Here are the temperatures in degrees Celsius and Kelvins
Temperature | Degrees Fahrenheit | Degrees Celsius | Kelvins
Al-'Aziziyah, Libya | 136.4 | 58.0 | 331.15
Vostok, Antarctica | −126.9 | −88.28 | 184.87
To convert from degrees Fahrenheit to degrees Celsius, you can use the following formula:
°C = (°F − 32) × 5/9
To convert from degrees Celsius to Kelvins, you can use the following formula:
K = °C + 273.15
Lern more about degrees with the given link,
https://brainly.com/question/30403653
#SPJ11
Find the approximate electric field magnitude at a distance d from the center of a line of charge with endpoints (-L/2,0) and (L/2,0) if the linear charge density of the line of charge is given by A= A cos(4 mx/L). Assume that d>L.
The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density.
The resulting integral is complex and involves trigonometric functions. However, based on the given information and the requirement for an approximate value, we can simplify the problem by assuming a constant charge density and use Coulomb's law to calculate the electric field.
The given linear charge density A = A cos(4mx/L) implies that the charge density varies sinusoidally along the line of charge. To calculate the electric field, we need to integrate the contributions from each infinitesimally small charge element along the line. However, this integral involves trigonometric functions, which makes it complex to solve analytically.
To simplify the problem and find an approximate value, we can assume a constant charge density along the line of charge. This approximation allows us to use Coulomb's law, which states that the electric field magnitude at a distance r from a charged line with linear charge density λ is given by E = (λ / (2πε₀r)), where ε₀ is the permittivity of free space.
Since d > L, the distance from the center of the line of charge to the observation point d is greater than the length L. Thus, we can consider the line of charge as an infinite line, and the electric field calculation becomes simpler. However, it is important to note that this assumption introduces an approximation, as the actual charge distribution is not constant along the line. The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density. Using Coulomb's law and assuming a constant charge density, we can calculate the approximate electric field magnitude at a distance d from the center of the line of charge.
Learn more about assumption here: brainly.com/question/31868402
#SPJ11
A cylinder of radius 10 cm has a thread wrapped around its edge. If the cylinder is initially at rest and begins to rotate with an angular acceleration of 1 rad/s2, determine the length of thread that unwinds in 10 seconds.
Given
,Radius of cylinder
= r = 10 cm = 0.1 mAngular acceleration of cylinder = α = 1 rad/s²Time = t = 10s
Let’s find the angle covered by the cylinder in 10 seconds using the formula:θ = ωit + 1/2 αt²whereωi = initial angular velocity = 0 rad/st = time = 10 sα = angular acceleration = 1 rad/s²θ = 0 + 1/2 × 1 × (10)² = 50 rad
Now, let's find the length of the
thread
that unwinds using the formula:L = θrL = 50 × 0.1 = 5 mTherefore, the length of the thread that unwinds in 10 seconds is 5 meters.
Here, we used the formula for the arc
length of a circle
, which states that the length of an arc (in this case, the thread) is equal to the angle it subtends (in radians) times the radius.
to know more about
,Radius of cylinder
pls visit-
https://brainly.com/question/6499996
#SPJ11
Askater extends her arms horizontally, holding a 5-kg mass in each hand. She is rotating about a vertical axis with an angular velocity of one revolution per second. If she drops her hands to her sides, what will the final angular velocity (in rev/s) be if her moment of inertia remains approximately constant at 5 kg m and the distance of the masses from the axis changes from 1 m to 0.1 m? 6 4 19 7
Initial moment of inertia, I = 5 kg m. The distance of the masses from the axis changes from 1 m to 0.1 m.
Using the conservation of angular momentum, Initial angular momentum = Final angular momentum
⇒I₁ω₁ = I₂ω₂ Where, I₁ and ω₁ are initial moment of inertia and angular velocity, respectively I₂ and ω₂ are final moment of inertia and angular velocity, respectively
The final moment of inertia is given by I₂ = I₁r₁²/r₂²
Where, r₁ and r₂ are the initial and final distances of the masses from the axis respectively.
I₂ = I₁r₁²/r₂²= 5 kg m (1m)²/(0.1m)²= 5000 kg m
Now, ω₂ = I₁ω₁/I₂ω₂ = I₁ω₁/I₂= 5 kg m × (2π rad)/(1 s) / 5000 kg m= 6.28/5000 rad/s= 1.256 × 10⁻³ rad/s
Therefore, the final angular velocity is 1.256 × 10⁻³ rad/s, which is equal to 0.0002 rev/s (approximately).
Learn more about angular momentum: https://brainly.com/question/4126751
#SPJ11
The position of an object connected to a spring varies with time according to the expression x = (4.7 cm) sin(7.9nt). (a) Find the period of this motion. S (b) Find the frequency of the motion. Hz (c) Find the amplitude of the motion. cm (d) Find the first time after t = 0 that the object reaches the position x = 2.6 cm.
The period of oscillation is `0.796 n` and the frequency of the motion`1.26 Hz`.
Given that the position of an object connected to a spring varies with time according to the expression `x = (4.7 cm) sin(7.9nt)`.
Period of this motion
The general expression for the displacement of an object performing simple harmonic motion is given by:
x = A sin(ωt + φ)Where,
A = amplitude
ω = angular velocity
t = timeφ = phase constant
Comparing the given equation with the general expression we get,
A = 4.7 cm,
ω = 7.9 n
Thus, the period of oscillation
T = 2π/ω`= 2π/7.9n = 0.796 n`...(1)
Thus, the period of oscillation is `0.796 n`.
Frequency of the motion The frequency of oscillation is given as
f = 1/T
Thus, substituting the value of T in the above equation we get,
f = 1/0.796 n`= 1.26 n^-1 = 1.26 Hz`...(2)
Thus, the frequency of the motion is `1.26 Hz`.
Amplitude of the motion
The amplitude of oscillation is given as
A = 4.7 cm
Thus, the amplitude of oscillation is `4.7 cm`.
First time after
t = 0 that the object reaches the position
x = 2.6 cm.
The displacement equation of the object is given by
x = A sin(ωt + φ)
Comparing this with the given equation we get,
4.7 = A,
7.9n = ω
Thus, the equation of displacement becomes,
x = 4.7 sin (7.9nt)
Now, we need to find the time t when the object reaches a position of `2.6 cm`.
