electron volts to Joule.
0.75 × 1.6 × 10^-19 = 1.2 × 10^-19 J
Substitute the values into the formula
1.2 × 10^-19 = (6.63 × 10^-34 × 3 × 10^8) ÷ wavelength
Wavelength = (6.63×10^-34 × 3×10^8) ÷ 1.2×10^-19
Wavelength = 1.6575 × 10^-6 m
Therefore, the wavelength of the first light in nanometers will be
Wavelength = 1658 nm
b. Find the metals work function, in electron volts
The metal works function will be:
WF = 1.8 - 0.75 = 1.05 eV
You see a train that is moving toward you and sounding its
whistle at a constant frequency. Compared to the sound
produced by the whistle, the wavelength of the sound
observed by you is
Answer: shorter
Answer: shorter
Explanation:
Which force binds the nucleus together despite the fact there are protons in close proximity to each other?
A.weak nuclear
B
strong nuclear
C
gravitational
D
electromagnetic
Answer:
The correct answer is B. Strong Nuclear.
Explanation:
An atom contains protons, neutrons, and electrons. The nucleus of an atom consists of bound protons and neutrons (nucleons). The negatively charged electrons are attracted to the positively charged protons and fall around the nucleus, much like a satellite is attracted to the gravity of the Earth. The positively-charged protons repel each other and aren't electrically attracted or repelled to the neutral neutrons, so you may wonder how the atomic nucleus sticks together and why protons don't fly off.
The explanation for why protons and neutrons stick together is known as "the strong force." The strong force is also known as the strong interaction, color force, or strong nuclear force. The strong force is much more powerful than the electrical repulsion between protons, however, the particles have to be close to each other for it to stick them together.
A proton traveling due north enters a region that contains both a magnetic field and an electric field. The electric field lines point due west. It is observed that the proton continues to travel in a straight line due north. In which direction must the magnetic field lines point
Answer:
upward
Explanation:
In the electromagnetic system of force if the direction of motion of proton does not changes it means that the electric and magnetic forces are such a ways that they are cancelling each other's effect.
Since, electric field lines will exert a force on the proton to the west, hence, the magnetic force must force it to the east. It is well known that magnetic force acts perpendicular to the direction of magnetic field. magnetic field should point upward direction.
True or False all elements emitt the same amount of light?
1 point
A.True
B.False
A student rubs a rubber balloon on their hair for several seconds. The student then rubs a second rubber balloon on her hair for the same length of time. The student determines that the first rubber balloon is repelled by the second rubber balloon, but the first rubber balloon is attracted to her hair. Which of the following claims, with appropriate evidence, if any, supports the notion of the two- charge model? Justify your selection.
A. The first rubber balloon is repelled by the second rubber balloon, but the first rubber balloon is attracted to the hair. These results show that two charges must exist because certain combinations of charges attract and certain combinations of charges repel.
B. The first rubber balloon is repelled by the second rubber balloon. This result shows that the charge of both objects must have the same sign.
C. The first rubber balloon is attracted to the hair. This result shows that the charge of both objects must be opposite in sign.
D. None of the claims nor evidence support the notion of the two-charge model.
Answer:
Option A
Explanation:
In this experiment, when balloon is rubbed on the chair electrons are transferred from the hair to the surface of the balloon thereby making balloon negatively charged and hair positively charged. When two negatively charged balloon are brought close to each other, they repel while when balloon is brought closer to the hair, they attract each other
Hence, option A is correct
Extrusive Igneous rock has ___________ grain size.
I need help on this one
Explanation:
Extrusive rocks may have a few grains that are large enough to see, but most of them will be too small to see individual minerals. ... The individual mineral grains are almost too small to see. Some extrusive rocks cool so quickly that they do not form any grains. Instead, they form a natural glass.
