The energy required to move the electron to the second excited state is 0.5 eV.
How do we calculate?Ground state energy (E₁) = 0.5 eV
We know that the energy levels in a harmonic oscillator are equally spaced.
The energy difference between consecutive levels is :
ΔE = E₂ - E₁ = E₃ - E₂ = E₄ - E₃ = ...
The energy levels are equally spaced, and because of that the energy difference is constant.
In conclusion, the energy required to move from the ground state (E₁) to the second excited state (E₂) would be equal to:
ΔE = E₂ - E₁ = E₁
ΔE = E₂ - E₁
ΔE = 0.5 eV
Learn more about energy levels at:
https://brainly.com/question/14287666
#SPJ4
A positively-charged object with a mass of 0.191 kg oscillates at the end of a spring, generating ELF (extremely low frequency) radio waves that have a wavelength of 4.40×107 m. The frequency of these radio waves is the same as the frequency at which the object oscillates. What is the spring constant of the spring? Number Units
The spring constant of the spring is approximately 1.90 × 10⁻¹⁷ N/m. This value is obtained by substituting the mass of the object (0.191 kg) and the time period of oscillation (4.35536 × 10¹⁴ s²) into the formula for the spring constant (k = (4π²m) / T²).
According to the information provided, a positively-charged object with a mass of 0.191 kg oscillates at the end of a spring, generating ELF (extremely low frequency) radio waves that have a wavelength of 4.40×10^7 m.
The frequency of these radio waves is the same as the frequency at which the object oscillates. We have to determine the spring constant of the spring. The formula for calculating the spring constant is given as below;k = (4π²m) / T²
Wherek = spring constant
m = mass of the object
T = time period of oscillation
Therefore, first we need to find the time period of oscillation. The formula for time period is given as below;T = 1 / f
Where T = time period
f = frequency
Thus, substituting the given values, we get;
T = 1 / f = 1 / (f (same for radio waves))
Now, to find the spring constant, we substitute the known values of mass and time period into the formula of the spring constant: k = (4π²m) / T²k = (4 x π² x 0.191 kg) / (4.35536 x 10¹⁴ s²) k = 1.90 × 10⁻¹⁷ N/m
To know more about constant:
https://brainly.com/question/31730278
#SPJ11
An automobile traveling 76.0 km/h has tires of 70.0 cm diameter. (a) What is the angular speed of the tires about their axles? (b) If the car is brought to a stop uniformly in 39.0 complete turns of the tires, what is the magnitude of the angular acceleration of the wheels? (c) How far does the car move during the braking? (
(a) Angular speed: 60.3 rad/s
(b) Angular acceleration: 0.244 rad/s²
(c) Distance moved: 5182.4 meters
(a) To find the angular speed of the tires about their axles, we can use the formula:
Angular speed (ω) = Linear speed (v) / Radius (r)
First, let's convert the speed from km/h to m/s:
76.0 km/h = (76.0 km/h) * (1000 m/km) * (1/3600 h/s) ≈ 21.1 m/s
The radius of the tire is half of its diameter:
Radius (r) = 70.0 cm / 2 = 0.35 m
Now we can calculate the angular speed:
Angular speed (ω) = 21.1 m/s / 0.35 m ≈ 60.3 rad/s
Therefore, the angular speed of the tires about their axles is approximately 60.3 rad/s.
(b) To find the magnitude of the angular acceleration of the wheels, we can use the formula:
Angular acceleration (α) = Change in angular velocity (Δω) / Time (t)
The change in angular velocity can be found by subtracting the initial angular velocity (ω_i = 60.3 rad/s) from the final angular velocity (ω_f = 0 rad/s), as the car is brought to a stop:
Δω = ω_f - ω_i = 0 rad/s - 60.3 rad/s = -60.3 rad/s
The time (t) is given as 39.0 complete turns of the tires. One complete turn corresponds to a full circle, or 2π radians. Therefore:
Time (t) = 39.0 turns * 2π radians/turn = 39.0 * 2π rad
Now we can calculate the magnitude of the angular acceleration:
Angular acceleration (α) = (-60.3 rad/s) / (39.0 * 2π rad) ≈ -0.244 rad/s²
The magnitude of the angular acceleration of the wheels is approximately 0.244 rad/s².