Thus, substituting this value in the above equation we get,
`2.6 = 4.7 sin (7.9nt)`Or,
`sin(7.9nt) = 2.6/4.7`
Solving this we get,
`7.9nt = sin^-1 (2.6/4.7)``7.9n
t = 0.6841`Or,
`t = 0.0867/n`
Thus, the first time after t=0 that the object reaches the position x=2.6 cm is `0.0867/n`
To know more about displacement visit :
brainly.com/question/11934397
#SPJ11
17). If you were to live another 65 years and there was a starship ready to go right now, how fast would it have to be going for you to live long enough to get to the galactic center (30,000 1.y.)? How fast would you have to go to reach the Andromeda Galaxy (2.54 million 1.y.)? 18). A friend tells you that we should ignore claims of climate change on Earth, because the scientists making such claims are simply relying on their authority as scientists (argument from authority) to support their claims. What are the problems with your friend's claim? This friend is far from alone... 19). To get a de Broglie wave that is visible to human eyes (size-wise, not visibility-wise, so 1 > 0,1 mm), of an particle, what particle should it be and what is the greatest speed it can be moving?
17) The required speed to reach the galactic center or the Andromeda Galaxy is obtained by dividing the distance by the time.
18) Dismissing scientific claims solely based on authority (argument from authority) overlooks the rigorous scientific process and the wealth of evidence supporting claims like climate change.
19) Achieving a visible-sized de Broglie wave would require a particle with low mass (e.g., an electron) to approach speeds near the speed of light, which is currently not attainable.
17) To calculate the speed required to reach the galactic center or the Andromeda Galaxy within a given time frame, we can use the equation:
Speed = Distance / Time
For the galactic center:
Distance = 30,000 light-years = 30,000 * 9.461 × 10^15 meters (approx.)
Time = 65 years = 65 * 365 * 24 * 3600 seconds (approx.)
Speed = (30,000 * 9.461 × 10^15 meters) / (65 * 365 * 24 * 3600 seconds)
Calculating this value gives the required speed in meters per second.
For the Andromeda Galaxy:
Distance = 2.54 million light-years = 2.54 million * 9.461 × 10^15 meters (approx.)
Time = 65 years = 65 * 365 * 24 * 3600 seconds (approx.)
Speed = (2.54 million * 9.461 × 10^15 meters) / (65 * 365 * 24 * 3600 seconds)
Calculating this value gives the required speed in meters per second.
18) The claim made by your friend that scientists are simply relying on their authority as scientists (argument from authority) to support claims of climate change on Earth has several problems. Firstly, it is a logical fallacy to dismiss scientific claims solely based on the authority of the scientists making them. Scientific claims should be evaluated based on the evidence, data, and rigorous research methods used to support them.
Furthermore, the consensus on climate change is not solely based on the authority of individual scientists but is the result of extensive research, data analysis, and peer review within the scientific community. There is a wealth of scientific evidence supporting the existence and impact of climate change, including observed temperature increases, melting glaciers, and changing weather patterns. Ignoring or dismissing these claims without proper scientific analysis undermines the importance of scientific consensus and the rigorous process of scientific inquiry.
19) To obtain a de Broglie wave visible to human eyes (with a size greater than 0.1 mm), the particle should have a relatively small mass and a corresponding wavelength within the visible light range.
According to the de Broglie equation:
Wavelength = h / momentum
To achieve a visible-sized de Broglie wave, the wavelength needs to be on the order of 0.1 mm or larger. This corresponds to the visible light range of the electromagnetic spectrum.
Particles with low mass and high velocity can exhibit shorter wavelengths. For example, electrons or even smaller particles like neutrinos could potentially have wavelengths in the visible light range if they are moving at high speeds. However, the velocity of these particles would need to be extremely close to the speed of light, which is not currently achievable in practice.
In summary, to obtain a visible-sized de Broglie wave, a particle with low mass (such as an electron) would need to be moving at a velocity very close to the speed of light.
learn more about "distance ":- https://brainly.com/question/26550516
#SPJ11
"An electron in a 1D box has a minimum energy of 3 eV. What is
the minimum energy if the box is 2x as long?
A. 3/2 eV
B. 3 eV
C 3/4 eV
D. 0 eV"
We are given the minimum energy of an electron in a 1D box is 3 eV and we need to find the minimum energy of the electron if the box is 2x as long.The energy of the electron in a 1D box is given by:E = (n²π²ħ²)/(2mL²)Where, E is energy,n is a positive integer representing the quantum number of the electron, ħ is the reduced Planck's constant,m is the mass of the electron and L is the length of the box.
If we increase the length of the box to 2L, the energy of the electron will beE' = (n²π²ħ²)/(2m(2L)²)E' = (n²π²ħ²)/(8mL²)From the given data, we know that the minimum energy in the original box is 3 eV. This is the ground state energy, so n = 1 and substituting the given values we get:3 eV = (1²π²ħ²)/(2mL²)Solving for L², we get :L² = (1²π²ħ²)/(2m×3 eV)L² = (1.85×10⁻⁹ m²/eV)Now we can use this value to calculate the new energy:E' = (1²π²ħ²)/(8mL²)E' = (3/4) (1²π²ħ²)/(2mL²)E' = (3/4)(3 eV)E' = 2.25 eV. Therefore, the minimum energy of the electron in the 2x longer box is 2.25 eV. Hence, the correct option is C) 3/4 eV.
Learn more about electron:
brainly.com/question/2969220
#SPJ11
beginning with h=4.136x10-15 eV.s and c = 2.998x108 m/s , show that hc =1240 eV-nm.
Beginning with h=4.136x10-15 eV.s and c = 2.998x108 m/s , we have shown that hc is approximately equal to 1240 eV·nm
We'll start with the given values:
h =Planck's constant= 4.136 x 10^(-15) eV·s
c = speed of light= 2.998 x 10^8 m/s
We want to show that hc = 1240 eV·nm.
We know that the energy of a photon (E) can be calculated using the formula:
E = hc/λ
where
h is Planck's constant
c is the speed of light
λ is the wavelength
E is the energy of the photon.
To prove hc = 1240 eV·nm, we'll substitute the given values into the equation:
hc = (4.136 x 10^(-15) eV·s) ×(2.998 x 10^8 m/s)
Let's multiply these values:
hc ≈ 1.241 x 10^(-6) eV·m
Now, we want to convert this value from eV·m to eV·nm. Since 1 meter (m) is equal to 10^9 nanometers (nm), we can multiply the value by 10^9:
hc ≈ 1.241 x 10^(-6) eV·m × (10^9 nm/1 m)
hc ≈ 1.241 x 10^3 eV·nm
Therefore, we have shown that hc is approximately equal to 1240 eV·nm
To learn more about Planck's constant visit: https://brainly.com/question/28060145
#SPJ11
Pilings are driven into the ground at a buiding site by dropping a 2050 kg object onto theri. What ehange in gravitational potential enerify does the object undergo if it is released from rest 17,0 m above the jorvund and ends up 130 rabove the growad?
The change in gravitational potential energy that the object undergoes if it is released from rest 17.0 m above the ground and ends up 1.30m above the ground is -28,869.5 J.