stephen stigler determined in 1977 that the speed of light is 299,710.5 km/sec. in 1882, albert michelson is there enough evidence to show that michelson's data is different from stigler's value of the speed of light? test at 5% level
Answer: hi your question is incomplete attached below is the complete question
answer :
population parameter( μ ) : mean speed of light measured by Albert Michelsonnull hypothesis ( H₀ ) : μ = 299,710.5km/s.Alternate hypothesis ( Hₐ ) : μ ≠ 299,710.5 km/secRandom variable : Speed of light measured by Albert Michelson.Explanation:
Using the information provided in the question attached I will match each term with its corresponding meaning
population parameter( μ ) : mean speed of light measured by Albert Michelson, here the parameter of interest is the speed of light measured/recorded by Albert which is represented as population mean μnull hypothesis ( H₀ ) : μ = 299,710.5km/s. given that the test is to determine if the speed of light recorded by both scientists are the sameAlternate hypothesis ( Hₐ ) : μ ≠ 299,710.5 km/sec. given that the test is to determine if the speed of light recorded by both scientists are the sameRandom variable ( x ) : Speed of light measured by Albert Michelson. her we are trying to bring to conclusion data measured by Albert MichelsonI've asked this question 5 times and still no answer pls help TT
What are three ways a driver can cause a car to accelerate?
A. Turn the key in the ignition while the car is stopped.
B. Turn the steering wheel while the car is moving.
C. Press the gas pedal while the car is stopped.
D. Press the brake pedal while the car is moving.
Answer:
c
Explanation:
the gas pedal gives the engine the fuel it needs to give the car the power to go
A cylindrical space colony 8.00 km in diameter and 30.0 km long has been proposed as living quarters for future space explorers. Such a habitat would have cities, land, and lakes on the inside surface and air and clouds in the center. All this would be held in place by the rotation of the cylinder about the long axis. How fast would such a cylinder have to rotate to produce a 1-g gravitational field at the walls of the cylinder
Answer:
ω = 0.05 rad/s
Explanation:
In order to produce the acceleration equal to the acceleration due to gravity at the surface of Earth, the centripetal acceleration must be equal to the value of g:
[tex]a_c = g\\g = \frac{v^2}{r}\\\\but,\ v=r\omega\\therefore,\\\\g = \omega^2r\\\\\omega = \sqrt{\frac{g}{r}}[/tex]
where,
ω = angular speed = ?
g = acceleration due to gravity on the surface of the Earth = 9.81 m/s²
r = radius of cylinder = 8 km/2 = 4 km = 4000 m
Therefore,
[tex]\omega = \sqrt{\frac{9.81\ m/s^2}{4000\ m}}[/tex]
ω = 0.05 rad/s
Will give brainliest! 50 points!!!
When the polarity of a moving magnet through a coil doubles the electromagnetic field _________.
A. Increases
B. Decreases
C. Stays the same
Answer:
A. Increases
Explanation:
Mark as Brainliest
(Will give Brainliest) Some scientists calculated that a whale can develop 150 kW of power when it is swimming under the water surface at a constant speed 7.77 m/s. Find the resistance force of the water exerted on the whale.
The resistance force of the water exerted on the whale is 19305 Newton.
What is power?
The quantity of energy moved or converted per unit of time is known as power in physics. The watt, or one joule per second, is the unit of power in the International System of Units. Power is also referred to as activity in ancient writings. A scalar quantity is power.
Power = 150 kW = 150,000 Watt.
Constant speed = 7.77 m/s.
Now, Power = the resistance force × speed
150000 Watt = the resistance force × 7.77 m/s
Hence, the resistance force = 150000 Watt/ 7.77 m/s
= 19305 Newton.
Learn more about power here:
https://brainly.com/question/29575208
#SPJ1
in the water circuit model which part represent the wire
1)pump
2)pipes
3)tap
Answer:
pipes
Explanation:
Wha is the definition of health?
If an object is placed 10cm in front of a converging lens that has a focal length of 15cm. What are the properties of the image?
Answer:
Enlarged [Size]
Virtual and Erect [Nature]
On the same side of the lens as the object [Position]
Explanation:
Say the turbine is 10 feet in diameter (that's the radius of the dashed circle). Also say that the coil has 100 turns and has a square cross-section with a length of 10 feet and a height of 6 feet. Say that the magnetic rotor has the same height but is only 2 feet wide, it has a magnetic field strength is 0.1T, and it is rotating at 60Hz (note this is not the angular frequency). A typical turbine supplies 10kW of power. Use Faraday's law to find the induced emf in the coil and the amount of induced current.
