Answer:
1
Step-by-step explanation:
Construct a confidence interval of the population proportion at the given level of confidence.
x equals =860
n equals =1200
94% confidence
The lower bound of the confidence interval is __?
Answer:
The lower bound of the confidence interval is 0.6922.
Step-by-step explanation:
We have to calculate a 94% confidence interval for the proportion.
The sample proportion is p=0.7167.
[tex]p=X/n=860/1200=0.7167[/tex]
The standard error of the proportion is:
[tex]\sigma_p=\sqrt{\dfrac{p(1-p)}{n}}=\sqrt{\dfrac{0.7167*0.2833}{1200}}\\\\\\ \sigma_p=\sqrt{0.000169}=0.013[/tex]
The critical z-value for a 94% confidence interval is z=1.8808.
The margin of error (MOE) can be calculated as:
[tex]MOE=z\cdot \sigma_p=1.8808 \cdot 0.013=0.0245[/tex]
Then, the lower and upper bounds of the confidence interval are:
[tex]LL=p-z \cdot \sigma_p = 0.7167-0.0245=0.6922\\\\UL=p+z \cdot \sigma_p = 0.7167+0.0245=0.7412[/tex]
The 94% confidence interval for the population proportion is (0.6922, 0.7412).
Suppose a random variable X is best described by a uniform probability distribution with range 1 to 5. Find the value of that makes the following probability statements true.
a) P(X <-a)= 0.95
b) P(X
c) P(X
d) P(X ->a)= 0.89
e) P(X >a)= 0.31
Answer:
a) 4.8
b) 2.96
c) 4.4
d) 1.44
e) 3.76
Step-by-step explanation:
What we will do is solve point by point, knowing the following:
Fx (x) = P (X <= x) = (x - 1) / 4
a) P (X <-a) = 0.95
Fx (a) = 0.95
(a -1) / 4 = 0.95
a = 1 + 0.95 * 4
a = 4.8
b) P (X <a) = 0.49
Fx (a) = 0.49
(a -1) / 4 = 0.49
a = 1 + 0.49 * 4
a = 2.96
c) P (X <a) = 0.85
Fx (a) = 0.85
(a -1) / 4 = 0.55
a = 1 + 0.85 * 4
a = 4.4
d) P (X> a) = 0.89
P (X <a) = 1 - 0.89 = 0.11
Fx (a) = 0.11
(a -1) / 4 = 0.11
a = 1 + 0.11 * 4
a = 1.44
e) P (X> a) = 0.31
P (X <a) = 1 - 0.31 = 0.69
Fx (a) = 0.69
(a -1) / 4 = 0.69
a = 1 + 0.69 * 4
a = 3.76
An airplane descends during the last hour of it's flight to prepare for landing. It's altitude changes at an average of -0.15 km per minute for those 60 minutes. Write an expression to represent the total change in the airplane's elevation. ( plz answer, will give brainliest )
Answer:
-.15 km/ minute * 60 minutes
-9 km
Step-by-step explanation:
The rate is -.15 km per minute
We have 60 minutes
distance = rate times time
change in elevation is the same as the distance change
change in elevation = -.15 km/ minute * 60
change in elevation =-9 km
Answer:
(0.15 km/min) * (60 min)
Step-by-step explanation:
We see that the plane descends 0.15 kilometres every minute over the span of 60 minutes.
Use the distance-rate-time formula: d = rt, where d is the distance, r is the rate, and t is the time.
Here, our rate is r = 0.15 km/min and our time is t = 60 minutes. Then the total change in elevation is:
d = rt
d = 0.15 * 60 = 9 km
Note that we disregard the negative sign from -0.15 km/min because the question is asking for the change in elevation. Change is never a negative value.
Hence, the expression will be: 0.15 * 60, which simplifies to 9 km.
~ an aesthetics lover
www.g A bag contains 3 white counters, 10 black counters, and 4 green counters. What is the probability of drawing (a) a white counter or a green counter
Answer:
41.18% probability of drawing a white counter or a green counter
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
In this question:
There are 3+10+4 = 17 counters.