The change in gravitational potential energy is equal to the product of the object's mass, gravitational acceleration, and the difference in height or altitude (initial and final heights) of the object.
In other words, the formula for gravitational potential energy is given by : ΔPEg = m * g * Δh
where
ΔPEg is the change in gravitational potential energy.
m is the mass of the object.
g is the acceleration due to gravity
Δh is the change in height or altitude
Here, the object has a mass of 2050 kg and is initially at a height of 17.0 m above the ground and then falls to 1.30 m above the ground.
Thus, Δh = 17.0 m - 1.30 m = 15.7 m
ΔPEg = 2050 kg * 9.81 m/s² * 15.7 m
ΔPEg = 319,807.35 J
The object gained 319,807.35 J of gravitational potential energy.
However, the question is asking for the change in gravitational potential energy of the object.
Therefore, the final step is to subtract the final gravitational potential energy from the initial gravitational potential energy.
The final gravitational potential energy can be calculated using the final height of the object.
Final potential energy = m * g * hfinal= 2050 kg * 9.81 m/s² * 1.30 m = 26,618.5 J
Thus, ΔPEg = PEfinal - PEinitial
ΔPEg = 26,618.5 J - 346,487.0 J
ΔPEg = -28,869.5 J
Therefore, the change in gravitational potential energy that the object undergoes is -28,869.5 J.
To learn more about gravitational potential energy :
https://brainly.com/question/3120930
#SPJ11
Simple Harmonic Oscillator. For a CO (carbon monoxide) molecule, assume that the system vibrates at o=4.0.1014 [Hz]. a. Wavefunction: Sketch the wave function for the n=5 state of the SHO. Points will be given on qualitative accuracy of the solution. Include a brief description to help me understand critical components of your sketch and label the sketch appropriately. b. Probabilities: Make a qualitatively correct sketch that indicates the probability of finding the state as a function of interatomic separation for n=5 indicate any important features. (Sketch plus 1 sentence). c. Classical turning points: Calculate the probability that the interatomic distance is outside the classically allowed region for the n=1 state
a. For the n=5 state of the SHO, the wavefunction is a symmetric Gaussian curve centered at the equilibrium position, with decreasing amplitudes as you move away from it.
b. The probability of finding the n=5 state as a function of interatomic separation is depicted as a plot showing a peak at the equilibrium position and decreasing probabilities as you move away from it.
c. The probability of the interatomic distance being outside the classically allowed region for the n=1 state of the SHO is negligible, as the classical turning points are close to the equilibrium position and the probability significantly drops away from it.
a. Wavefunction: The wave function for the n=5 state of the Simple Harmonic Oscillator (SHO) can be represented by a Gaussian-shaped curve centered at the equilibrium position. The amplitude of the curve decreases as you move away from the equilibrium position. The sketch should show a symmetric curve with a maximum at the equilibrium position and decreasing amplitudes as you move towards the extremes.
b. Probabilities: The probability of finding the state as a function of interatomic separation for the n=5 state of the SHO can be depicted as a plot with the probability density on the y-axis and the interatomic separation on the x-axis. The sketch should show a peak at the equilibrium position and decreasing probabilities as you move away from the equilibrium. The important feature to highlight is that the probability distribution extends beyond the equilibrium position, indicating the possibility of finding the molecule at larger interatomic separations.
c. Classical turning points: In the classical description of the Simple Harmonic Oscillator, the turning points occur when the total energy of the system equals the potential energy. For the n=1 state, the probability of the interatomic distance being outside the classically allowed region is negligible. The classical turning points are close to the equilibrium position, and the probability of finding the molecule significantly drops as you move away from the equilibrium.
Learn more about Probability from the link given below.
https://brainly.com/question/31828911
#SPJ4
QUESTION 3 What is the mutual inductance in nk of these two loops of wire? Loop 1 Leop 44 20 Both loops are rectangles, but the length of the horizontal components of loop 1 are infinite compared to the size of loop 2 The distance d-5 cm and the system is in vacuum
Mutual inductance is an electromagnetic quantity that describes the induction of one coil in response to a variation of current in another nearby coil.
Mutual inductance is denoted by M and is measured in units of Henrys (H).Given that both loops are rectangles, the length of the horizontal components of loop 1 are infinite compared to the size of loop 2. The distance d-5 cm and the system is in vacuum, we are to calculate the mutual inductance of both loops.
The formula for calculating mutual inductance is given as:
[tex]M = (µ₀ N₁N₂A)/L, whereµ₀ = 4π × 10−7 H/m[/tex] (permeability of vacuum)
N₁ = number of turns of coil
1N₂ = number of turns of coil 2A = area of overlap between the two coilsL = length of the coilLoop 1,Leop 44,20 has a rectangular shape with dimensions 44 cm and 20 cm, thus its area
[tex]A1 is: A1 = 44 x 20 = 880 cm² = 0.088 m²[/tex].
Loop 2, on the other hand, has a rectangular shape with dimensions 5 cm and 20 cm, thus its area A2 is:
[tex]A2 = 5 x 20 = 100 cm² = 0.01 m².[/tex]
To know more about electromagnetic visit:
https://brainly.com/question/23727978
#SPJ11
Explain what invariants in special relativity mean, why they are
important, and give an example.
Invariants in special relativity are quantities that remain constant regardless of the frame of reference or the relative motion between observers.
These invariants play a crucial role in the theory as they provide consistent and universal measurements that are independent of the observer's perspective. One of the most important invariants in special relativity is the spacetime interval, which represents the separation between two events in spacetime. The spacetime interval, denoted as Δs, is invariant, meaning its value remains the same for all observers, regardless of their relative velocities. It combines the notions of space and time into a single concept and provides a consistent measure of the distance between events.
For example, consider two events: the emission of a light signal from a source and its detection by an observer. The spacetime interval between these two events will always be the same for any observer, regardless of their motion. This invariant nature of the spacetime interval is a fundamental aspect of special relativity and underlies the consistent measurements and predictions made by the theory.
Invariants are important because they allow for the formulation of physical laws and principles that are valid across different frames of reference. They provide a foundation for understanding relativistic phenomena and enable the development of mathematical formalisms that maintain their consistency regardless of the observer's motion. Invariants help establish the principles of relativity and contribute to the predictive power and accuracy of special relativity.