Answer:
a. ε = 21,014sin(120πt) V
b. 0.476cosec(120πt)
Explanation:
a. Induced emf
We know the induced emf, ε = -dΦ/dt where Φ = magnetic flux through coil = NABcosθ where N = number of turns of coil =, 100, A = area of coil = 10 ft × 6 ft = 60 ft² = 60 × 1 ft² = 60 × (0.3048)² m² = 5.574 m², B = magnetic field strength = 0.1 T and θ = angle between B and normal to A = ωt.
So, Φ = NABcosθ = 100 × 5.574 m² × 0.1 T cosθ = 55.74cosθ Tm²
So, ε = -dΦ/dt = ε = -d(55.74cosθ Tm²)/dt = -d(55.74cosθ Tm²)/dθ × dθ/dt = -55.74 ×(-sinθ) Tm²)/dθ × ω (ω = dθ/dt = angular frequency of shaft = 2πf where f = frequency of rotor = 60 Hz )
ε = 55.74sinθ Tm²) × 2πf
ε = 55.74sinθ Tm²) × 2π(60 Hz)
ε = 6689πsinθ V
ε = 21,014sinθ V
ε = 21,014sinωt V
ε = 21,014sin(2πft) V
ε = 21,014sin(2π(60 Hz)t) V
ε = 21,014sin(120πt) V
b. Current in coil
Since power P = Iε where I = current and ε = induced emf = 21,014sinθ V.
Since power, P = 10 kW = 10000 W
I = P/ε
= 10000 W/21,014sinθ V
= 0.476/sinθ
= 0.476cosecθ
= 0.476cosecωt
= 0.476cosec(120πt)
The maximum current is obtained when θ = 90°
I = 10000 W/21,014sin90 V
I = 10000 W/21,014 V
I = 0.476 A
I = 476 mA
Two train cars moving in the same direction are going to be coupled together. The mass of the first car is 5,000 kg and is moving at 5 m/s; the second car weighs the same, but is moving at 1 m/s. How fast will the two coupled cars move and how much kinetic energy does the system lose from coupling the cars together after they collide
Answer: [tex]3\ m/s,\ 20,00\ J[/tex]
Explanation:
Given
Mass of the first car [tex]m_1=5000\ kg[/tex]
Mass of the second car [tex]m_2=5000\ kg[/tex]
The velocity of the first car is [tex]v_1=5\ m/s[/tex]
The velocity of the second car is [tex]v_2=1\ m/s[/tex]
Conserving momentum, take [tex]v_o[/tex] as the velocity after coupling
[tex]\Rightarrow m_1v_1+m_2v_2=\left( m_1+m_2\right)v_o\\\Rightarrow 5000\times 5+5000\times 1=\left( 10,000\right)v_o\\\\\Rightarrow v_o=\dfrac{25,000+5000}{10,000}\\\\\Rightarrow v_o=\dfrac{30,000}{10,000}\\\Rightarrow v_o=3\ m/s[/tex]
[tex]\text{Initial kinetic Energy }K_1=\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2\\\\\Rightarrow K_1=\frac{1}{2}\times 5000\left( 5^2+1^2\right)\\\\\Rightarrow K_1=65,000\ J\\\\\\\text{Final Kinetic Energy}\ K_2=\frac{1}{2}\left(m_1+m_2\right)v_o^2\\\\\Rightarrow K_2=\frac{1}{2}\times 10,000\times 3^2\\\\\Rightarrow K_2=45,000\ J\\\\\text{Kinetic energy lost is equivalent to change in Initial and final energy i.e.}\\\\\Rightarrow K_1-K_2=65,000-45,000\\\\\Rightarrow K_1-K_2=20,000\ J[/tex]
Please help me in science plss
I give brainliest to Answer this plss
The low-frequency speaker of a stereo set produces 10.0 W of acoustical power. If the speaker projects sound uniformly in all directions, at what distance from the speaker is the intensity level 80.0 dB
Answer:
the required distance is 89.125 m
Explanation:
Given the data in the question;
we know that, sound intensity B in decibels of sound is;
β(dB) = 10log₁₀( [tex]I[/tex] / [tex]I_0[/tex] )
where intensity [tex]I[/tex] = power / area carried by wave
[tex]I_0[/tex] = 10⁻¹² W/m² { minimum threshold intensity }
Now,
intensity [tex]I[/tex] = power / area carried by wave = P/A = P/4πr² { spherical }
given that; β = 80.0 dB and P = 10 W
so