Of those, 3+4 = 7 are white or green
7/17 = 0.4118
41.18% probability of drawing a white counter or a green counter
What is coefficient of the term of degree of degree 5 in the polynomial below 3x^6+5-x^2+4x^5-9 which one is the right answer A. 3 B. 4 C. 6 D. 5
Answer:
B. 4
Step-by-step explanation:
We are looking for the coefficient of the term x⁵. When we see it in the polynomial as 4x⁵, our coefficient and answer would then be 4.
While the Pareto distributions are continuous, they tend to be used to model discrete data in humanities and actuarial sciences. Moreover, with its roots in power functions, Pareto distributions may be used in the growing popularity of the studies of networks. The probability density function (PDF) for a Pareto distribution is
Answer:
Step-by-step explanation:
While the pareto distributions are continuous in nature, they are sometimes used to model discrete data in fields such as Social Sciences, Humanities, Geophysics, and Actuarial Sciences.
The Pareto Distribution is a power-law probability distribution used in studies of observable phenomena.
The probability density function (PDF) for a Pareto Distribution is:
Xn = 1
for various Alpha levels
Where Xn is the probability value of X
As Alpha tends to infinity, the pareto distribution tends to ¶ [X-Xn]
Where ¶ is the Dirac Delta function.
Please help! Need Geometry help!!!!!
Answer:
938 feet
Step-by-step explanation:
b/c every angle of a rectangle is 90° u can u Pythagorean theroem to solve the question
a*a+ b*b=c*c
900*900+264*264=c*c
c=√879,696
c=938feet
Answer:
938 feet
Step-by-step explanation:
Well to solve this we need to use the Pythagorean Theorem,
[tex]a^2 + b^2 = c^2[/tex].
So we have a and b which are 900 and 264,
and we need to find c or the walking distance.
So we plug in 900 and 264 for a and b.
[tex](900)^2 + (264)^2 = c^2[/tex]
So, 900*900 = 810,000
264 * 264 = 69696
810000 + 69696 = 879696
So now we have,
879696 = c^2
To get the c by itself we do,
[tex]\sqrt{879696} = \sqrt{c}[/tex]
= c = 937.921105424
c = 938 rounded to the nearest foot
Thus,
the solution is 938.
Hope this helps :)
Which equation, when solved, gives 8 for the value of x?
A: 5/2x+7/2x=3/4x+14
B: 5/4x-9=3/2x-12
C: 5/4x-2=3/2x-4
D: 5/2x-7=3/4x+14
Answer:
Step-by-step explanation:
C. 5x/4-2=3x/2-4
5x/4 -2=6x/4-4
+4 +4
5x/4+2=6x/4
-5x/4
2=x/4
*4
x=8
Answer:
your answer is C
Step-by-step explanation:
Beginning three months from now, you want to be able to withdraw $2,300 each quarter from your back account to cover college expenses over the next four years. If the account pays .45 percent interest per quarter, how much do you need to have in your bank account today to meet your expense needs over the next four years?
Answer:
$36,450.46
Step-by-step explanation:
The amortization formula can be used to figure this. For quarterly payment A, the principal invested must be P for interest rate r and compounding n times per year for t years.
A = P(r/n)/(1 -(1 +r/n)^(-nt))
2300 = P(0.0045/4)/(1 -(1 +0.0045/4)^(-4·4))
2300 = P·0.06309934
P = 2300/0.06309934 = 36450.46
You need $36,450.46 in your account today so that you can withdraw $2300 quarterly for 4 years.
Box A contains 5green and 7 red balls. Box B contains 3green, 3 red and 6 yellow balls. A box is sleeted at random and a ball is drawn at random from it. What is the probability that the drawn ball is green?