To know more about spacetime interval, visit:
https://brainly.com/question/28232104
#SPJ11
Match each description of property of a substance with the most appropriate of the three common states of matter. If the property may apply to more than one state of matter, match it to the choice that lists all states of matter that are appropriate. Some choices may go unused. Hint a ✓ Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. can carry a sound wave takes on the shape of the container retains its own shape and size takes on the size of the container g f a f fis included as "fluids" a. solids b. solids and gases c. liquids d. gases e. solids and liquids f. liquids and gases g. solids, liquids, and gases
Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. - a. solids ,Can carry a sound wave - c. liquids ,Takes on the shape of the container - f. liquids and gases ,Retains its own shape and size - a. solids, Takes on the size of the container - g. solids, liquids, and gases,The property of being a fluid is included as "fluids" - f. liquids and gases
Matching the descriptions with the appropriate states of matter:
Atoms and molecules in it are significantly attracted to neighboring atoms and molecules: a. solids
Can carry a sound wave: c. liquids
Takes on the shape of the container: f. liquids and gases
Retains its own shape and size: a. solids
Takes on the size of the container: g. solids, liquids, and gases
The property of being a fluid is included as "fluids": f. liquids and gases
The descriptions of properties of substances are matched with the most appropriate states of matter as follows:
Solids are characterized by significant attraction between atoms and molecules, retaining their own shape and size.
Liquids can carry a sound wave, take on the shape of the container, and are included in the category of fluids.
Gases take on the size of the container and are also included in the category of fluids.
Solids are characterized by significant attractions between atoms and molecules, and they retain their own shape and size. Liquids can carry sound waves, take on the size of the container, and are included in the category of fluids. Gases take on the shape of the container. Both solids and liquids can take on the size of the container.
To know more about sound wave, visit:
https://brainly.com/question/1173066
#SPJ11
A uniform magnetic field B has a strength of 5.5 T and a direction of 25.0° with respect to the +x-axis. A proton (1.602e-19)is traveling through the field at an angle of -15° with respect to the +x-axis at a velocity of 1.00 ×107 m/s. What is the magnitude of the magnetic force on the proton?
The magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.
Given values: B = 5.5 Tθ = 25°q = 1.602 × 10⁻¹⁹ VC = 1.00 × 10⁷ m/s Formula: The formula to calculate the magnetic force is given as;
F = qvBsinθ
Where ;F is the magnetic force on the particle q is the charge on the particle v is the velocity of the particle B is the magnetic field strengthθ is the angle between the velocity of the particle and the magnetic field strength Firstly, we need to determine the angle between the velocity vector and the magnetic field vector.
From the given data, The angle between velocity vector and x-axis;α = -15°The angle between magnetic field vector and x-axis;β = 25°The angle between the velocity vector and magnetic field vectorθ = 180° - β + αθ = 180° - 25° - 15°θ = 140° = 2.44346 rad Now, we can substitute all given values in the formula;
F = qvBsinθF
= (1.602 × 10⁻¹⁹ C) (1.00 × 10⁷ m/s) (5.5 T) sin (2.44346 rad)F
= 4.31 × 10⁻¹¹ N
Therefore, the magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.
To learn more about magnetic force visit
https://brainly.com/question/10353944
#SPJ11
A flat coil of wire consisting of 24 turns, each with an area of 44 cm2, is placed perpendicular to a uniform magnetic field that increases in magnitude at a constant rate of 2.0 T to 6.0 T in 2.0 s. If the coil has a total resistance of 0.84 ohm, what is the magnitude of the induced current (A)? Give your answer to two decimal places.
The magnitude of the induced current is 0.47 A.
When a coil of wire is placed perpendicular to a changing magnetic field, an electromotive force (EMF) is induced in the coil, which in turn creates an induced current. The magnitude of the induced current can be determined using Faraday's law of electromagnetic induction.
In this case, the coil has 24 turns, and each turn has an area of 44 cm². The changing magnetic field has a constant rate of increase from 2.0 T to 6.0 T over a period of 2.0 seconds. The total resistance of the coil is 0.84 ohm.
To calculate the magnitude of the induced current, we can use the formula:
EMF = -N * d(BA)/dt
Where:
EMF is the electromotive force
N is the number of turns in the coil
d(BA)/dt is the rate of change of magnetic flux
The magnetic flux (BA) through each turn of the coil is given by:
BA = B * A
Where:
B is the magnetic field
A is the area of each turn
Substituting the given values into the formulas, we have:
EMF = -N * d(BA)/dt = -N * (B2 - B1)/dt = -24 * (6.0 T - 2.0 T)/2.0 s = -48 V
Since the total resistance of the coil is 0.84 ohm, we can use Ohm's law to calculate the magnitude of the induced current:
EMF = I * R
Where:
I is the magnitude of the induced current
R is the total resistance of the coil
Substituting the values into the formula, we have:
-48 V = I * 0.84 ohm
Solving for I, we get:
I = -48 V / 0.84 ohm ≈ 0.47 A
Therefore, the magnitude of the induced current is approximately 0.47 A.
Learn more about induced current
brainly.com/question/31686728
#SPJ11
An open cylindrical tank with radius of 0.30 m and a height of 1.2 m is filled with water. Determine the spilled volume of the water if it was rotated by 90 rpm.
Choices:
a) 0.095 cu.m.
b) 0.085 cu.m.
c) 0.047 cu.m.
d) 0.058 cu.m.
The spilled volume of water from the open cylindrical tank, when rotated at 90 rpm, is approximately 0.095 cubic meters.
When the cylindrical tank is rotated, the water inside experiences centrifugal force. This force pushes the water towards the outer edges of the tank, causing it to rise and potentially spill over. To determine the spilled volume, we need to calculate the difference in height between the water level at rest and the water level when the tank is rotating at 90 rpm.
First, we calculate the circumference of the tank using the formula: circumference = 2πr, where r is the radius. Plugging in the given radius of 0.30 meters, we get a circumference of approximately 1.89 meters.
Next, we need to determine the distance traveled by a point on the water's surface when the tank completes one revolution at 90 rpm. To do this, we use the formula: distance = (circumference × rpm) / 60. Substituting the values, we find the distance traveled per minute is approximately 2.98 meters.
Since the tank has a height of 1.2 meters, the ratio of the distance traveled to the tank height is approximately 2.48. This means that the water level will rise by 2.48 times the height of the tank when rotating at 90 rpm.
Finally, we calculate the spilled volume by subtracting the initial height of the water from the increased height. The spilled volume is given by the formula: volume = πr^2(h_new - h_initial), where r is the radius and h_new and h_initial are the new and initial heights of the water, respectively.
Plugging in the values, we get: volume = π(0.3^2)(1.2 × 2.48 - 1.2) ≈ 0.095 cubic meters.Therefore, the spilled volume of water is approximately 0.095 cubic meters.
Learn more about spilled volume
brainly.com/question/11799197
#SPJ11
Susan's 10.0 kg baby brother Paul sits on a mat. Susan pulls the mat across the floor using a rope that is angled 30∘ above the floor. The tension is a constant 31.0 N and the coefficient of friction is 0.210.
Use work and energy to find Paul's speed after being pulled 2.90 m .