β(dB) = 10log₁₀( [tex]I[/tex] / [tex]I_0[/tex] )
we substitute
80 = 10log₁₀( P / 4πr²× [tex]I_0[/tex])
80 = 10log₁₀( 10 / 4πr²× 10⁻¹² )
8 = log₁₀(10) - log₁₀( 4πr²× 10⁻¹² )
8 = 1 - log₁₀( 4πr²× 10⁻¹² )
8 - 1 = -log₁₀( 4πr²× 10⁻¹² )
7 = -log₁₀( 1.2566 × 10⁻¹¹ × r² )
7 = -[ log₁₀( 1.25 × 10⁻¹¹) + log₁₀( r² ) ]
7 = -[ -10.9 + log₁₀( r² ) ]
7 = 10.9 - log₁₀( r² )
-log₁₀( r² ) = 7 - 10.9
-log₁₀( r² ) = - 3.9
log₁₀( r² ) = 3.9
2log₁₀r = 3.9
log₁₀r = 3.9 /2
log₁₀r = 1.95
r = 89.125 m
Therefore, the required distance is 89.125 m
The speed of sound is approximately 340 m/s.what is the wavelength of a sound wave with a frequency of 1000Hz
Answer:
34cm
Explanation:
A pulley system uses a flat belt of c.s.a. 4x100 mm2 and density 11x100 kg/m3. The angle of lap is 165o on the smaller wheel. The coefficient of friction is 0.39. The maximum force allowed in the belt is 637 N. Calculate the power (kW) transmitted when the belt runs at 13 m/s and centrifugal force is included.
Answer:
Note that the angle of lap is 165 degrees at the question above
So the power (kW) transmitted when the belt runs at 13 m/s and centrifugal force is included = 3.79782kW
Explanation:
Centrifugal force, Fc = pAv^2
Where p = density, A = c.s.a. v = veelocity
= 11x100 kg/m3 X 4x100 mm2 X (13 m/s)^2
= 1100 kg/m3 X 400 mm2 x 10^-6 X 169m/s
= 74.36N
P v (f - Fc) (1-e^-μθ)
The θ = (165 degrees ÷ 180 degrees) X π = 2.878 rads (π = 3.14)
So power p, = 10 (637 N - 74.36N) (1 - e^-0.39 x 2.878)
= 10 X 562.64 X 0.675
P = 3797.82 watts = 3.79782kW
Define 1ohm resistance
Answer:
1 ohm is equal to one volt (V)/ one ampere (1A) 1 Ohm is defined as the resistance of a conductor with a potential difference of 1 volt applied to the ends through which 1-ampere current flows. Ohms is the SI unit of electrical resistance.
Explanation:
I hope it's help u
Which of these uses the force of gravity to make it move?
OA
A sailboat moving across a lake
ОВ:
A car making a right turn
ОС:
A snow sled going downhill
OD
A bicycle rolling to a stop
Plz somebody help this is a test
Answer:
C: A snow sled going down hill
Why does a transformer require alternating volt age?
1. Alternating voltage leads to electromagnetic induction which is necessary for the transformer to work.
2. Due to economic reasons; alternating voltage is cheaper to produce.
3. If we apply a constant. voltage to the primary coil, it will burn out due to short circuit.
4. No specific reason; the constant voltage would work just as well.
5. The magnetic field produced by the primary coil can reach the secondary coil more easily.
6. Energy can be transferred more efficiently if alternating voltage is used.
Answer:
Alternating voltage leads to electromagnetic induction which is necessary for the transformer to work.
Explanation:
According to Oxford dictionary; an alternating current is "an electric current that reverses its direction many times a second at regular intervals".
A transformer works on the principle of electromagnetic induction. A transformer requires an alternating current which can create a changing magnetic field leading to induced voltage in the coil.
Hence, a transformer requires alternating voltage because alternating voltage leads to electromagnetic induction which is necessary for the transformer to work.