Answer:
5/48Step-by-step explanation:
Given
the sample space for box A
green balls = 5
red balls= 7
sample size= 5+7= 12
the sample space for box B
green balls = 3
red balls= 3
yellow balls= 6
sample size= 3+3+6= 12
The probability of drawing a green ball from box A= 5/12
The probability of drawing a green ball from box B= 3/12= 1/4
Therefore the probability of picking a green ball from either of the boxes at random is =[tex]=\frac{5}{12} *\frac{1}{4}[/tex][tex]=\frac{5}{48}[/tex]
Find the values of x and y in these equations. (x + yi) + (4 + 6i) = 7 − 2i (equation A) (x + yi) − (-8 + 11i) = 5 + 9i (equation B)
Answer:
Step-by-step explanation:
(x+yi)+4+6i=7-2i
x+yi=7-2i-4-6i
x+yi=3-8i
equating real and imaginary parts
x=3,y=-8
B.
x+yi=5+9i+(-8+11i)
x+yi=5+9i-8-11i
x+yi=-3-2i
equating real ,and imaginary parts
x=-3
y=-2
The value of x and y for equation A is
[tex]x=3, y=-8[/tex]
The value of x and y for equation B is
[tex]x=-3 , y=20[/tex]
Given :
[tex](x + yi) + (4 + 6i) = 7 - 2i[/tex]
find the value of x and y in the given equation
Lets open the parenthesis and combine like terms
Equate the real and imaginary part to solve for x and y
[tex]\left(x+4\right)+\left(y+6\right)i=7-2i\\x+4=7\\x=3\\\\y+6=-2\\y=-2-6\\y=-8[/tex]
The value of x=3 and y=-8
Now we do the same with second equation
[tex](x + yi) - (-8 + 11i) = 5 + 9i\\\\x+8+yi-11i=5+9i\\\left(x+8\right)+\left(y-11\right)i=5+9i\\x+8=5\\x=-3\\\\y-11=9\\y=9+11\\y=20[/tex]
The value of x and y is x=-3 and y=20
Learn more : brainly.com/question/18552411
The mean weight of an adult is 6767 kilograms with a variance of 121121. If 164164 adults are randomly selected, what is the probability that the sample mean would be greater than 64.864.8 kilograms
Answer:
99.48% probability that the sample mean would be greater than 64.8 kilograms.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation(which is the square root of the variance) [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
[tex]\mu = 67, \sigma = \sqrt{121} = 11, n = 164, s = \frac{11}{\sqrt{164}} = 0.86[/tex]
What is the probability that the sample mean would be greater than 64.8 kilograms?
This is 1 subtracted by the pvalue of Z when X = 64.8.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{64.8 - 67}{0.86}[/tex]
[tex]Z = -2.56[/tex]
[tex]Z = -2.56[/tex] has a pvalue of 0.0052
1 - 0.0052 = 0.9948
99.48% probability that the sample mean would be greater than 64.8 kilograms.
g The p-value of a test is the probability of obtaining a result as or more extreme as the one obtained in the sample, assuming the null hypothesis is false
Answer:
The p-value is well defined as per the probability, [under the null hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was truly observed.
Step-by-step explanation:
The p-value is well defined as per the probability, [under the null hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was truly observed.
We reject the null hypothesis if the p-value of a statistic is lower than the level of significance α.
And we fail to eject the null hypothesis if the p-value of a statistic is greater than the level of significance α.
A lower p-value indicates that the result is statistically significant.
And a higher p-value indicates that the result is not statistically significant.
help help help help pls
Hi !!
For f(x) = 3/x + 4 , B is correct.
• f(-3) = 3/(-3) + 4
f(-3) = - 1 + 4
f(-3) = 3
• f(-2) = 3/(-2) + 4
f(-2) = -1,5 + 4
f(-2) = 2,5
• f(1) = 3/(1) + 4
f(1) = 3 + 4
f(1) = 7
• f(2) = 3/(2) + 4
f(2) = 1,5 + 4
f(2) = 5,5
• f(3) = 3/(3) + 4
f(3) = 1 + 4
f(3) = 5
What is a quadrilateral and give ten examples
Answer:
A quadralateral is any shape that has 4 sides ...