Paul's speed after being pulled at distance of 2.90 m is approximately 2.11 m/s
Mass of Paul (m) = 10.0 kg
Angle of the rope (θ) = 30°
Tension force (T) = 31.0 N
Coefficient of friction (μ) = 0.210
Distance pulled (d) = 2.90 m
First, let's calculate the work done by the tension force:
Work done by tension force (Wt) = T * d * cos(θ)
Wt = 31.0 N * 2.90 m * cos(30°)
Wt = 79.741 J
Next, let's calculate the work done by friction:
Work done by friction (Wf) = μ * m * g * d
where g is the acceleration due to gravity (approximately 9.8 m/s²)
Wf = 0.210 * 10.0 kg * 9.8 m/s² * 2.90 m
Wf = 57.471 J
The net work done on Paul is the difference between the work done by the tension force and the work done by friction:
Net work done (Wnet) = Wt - Wf
Wnet = 79.741 J - 57.471 J
Wnet = 22.270 J
According to the work-energy principle, the change in kinetic energy (ΔKE) is equal to the net work done:
ΔKE = Wnet
ΔKE = 22.270 J
Since Paul starts from rest, his initial kinetic energy is zero (KE_initial = 0). Therefore, the final kinetic energy (KE_final) is equal to the change in kinetic energy:
KE_final = ΔKE = 22.270 J
We can use the kinetic energy formula to find Paul's final speed (v):
KE_final = 0.5 * m * v²
22.270 J = 0.5 * 10.0 kg * v²
22.270 J = 5.0 kg * v²
Dividing both sides by 5.0 kg:
v² = 4.454
Taking the square root of both sides:
v ≈ 2.11 m/s
Therefore, Paul's speed after being pulled at a distance of 2.90 m is approximately 2.11 m/s.
Learn more about tension force:
https://brainly.com/question/30343908
#SPJ11
6) Find the buoyant force on a 0.1 m3 block of wood with density 700 kg/m3 floating in a freshwater lake. (5 pts)
The buoyant force on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.
Buoyancy is the upward force exerted on an object immersed in a liquid and is dependent on the density of both the object and the liquid in which it is immersed. The weight of the displaced liquid is equal to the buoyant force acting on an object. In this case, the volume of the block of wood is 0.1 m3 and its density is 700 kg/m3. According to Archimedes' principle, the weight of the displaced water is equal to the buoyant force. Therefore, the buoyant force on the block of wood floating in the freshwater lake can be calculated by multiplying the volume of water that the block of wood displaces (0.1 m3) by the density of freshwater (1000 kg/m3), and the acceleration due to gravity (9.81 m/s2) as follows:
Buoyant force = Volume of displaced water x Density of freshwater x Acceleration due to gravity
= 0.1 m3 x 1000 kg/m3 x 9.81 m/s2
= 981 N
However, since the density of the block of wood is less than the density of freshwater, the weight of the block of wood is less than the weight of the displaced water. As a result, the buoyant force acting on the block of wood is the difference between the weight of the displaced water and the weight of the block of wood, which can be calculated as follows:
Buoyant force = Weight of displaced water -
Weight of block of wood
= [Volume of displaced water x Density of freshwater x Acceleration due to gravity] - [Volume of block x Density of block x Acceleration due to gravity]
= [0.1 m3 x 1000 kg/m3 x 9.81 m/s2] - [0.1 m3 x 700 kg/m3 x 9.81 m/s2]
= 686 N
Therefore, the buoyant force acting on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.
To learn more about buoyant force click brainly.com/question/11884584
#SPJ11
Two identical waves traveling in the +x direction have a wavelength of 2m and a frequency of 50Hz. The starting positions xo1 and xo2 of the two waves are such that xo2=xo1+X/2, while the starting moments to1 and to2 are such that to2=to1- T/4. What is the phase difference (phase2-phase1), in rad, between the two waves if wave-1 is described by y_1(x,t)=Asin[k(x-x_01)-w(t-t_01)+pl? 0 11/2 3m/2 None of the listed options
The phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.
To find the phase difference between the two waves, we need to compare the phase terms in their respective wave equations.
For wave-1, the phase term is given by:
ϕ₁ = k(x - x₀₁) - ω(t - t₀₁)
For wave-2, the phase term is given by:
ϕ₂ = k(x - x₀₂) - ω(t - t₀₂)
Substituting the given values:
x₀₂ = x₀₁ + λ/2
t₀₂ = t₀₁ - T/4
We know that the wavelength λ is equal to 2m, and the frequency f is equal to 50Hz. Therefore, the wave number k can be calculated as:
k = 2π/λ = 2π/2 = π
Similarly, the angular frequency ω can be calculated as:
ω = 2πf = 2π(50) = 100π
Substituting these values into the phase equations, we get:
ϕ₁ = π(x - x₀₁) - 100π(t - t₀₁)
ϕ₂ = π(x - (x₀₁ + λ/2)) - 100π(t - (t₀₁ - T/4))
Simplifying ϕ₂, we have:
ϕ₂ = π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)
Now we can calculate the phase difference (ϕ₂ - ϕ₁):
(ϕ₂ - ϕ₁) = [π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)] - [π(x - x₀₁) - 100π(t - t₀₁)]
= π(λ/2 - T/4)
Substituting the values of λ = 2m and T = 1/f = 1/50Hz = 0.02s, we can calculate the phase difference:
(ϕ₂ - ϕ₁) = π(2/2 - 0.02/4) = π(1 - 0.005) = π(0.995) ≈ 3π/2
Therefore, the phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.
Know more about wave equations:
https://brainly.com/question/4692600
#SPJ4
A current circulates around a 2. 10-mm-diameter superconducting ring. What is the ring's magnetic dipole moment? Express your answer in amper-meters squared with the appropriate units. What is the on-axis magnetic field strength 5.10 cm from the ring? Express your answer with the appropriate units.
The magnetic dipole moment of the superconducting ring is 3.48 × 10⁻⁹ I A·m² and the magnetic field strength of the ring is 1.70 × 10⁻⁸ I T.
Given the following values:Diameter (d) = 2.10 mm Radius (r) = d/2
Magnetic Permeability of Free Space = μ = 4π × 10⁻⁷ T·m/A
The magnetic dipole moment (µ) of the superconducting ring can be calculated by the formula:µ = Iπr²where I is the current that circulates around the ring, π is a mathematical constant (approx. 3.14), and r is the radius of the ring.Substituting the known values, we have:µ = Iπ(2.10 × 10⁻³/2)²= 3.48 × 10⁻⁹ I A·m² .