(c) To find the distance the car moves during the braking, we can use the formula:
Distance (d) = Linear speed (v) * Time (t)
The linear speed is given as 21.1 m/s, and the time is the same as calculated before:
Time (t) = 39.0 turns * 2π radians/turn = 39.0 * 2π rad
Now we can calculate the distance:
Distance (d) = 21.1 m/s * (39.0 * 2π rad) ≈ 5182.4 m
Therefore, the car moves approximately 5182.4 meters during the braking.
To learn more about angular acceleration, Visit:
https://brainly.com/question/13014974
#SPJ11
A hose is connected to a faucel and used to fill a 4.0-L. container in a time of 45 s
Determine the volume flow rate in m.
The volume flow rate in m is 8.89 × 10⁻⁵ m³/s.
The volume flow rate is the measure of how much fluid is flowing through a section of a pipeline per unit time. In this case, a hose is connected to a faucet and is used to fill a 4.0-L container in 45 s. To determine the volume flow rate, we need to find out how much water is flowing through the hose per unit time.Volume flow rate = volume of water/time taken
The volume of water that flows through the hose is equal to the volume of water that fills the container.
Therefore, Volume of water = 4.0 L = 4.0 × 10⁻³ m³
Time taken = 45 s
Using the above formula,
Volume flow rate = volume of water/time taken
= 4.0 × 10⁻³ m³/45 s
= 0.0889 × 10⁻³ m³/s
= 8.89 × 10⁻⁵ m³/s
Therefore, the volume flow rate in m is 8.89 × 10⁻⁵ m³/s.
Learn more about the volume flow rate:
brainly.com/question/23127034
#SPJ11
3) A wire runs above the ground, carrying a large current. In the picture shown below, the current comes out of the page. K The Long Wire, Viewed head on The Ground A) If you stand on the ground directly underneath the wire, which way will a compass point? (Ignore the field of the Earth.) B) The wire is sagging downward. You realize that by using additional magnets, you can counteract the force of gravity on the wire, so that it doesn't sag. What direction magnetic field will be required to do this? (Hint: a current is just moving charge!) C) Show how to position bar magnet(s) near the wire to accomplish your answer from part B. (If you don't have an answer for part B, just guess a direction so you can get credit here.)
Using the concept of the magnetic field generated by current-carrying wire:
(A) The compass needle will point anticlockwise. if you are standing right below it.
(B)The magnets should be directed vertically upward.
(C) The north pole of the bar magnet should point downward.
A straight current-carrying wire generates a circular magnetic field around it as the axis.
A) The compass needle will point anticlockwise if you are standing right underneath the wire. The right-hand rule can be used to figure this out. When viewed from above, the magnetic field produced by the current will move anticlockwise around the wire if the current is exiting the page. The compass needle will point anticlockwise because its north pole lines up with the magnetic field lines.
B) The magnetic field created by the extra magnets should be directed vertically upward to oppose the pull of gravity on the wire and prevent sagging. The upward magnetic force can counterbalance the downward gravitational attraction by positioning the magnetic field in opposition to the gravitational pull.
C) You can place bar magnets in a precise way to provide the necessary upward magnetic field close to the wire. The north poles of the bar magnets should be pointed downward as you position them vertically above the wire. The magnets' south poles should be facing up. By positioning the bar magnets in this way, their magnetic fields will interact to produce an upward magnetic field close to the wire that will work to fight gravity and stop sagging.
Therefore, Using the concept of the magnetic field generated by a current-carrying wire:
(A) The compass needle will point anticlockwise. if you are standing right below it.
(B)The magnets should be directed vertically upward.
(C) The north pole of the bar magnet should point downward.
To know more about magnetic fields, click here:
https://brainly.com/question/19542022
#SPJ4
The point chargest 7 cm apart have an electric pohler501 The total change is 29 nC What are the two charges?