Step-by-step explanation:
rectangle
square
rhombus
Answer: A quadrilateral is a two dimensional shape(closed) with four sides.
Step-by-step explanation: The sides do not have to be equal.
Square
Rectange
Trapazoid
Diamond
Any four sided shape. They will classify as a quadrilateral as long as two of the shapes are not the same.
Solve for y: |6y - 3| + 8 = 35 Select one: a. y = -5 b. y = 5 or y = -4 c. =5=−203 y = 5 o r y = − 20 3 d. y = 5
Answer:
y=5 or y=-4
Step-by-step explanation:
6y - 3| + 8 = 35
|6y-3|=35-8
|6y-3|=27
either 6y-3=-27 then 6y=27+3
y=30/6=5
or 6y-3=-27
6y=-27+3
y=-24/6
y=-4
Please Help! Select the correct answer. Simon used these steps to solve an equation:
Answer:
A.
Step-by-step explanation:
From Step 3 to Step 4, Simon added -42 to both sides.
This is the addition property of equality: as long as you add the same thing to both sides, the equation remains equal.
A.
Arrange in ascending order. 8/13, 2/9,28/29
Step-by-step explanation:
he operation of sorting fractions in ascending order: 18/46, 28/41, 29/38, 29/44, 32/30 ... terms equivalents: 18/46=(2×3^2)/(2×23)=((2×3^2)÷2)/((2×23)÷2)=9/23; 28/41 already reduced to ... by the largest exponents: LCM (9, 28, 29)=2^2×3^2× 7×29=7308 Calculate LCM, the least ... /10 </13 </19
whats 1/2 + 2/4 - 5/8?
Answer:
3/8
Step-by-step explanation:
Step 1: Find common denominators
1/2 = 4/8
2/4 = 4/8
Step 2: Evaluate
4/8 + 4/8 - 5/8
8/8 - 5/8
3/8
Alternatively, you can just plug this into a calc to evaluate and get your answer.
Answer:
3/8
Step-by-step explanation:
Look at the denominator:
2, 4, 8. The LCM (Lowest Common Multiple) is 8.
So this equation becomes
4/8+4/8-5/8=3/8
help with this I don't know how to solve
Answer:
86.53
Step-by-step explanation:
Area of Triangle Formula: A = 1/2bh
Pythagorean Theorem: a² + b² = c²
Step 1: Draw altitude and label numbers
If we draw a line down the middle, we can see that we get a perpendicular bisector and that we get 2 right triangles with a hypotenuse of 29 and a leg of 3. We need to find h using Pythagorean Theorem in order to use area formula:
3² + b² = 29²
b² = 29² - 3²
b = √832 = h
Step 2: Plug in known variables into area formula:
A = 1/2(√832)(6)
A = 3√832
A = 86.5332
Given that (0,0) is on the graph of f(x), find the
corresponding point for the function
f(x) – 5.
Answer:
(0, -5)
Step-by-step explanation:
You have (x, f(x)) = (0, 0) and you want (x, f(x) -5).
That would be ...
(x, f(x) -5) = (0, 0 -5) = (0, -5)
Which inequality is represented by the graph?
Answer:
y ≤ 2/5x - .5
Step-by-step explanation:
Well it is a solid line with it shaded down meaning the inequality starts with
y ≤,
And by look at the y axis we can tell that the line crosses the y axis at -.5 which is the y intercept.
And by looking at the line we can tell the slope is 2/5.
Hence, the inequality is y ≤ 2/5x - .5
You just purchased two coins at a price of $1,030 each. Because one of the coins is more collectible, you believe that its value will increase at a rate of 7.7 percent per year, while you believe the second coin will only increase at 7.1 percent per year. If you are correct, how much more will the first coin be worth in 20 years
Answer:4541(Rounded) 4541.99779(Unrounded)
Step-by-step explanation:
A= P(1 + r)^T
A= answer
P=principle(amount of money)
r=Rate(percent / 100)
T=Time(Annually)
1030(1 + .077)^20
Brainliest would be appericiated!