The magnetic field strength (B) of the superconducting ring at a point 5.10 cm from the ring (on its axis) can be calculated using the formula:B = µ/4πr³where r is the distance from the ring to the point where the magnetic field strength is to be calculated.Substituting the known values, we have:B = (3.48 × 10⁻⁹ I)/(4π(5.10 × 10⁻²)³)= 1.70 × 10⁻⁸ I T (answer to second question)
Hence, the magnetic dipole moment of the superconducting ring is 3.48 × 10⁻⁹ I A·m² and the magnetic field strength of the ring is 1.70 × 10⁻⁸ I T.
For further information on Magnetic field strength visit :
https://brainly.com/question/31307493
#SPJ11
Question 14 1 points A 865 kg car traveling east collides with a 2.241 kg truck traveling west at 24.8 ms. The car and the truck stick together after the colision. The wreckage moves west at speed of 903 m/s What is the speed of the car in (n)? (Write your answer using 3 significant figures
The speed of the car is given by the absolute value of its velocity, so the speed of the car is approximately 906 m/s (rounded to three significant figures).
Let's denote the initial velocity of the car as V_car and the initial velocity of the truck as V_truck. Since the car is traveling east and the truck is traveling west, we assign a negative sign to the truck's velocity.
The total momentum before the collision is given by:
Total momentum before = (mass of car * V_car) + (mass of truck * V_truck)
After the collision, the car and the truck stick together, so they have the same velocity. Let's denote this velocity as V_wreckage.
The total momentum after the collision is given by:
Total momentum after = (mass of car + mass of truck) * V_wreckage
According to the conservation of momentum, these two quantities should be equal:
(mass of car * V_car) + (mass of truck * V_truck) = (mass of car + mass of truck) * V_wreckage
Let's substitute the given values into the equation and solve for V_car:
(865 kg * V_car) + (2.241 kg * (-24.8 m/s)) = (865 kg + 2.241 kg) * (-903 m/s)
Simplifying the equation: 865V_car - 55.582m/s = 867.241 kg * (-903 m/s)
865V_car = -783,182.823 kg·m/s + 55.582 kg·m/s
865V_car = -783,127.241 kg·m/s
V_car = -783,127.241 kg·m/s / 865 kg
V_car ≈ -905.708 m/s
The speed of the car is given by the absolute value of its velocity, so the speed of the car is approximately 906 m/s (rounded to three significant figures).
To learn more about velocity:
https://brainly.com/question/18084516
#SPJ11
Which of the following does motional emf not depend upon for the case of a rod moving along a pair of conducting tracks? Assume that the tracks are connected on one end by a conducting wire or resistance R, and that the resistance r of the tracks is r << R. The rod itself has negligible resistance.
Group of answer choices
a. The resistances R and r
b. The speed of the rod
c. the length of the rod
d. the strength of the magnetic field
Motional emf does not depend on the resistances R and r, the length of the rod, or the strength of the magnetic field.
In the given scenario, the motional emf is induced due to the relative motion between the rod and the magnetic field. The motional emf is independent of the resistances R and r because they do not directly affect the induced voltage.
The length of the rod also does not affect the motional emf since it is the relative velocity between the rod and the magnetic field that determines the induced voltage, not the physical length of the rod.
Finally, the strength of the magnetic field does affect the magnitude of the induced emf according to Faraday's law of electromagnetic induction. Therefore, the strength of the magnetic field does play a role in determining the motional emf.
To learn more about magnetic field
Click here brainly.com/question/19542022
#SPJ11
The study of the interaction of electrical and magnetic fields, and of their interaction with matter is called superconductivity.
a. true
b. false
b. false. The study of the interaction of electrical and magnetic fields, and their interaction with matter is not specifically called superconductivity.
Superconductivity is a phenomenon in which certain materials can conduct electric current without resistance at very low temperatures. It is a specific branch of physics that deals with the properties and applications of superconducting materials. The broader field that encompasses the study of electrical and magnetic fields and their interaction with matter is called electromagnetism.
To learn more about magnetic, Click here: brainly.com/question/23881929?
#SPJ11
Q C Review. A light spring has unstressed length 15.5cm . It is described by Hooke's law with spring constant. 4.30 N/m .One end of the horizontal spring is held on a fixed vertical axle, and the other end is attached to a puck of mass m that can move without friction over a horizontal surface. The puck is set into motion in a circle with a period of 1.30s .Evaluate x for (b) m=0.0700kg
One end of the spring is attached to a fixed vertical axle, while the other end is connected to a puck of mass m. The puck moves without friction on a horizontal surface in a circular motion with a period of 1.30 s.
The unstressed length of the light spring is 15.5 cm, and its spring constant is 4.30 N/m.
To evaluate x, we can use the formula for the period of a mass-spring system in circular motion:
T = 2π√(m/k)
Rearranging the equation, we can solve for x:
x = T²k / (4π²m)
Substituting the given values:
T = 1.30 s
k = 4.30 N/m
m = 0.0700 kg
x = (1.30 s)²(4.30 N/m) / (4π²)(0.0700 kg)
Calculate this expression to find the value of x.
to learn more about vertical axle
https://brainly.com/question/34191913
#SPJ11
A highway is made of concrete slabs that are 17.1 m long at 20.0°C. Expansion coefficient of concrete is α = 12.0 × 10^−6 K^−1.
a. If the temperature range at the location of the highway is from −20.0°C to +33.5°C, what size expansion gap should be left (at 20.0°C) to prevent buckling of the highway? answer in mm
b. If the temperature range at the location of the highway is from −20.0°C to +33.5°C, how large are the gaps at −20.0°C? answer in mm
The gap size at -20.0°C is 150 mm + 0.9 mm + 7.7 mm = 159.6 mm.
a. The expansion gap size at 20.0°C to prevent buckling of the highway is 150 mm. b.
The gap size at -20.0°C is 159.6 mm.
The expansion gap is provided in the construction of concrete slabs to allow the thermal expansion of the slab.
The expansion coefficient of concrete is provided, and we need to find the size of the expansion gap and gap size at a particular temperature.
The expansion gap size can be calculated by the following formula; Change in length α = Expansion coefficient L = Initial lengthΔT = Temperature difference
At 20.0°C, the initial length of the concrete slab is 17.1 mΔT = 33.5°C - (-20.0°C)
= 53.5°CΔL
= 12.0 × 10^-6 K^-1 × 17.1 m × 53.5°C
= 0.011 mm/m × 17.1 m × 53.5°C
= 10.7 mm
The size of the expansion gap should be twice the ΔL.
Therefore, the expansion gap size at 20.0°C to prevent buckling of the highway is 2 × 10.7 mm = 21.4 mm
≈ 150 mm.
To find the gap size at -20.0°C, we need to use the same formula.