The problem involves two point charges that are 7 cm apart and have a total charge of 29 nC.
To determine the values of the individual charges, we can set up a system of equations based on Coulomb's law and solve for the unknown charges.
Coulomb's law states that the electric force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
Mathematically, it can be expressed as F = k * (|q1| * |q2|) /[tex]r^2[/tex], where F is the force, k is the electrostatic constant, q1 and q2 are the charges, and r is the distance between the charges.
In this problem, we are given that the charges are 7 cm apart (r = 7 cm) and the total charge is 29 nC. Let's denote the two unknown charges as q1 and q2.
Since the total charge is positive, we know that the charges on the two objects must have opposite signs. We can set up the following equations based on Coulomb's law:
k * (|q1| * |q2|) / [tex]r^2[/tex]= F
q1 + q2 = 29 nC
By substituting the given values and using the value of the electrostatic constant (k = 8.99x10^9 N [tex]m^2[/tex]/[tex]c^2[/tex]), we can solve the system of equations to find the values of q1 and q2, which represent the two charges.
Learn more about charges from the given link:
https://brainly.com/question/28721069
#SPJ11
Spaceman Spiff is on a distant planet. He observed a large bird drop a large nut onto a rock to break the shell. The nut has a mass of 6.0 kg. (I told you, it's a large bird and a large nut.) Using his handy-dandy quadricorder, Spiff is able to measure the velocity of the nut to be 19.4 m/s when it hits the ground. If the bird is at a height of 30 meters and air resistance isn't a factor, what is the acceleration due to gravity on this planet? Later, a small bird drops a small nut from the same height. The mass of this nut is 0.75 kg. Now air resistance does work on the nut as it falls. If the work done by the air resistance is 20% of the initial potential energy, what is the speed of the small nut when it hits the ground?
Part 1: The acceleration due to gravity on this planet is approximately 6.27 m/s^2.
Part 2: The speed of the small nut when it hits the ground, taking into account air resistance, is approximately 8.66 m/s.
** Part 1: To calculate the acceleration due to gravity on the distant planet, we can use the equation of motion for free fall:
v^2 = u^2 + 2as
where v is the final velocity (19.4 m/s), u is the initial velocity (0 m/s), a is the acceleration due to gravity, and s is the displacement (30 m).
Rearranging the equation, we have:
a = (v^2 - u^2) / (2s)
a = (19.4^2 - 0^2) / (2 * 30)
a = 376.36 / 60
a ≈ 6.27 m/s^2
Therefore, the acceleration due to gravity on this planet is approximately 6.27 m/s^2.
** Part 2: Considering air resistance, we need to account for the work done by air resistance, which is equal to the change in mechanical energy.
The initial potential energy of the small nut is given by:
PE = mgh
where m is the mass of the nut (0.75 kg), g is the acceleration due to gravity (6.27 m/s^2), and h is the height (30 m).
PE = 0.75 * 6.27 * 30
PE = 141.675 J
Since the work done by air resistance is 20% of the initial potential energy, we can calculate it as:
Work = 0.2 * PE
Work = 0.2 * 141.675
Work = 28.335 J
The work done by air resistance is equal to the change in kinetic energy of the nut:
Work = ΔKE = KE_final - KE_initial
KE_final = KE_initial + Work
Since the initial kinetic energy is 0, the final kinetic energy is equal to the work done by air resistance:
KE_final = 28.335 J
Using the kinetic energy formula:
KE = (1/2)mv^2
v^2 = (2 * KE_final) / m
v^2 = (2 * 28.335) / 0.75
v^2 ≈ 75.12
v ≈ √75.12
v ≈ 8.66 m/s
Therefore, the speed of the small nut when it hits the ground, taking into account air resistance, is approximately 8.66 m/s.