At 95% confidence, how large a sample should be taken to obtain a margin of error of 0.05 for the estimation of a population proportion
Answer:
A sample of 385 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
How large a sample:
We need a sample of n.
n is found when M = 0.05.
We dont know the true proportion, so we work with the worst case scenario, which is [tex]\pi = 0.5[/tex]
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.05 = 1.96\sqrt{\frac{0.5*0.5}{n}}[/tex]
[tex]0.05\sqrt{n} = 1.96*0.5[/tex]
[tex]\sqrt{n} = \frac{1.96*0.5}{0.05}[/tex]
[tex](\sqrt{n})^{2} = (\frac{1.96*0.5}{0.05})^{2}[/tex]
[tex]n = 384.16[/tex]
Rounding up
A sample of 385 is needed.
calculate find the area f a rectangle measuring 25 feet long by 8 feet wide
Answer: 200 ft²
Step-by-step explanation:
The area of a rectangle is length times width
So, simply do 25 * 8 = 200
Hey there! :)
Answer:
A = 200 ft².
Step-by-step explanation:
Use the formula A = l × w to determine the area of a rectangle:
A = 25 × 8
Multiply:
A = 200 ft².
Is (0,-2) a solution of 3x - y = 2?
Answer:
yes, (0,-2) is the answer when graphing this equation.
Step-by-step explanation:
Answer:
yes.
Step-by-step explanation:
A furniture store has set aside 800 square feet to display its sofas and chairs. Each sofa utilizes 50 sq. ft. and each chair utilizes 30 sq. ft. At least five sofas and at least five chairs are to be displayed.
a. Write a mathematical model representing the store's constraints.
b. Suppose the profit on sofas is $200 and on chairs is $100. On a given day, the probability that a displayed sofa will be sold is 0.03 and that a displayed chair will be sold is 0.05. Mathematically model each of the following objectives:
1. Maximize the total pieces of furniture displayed.
2. Maximize the total expected number of daily sales.
3. Maximize the total expected daily profit.
Answer:
a) 50S + 30C ≤ 800
b) 1) MAX = S + C
2) Max = 0.03S + 0.05C
3) Max = 6S + 5C
Step-by-step explanation:
Given:
Total space = 800 square feet
Each sofa = 50 square feet
Each chair = 30 square feet
At least 5 sofas and 5 chairs are to be displayed.
a) Write a mathematical model representing the store's constraints:
Let S denote number of sofas displayed and C denote number of chairs displayed.
The mathematical model will be:
50S + 30C ≤ 800
At least 5 sofas are to be dispayed: S ≥ 5
At least 5 chairs are to be displayed: C ≥ 5
b)
1) Maximize the total pieces of furniture displayed:
S + C = MAX
2) Maximize the total expected number of daily sales:
MAX = 0.03S + 0.05C
3) Maximize the total expected daily profit:
Given:
Profit on sofas = $200
Profit on chairs = $100
Max Expected daily profit =
Max = (200S * 0.03) + (100C * 0.05)
Max = 6S + 5C
You wish to accumulate $14,580 in 6 years. Payments are made at the end of every six-month period into an account earning 7.2% compounded semi-annually. Find the required payment amount to accomplish your goal.
An adult has a total of about 22.5 square feet (ft2) of skin. Use the fact that 1 m is approximately equal to 3.281 feet to convert this measurement to square meters (m2). Round your answer to the nearest hundredth. Do not type the units in the space below.
Answer:
There are about 3.281 * 3.281 = 10.764 square feet in one square meter. Therefore, 22.5 square feet is 22.5 / 10.764 = 2.09 square meters.
if there are about 3.346x10^26 molecules of water in a liter of water and the ocean is about 1.26x10^21 liters in volume, how many water molecules are there in the ocean?
Answer: 4.21596 x 10⁴⁷
Step-by-step explanation:
(3.346 x 10²⁶) (1.26 x 10²¹)
= (3.346 x 1.26) x 10²⁶⁺²¹
= 4.21596 x 10⁴⁷