At -20.0°C, the initial length of the concrete slab is 17.1 m.ΔT = -20.0°C - (-20.0°C)
= 0°CΔL
= 12.0 × 10^-6 K^-1 × 17.1 m × 0°C
= 0.0 mm/m × 17.1 m × 0°C
= 0 mm
The gap size at -20.0°C is 2 × 0 mm = 0 mm.
However, at -20.0°C, the slab is contracted by 0.9 mm due to the low temperature.
Therefore, the gap size at -20.0°C is 150 mm + 0.9 mm + 7.7 mm = 159.6 mm.
Learn more about gap size from the given link;
https://brainly.com/question/31841356
#SPJ11
Two point charges produce an electrostatic force of 6.87 × 10-3 N Determine the electrostatic force produced if charge 1 is doubled, charge 2 is tripled and the distance between them is
alf.
elect one:
) a. 1.65 x 10-1 N • b. 6.87 × 10-3 N ) c. 4.12 × 10-2.N
) d. 2.06 x 10-2 N
The electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved is approximately 1.48 N. None of the provided answer choices (a), (b), (c), or (d) match this value.
To determine the electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved, we can use Coulomb's Law.
Coulomb's Law states that the electrostatic force (F) between two point charges is given by the equation:
F = k * (|q1| * |q2|) / r^2
where k is the electrostatic constant (k ≈ 8.99 × 10^9 Nm^2/C^2), |q1| and |q2| are the magnitudes of the charges, and r is the distance between them.
Let's denote the original values of charge 1, charge 2, and the distance as q1, q2, and r, respectively. Then the modified values can be represented as 2q1, 3q2, and r/2.
According to the problem, the electrostatic force is 6.87 × 10^(-3) N for the original configuration. Let's denote this force as F_original.
Now, let's calculate the modified electrostatic force using the modified values:
F_modified = k * (|(2q1)| * |(3q2)|) / ((r/2)^2)
= k * (6q1 * 9q2) / (r^2/4)
= k * 54q1 * q2 / (r^2/4)
= 216 * (k * q1 * q2) / r^2
Since k * q1 * q2 / r^2 is the original electrostatic force (F_original), we have:
F_modified = 216 * F_original
Substituting the given value of F_original = 6.87 × 10^(-3) N into the equation, we get:
F_modified = 216 * (6.87 × 10^(-3) N)
= 1.48 N
Therefore, the electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved is approximately 1.48 N.
None of the provided answer choices matches this value, so none of the options (a), (b), (c), or (d) are correct.
To learn more about electrostatic force visit : https://brainly.com/question/17692887
#SPJ11
A solenoid with 32 turns per centimeter carries a current I. An electron moves within the solenoid in a circle that has a radius of 2.7 cm and is perpendicular to the axis of the solenoid. If the speed of the electron is 4.0 x 105 m/s, what is I (in A)?
When a current flows through a solenoid, it generates a magnetic field. The magnetic field is strongest in the center of the solenoid and its strength decreases as the distance from the center of the solenoid increases.
The magnetic field produced by a solenoid can be calculated using the following formula:[tex]B = μ₀nI[/tex].
where:B is the magnetic fieldμ₀ is the permeability of free spacen is the number of turns per unit length of the solenoidI is the current flowing through the solenoid.The magnetic field produced by a solenoid can also be calculated using the following formula:B = µ₀nI.
When an electron moves in a magnetic field, it experiences a force that is perpendicular to its velocity. This force causes the electron to move in a circular path with a radius given by:r = mv/qB.
where:r is the radius of the circular path m is the mass of the electron v is the velocity of the electronq is the charge on the electronB is the magnetic fieldThe speed of the electron is given as v = 4.0 x 10⁵ m/s.
To know more about solenoid visit:
https://brainly.com/question/21842920
#SPJ11
Suppose the magnetic field along an axis of a cylindrical region is given by B₂ = Bo(1 + vz²) sin wt, where is a constant. Suppose the o-component of B is zero, that is B = 0. (a) Calculate the radial B,(s, z) using the divergence of the magnetic field. (b) Assuming there is zero charge density p, show the electric field can be given by 1 E = (1 + vz²) Bow coswto, using the divergence of E and Faraday's Law. (c) Use Ampere-Maxwell's Equation to find the current density J(s, z).
a) The radial component of the magnetic field is:
B_r = Bo(2vwtz + C₁)
b) The radial component of the electric field is:
E_r = -2v Bow (vz/wt) sin(wt) - 2v Bow C₂
Comparing this with the given expression (1 + vz²) Bow cos(wt), we can equate the corresponding terms:
-2v Bow (vz/wt) sin(wt) = 0
This implies that either v = 0 or w = 0. However, since v is given as a constant, it must be that w = 0.
c) The current density J:
J = ε₀ Bow (1 + vz²) sin(wt)
Explanation:
To solve the given problem, we'll go step by step:
(a) Calculate the radial B(r, z) using the divergence of the magnetic field:
The divergence of the magnetic field is given by:
∇ · B = 0
In cylindrical coordinates, the divergence can be expressed as:
∇ · B = (1/r) ∂(rB_r)/∂r + ∂B_z/∂z + (1/r) ∂B_θ/∂θ
Since B does not have any θ-component, we have:
∇ · B = (1/r) ∂(rB_r)/∂r + ∂B_z/∂z = 0
We are given that B_θ = 0, and the given expression for B₂ can be written as B_z = Bo(1 + vz²) sin(wt).
Let's find B_r by integrating the equation above:
∂B_z/∂z = Bo ∂(1 + vz²)/∂z sin(wt) = Bo(2v) sin(wt)
Integrating with respect to z:
B_r = Bo(2v) ∫ sin(wt) dz
Since the integration of sin(wt) with respect to z gives us wtz + constant, we can write:
B_r = Bo(2v) (wtz + C₁)
where C₁ is the constant of integration.
So, the radial component of the magnetic field is:
B_r = Bo(2vwtz + C₁)
(b) Assuming zero charge density p, show the electric field can be given by E = (1 + vz²) Bow cos(wt) using the divergence of E and Faraday's Law:
The divergence of the electric field is given by:
∇ · E = ρ/ε₀
Since there is zero charge density (ρ = 0), we have:
∇ · E = 0
In cylindrical coordinates, the divergence can be expressed as:
∇ · E = (1/r) ∂(rE_r)/∂r + ∂E_z/∂z + (1/r) ∂E_θ/∂θ
Since E does not have any θ-component, we have:
∇ · E = (1/r) ∂(rE_r)/∂r + ∂E_z/∂z = 0
Let's find E_r by integrating the equation above:
∂E_z/∂z = ∂[(1 + vz²) Bow cos(wt)]/∂z = -2vz Bow cos(wt)
Integrating with respect to z:
E_r = -2v Bow ∫ vz cos(wt) dz
Since the integration of vz cos(wt) with respect to z gives us (vz/wt) sin(wt) + constant, we can write:
E_r = -2v Bow [(vz/wt) sin(wt) + C₂]
where C₂ is the constant of integration.
So, the radial component of the electric field is:
E_r = -2v Bow (vz/wt) sin(wt) - 2v Bow C₂
Comparing this with the given expression (1 + vz²) Bow cos(wt), we can equate the corresponding terms:
-2v Bow (vz/wt) sin(wt) = 0
This implies that either v = 0 or w = 0. However, since v is given as a constant, it must be that w = 0.
(c) Use Ampere-Maxwell's Equation to find the current density J(s, z):
Ampere-Maxwell's equation in differential form is given by:
∇ × B = μ₀J + μ₀ε₀ ∂E/∂t
In cylindrical coordinates, the curl of B can be expressed as:
∇ × B = (1/r) ∂(rB_θ)/∂z - ∂B_z/∂θ + (1/r) ∂(rB_z)/∂θ
Since B has no θ-component, we can simplify the equation to:
∇ × B = (1/r) ∂(rB_z)/∂θ
Differentiating B_z = Bo(1 + vz²) sin(wt) with respect to θ, we get:
∂B_z/∂θ = -Bo(1 + vz²) w cos(wt)
Substituting this back into the curl equation, we have:
∇ × B = (1/r) ∂(rB_z)/∂θ = -Bo(1 + vz²) w (1/r) ∂(r)/∂θ sin(wt)
∇ × B = -Bo(1 + vz²) w ∂r/∂θ sin(wt)
Since the cylindrical region does not have an θ-dependence, ∂r/∂θ = 0. Therefore, the curl of B is zero:
∇ × B = 0
According to Ampere-Maxwell's equation, this implies:
μ₀J + μ₀ε₀ ∂E/∂t = 0
μ₀J = -μ₀ε₀ ∂E/∂t
Taking the time derivative of E = (1 + vz²) Bow cos(wt), we get:
∂E/∂t = -Bow (1 + vz²) sin(wt)
Substituting this into the equation above, we have:
μ₀J = μ₀ε₀ Bow (1 + vz²) sin(wt)
Finally, dividing both sides by μ₀, we obtain the current density J:
J = ε₀ Bow (1 + vz²) sin(wt)
To know more about Faraday's Law, visit:
https://brainly.com/question/32089008
#SPJ11
What is the electrostatic force of attraction between 2 positively charged particles separated by 0.30 meter distance and with a charge of 8.0x10-6 C and 5.0x10-6 C respectively? A
8.0×10^5 N 1.2 N
2.4×10^5 N 4.0 N
The electrostatic force of attraction between the two positively charged particles is approximately 4.4 × 10^-9 N.
The electrostatic force of attraction between two charged particles can be calculated using Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. Mathematically, it can be expressed as:
F = (k * q1 * q2) / r^2
Where: F is the electrostatic force of attraction, k is the electrostatic constant (approximately 9 × 10^9 Nm^2/C^2), q1 and q2 are the charges of the particles, and r is the distance between the particles.
Plugging in the given values: q1 = 8.0 × 10^-6 C q2 = 5.0 × 10^-6 C r = 0.30 m
F = (9 × 10^9 Nm^2/C^2) * (8.0 × 10^-6 C) * (5.0 × 10^-6 C) / (0.30 m)^2
Simplifying the equation: F = (9 × 8.0 × 5.0 × 10^-6 × 10^-6) / (0.09) F = 36 × 10^-12 / 0.09 F = 4 × 10^-10 / 0.09 F ≈ 4.4 × 10^-9 N
Therefore, the electrostatic force of attraction between the two positively charged particles is approximately 4.4 × 10^-9 N.
Learn more about electrostatic force from the link
https://brainly.com/question/20797960
#SPJ11
Determine the number of electrons, protons, and neutrons in
argon
3818Ar
.
HINT
(a)
electrons
(b)
protons
(c)
neutrons
The number of electrons in Argon is 18, the number of protons is 18, and the number of neutrons is 20.
Now, let's proceed to the second part of the question. Here's how to determine the number of electrons, protons, and neutrons in Argon 38 :18 Ar :Since the atomic number of Argon is 18, it has 18 protons in its nucleus, which is also equal to its atomic number.
Since Argon is neutral, it has 18 electrons orbiting around its nucleus.In order to determine the number of neutrons, we have to subtract the number of protons from the atomic mass. In this case, the atomic mass of Argon is 38.
Therefore: Number of neutrons = Atomic mass - Number of protons Number of neutrons = 38 - 18 Number of neutrons = 20 Therefore, the number of electrons in Argon is 18, the number of protons is 18, and the number of neutrons is 20
Know more about electrons here:
https://brainly.com/question/12001116
#SPJ11
The figure below shows a ball of mass m=1.9 kg which is connected to a string of length L=1.9 m and moves in a vertical circle. Only gravity and the tension in the string act on the ball. If the velocity of the ball at point A is v0=4.2 m/s, what is the tension T in the string when the ball reaches the point B?
The tension in the string at point B is approximately 29.24 N.
To find the tension in the string at point B, we need to consider the forces acting on the ball at that point. At point B, the ball is at the lowest position in the vertical circle.
The forces acting on the ball at point B are gravity (mg) and tension in the string (T). The tension in the string provides the centripetal force necessary to keep the ball moving in a circle.
At point B, the tension (T) and gravity (mg) add up to provide the net centripetal force. The net centripetal force is given by:
T + mg = mv^2 / R
Where m is the mass of the ball, g is the acceleration due to gravity, v is the velocity of the ball, and R is the radius of the circular path.
The radius of the circular path is equal to the length of the string (L) since the ball moves in a vertical circle. Therefore, R = L = 1.9 m.
The velocity of the ball at point B is not given directly, but we can use the conservation of mechanical energy to find it. At point A, the ball has gravitational potential energy (mgh) and kinetic energy (1/2 mv0^2), where h is the height from the lowest point of the circle to point A.
At point B, all the gravitational potential energy is converted into kinetic energy, so we have:
mgh = 1/2 mv^2
Solving for v, we find:
v = sqrt(2gh)
Substituting the given values of g (9.8 m/s^2) and h (L = 1.9 m), we can calculate the velocity at point B:
v = sqrt(2 * 9.8 * 1.9) ≈ 7.104 m/s
Now we can substitute the values into the equation for net centripetal force:
T + mg = mv^2 / R
T + (1.9 kg)(9.8 m/s^2) = (1.9 kg)(7.104 m/s)^2 / 1.9 m
Simplifying and solving for T, we get:
T ≈ 29.24 N
Therefore, the tension in the string at point B is approximately 29.24 N.
To know more about tension click here:
https://brainly.com/question/33231961
#SPJ11