To learn more about air resistance: https://brainly.com/question/30199019
#SPJ11
You are asked to change a racecar's properties to make it accelerate faster. You have two options: decrease the car's drag coefficient and use better tires so that its net horizontal force is 25% larger, or remove unnecessary items and use lighter weight materials so that the car's mass is 25% smaller. Which of those changes will produce the largest acceleration? Hint: careful! Try some numbers out. Increasing the net force by 25% Decreasing the mass by 25% It doesn't matter: both of these choices will produce the same effect on the car's acceleration Not enough information
Option 2 will produce the largest acceleration.
To calculate the changes that will produce the largest acceleration, let us first consider the following formula:
F = ma
where,
F = force applied
m = mass
a = acceleration
We can assume that the force applied will be constant; hence, by reducing the drag coefficient or the mass of the car, we can observe an increase in the car's acceleration.
Option 2 will produce the largest acceleration if we consider the formula.
When we change the racecar's mass by 25% by removing unnecessary items and using lighter weight materials, we decrease the mass.
If the mass of the car is reduced, acceleration will increase accordingly.
The second option, which is to remove unnecessary items and use lighter weight materials so that the car's mass is 25% smaller, will produce the largest acceleration.
Learn more about the acceleration:
brainly.com/question/25876659
#SPJ11
A sprinter starts from rest and accelerates to her maximum speed of 9.5 m/s In a distance of 9.0 m. (a) What was her acceleration, if you assume it to be constant? 9.5 m/s X Dimensionally incorrect. Please check the type or dimension of your unit. (b) If this maximum speed is maintained for another 81.9 m, how long does it take her to run 90.9 m?
(a) The acceleration of the sprinter is approximately 5.014 m/s². (b) It takes approximately 17.284 seconds for the sprinter to run 90.9 m.
To find the acceleration of the sprinter, we can use the kinematic equation;
v² = u² + 2as
where;
v = final velocity = 9.5 m/s
u = initial velocity = 0 m/s (starting from the rest)
s = distance covered = 9.0 m
Rearranging the equation to solve for acceleration (a), we have;
Plugging in the values;
a = (9.5² - 0²) / (2 × 9.0)
a = 90.25 / 18
a ≈ 5.014 m/s²
Therefore, the acceleration of the sprinter is approximately 5.014 m/s².
a = (v² - u²) / (2s)
If the sprinter maintains the maximum speed of 9.5 m/s for another 81.9 m, we can use the equation:
s = ut + (1/2)at²
where;
s = total distance covered = 90.9 m
u = initial velocity = 9.5 m/s
a = acceleration = 0 m/s² (since the speed is maintained)
t = time taken
Rearranging the equation to solve for time (t), we have;
t = (2s) / u
Plugging in the values;
t = (2 × 81.9) / 9.5
t ≈ 17.284 seconds
Therefore, it takes approximately 17.284 seconds for the sprinter to run 90.9 m.
To know more about acceleration here
https://brainly.com/question/29761692
#SPJ4
(14.9) Atom 1 of mass 38.5 u and atom 2 of mass 40.5 u are both singly ionized with a charge of +e. After being introduced into a mass spectrometer (see the figure below) and accelerated from rest through a potential difference V = 8.09 kV, each ion follows a circular path in a uniform magnetic field of magnitude B = 0.680 T. What is the distance Δx between the points where the ions strike the detector?
The distance Δx between the points where the ions strike the detector is 0.0971 meters. In a mass spectrometer, ions are accelerated by a potential difference and then move in a circular path due to the presence of a magnetic field.
To solve this problem, we can use the equation for the radius of the circular path:
r = (m*v) / (|q| * B)
where m is the mass of the ion, v is its velocity, |q| is the magnitude of the charge, and B is the magnetic field strength. Since the ions are accelerated from rest, we can use the equation for the kinetic energy to find their velocity:
KE = q * V
where KE is the kinetic energy, q is the charge, and V is the potential difference.
Once we have the radius, we can calculate the distance Δx between the two points where the ions strike the detector. Since the ions follow circular paths with the same radius, the distance between the two points is equal to the circumference of the circle, which is given by:
Δx = 2 * π * r
By substituting the given values into the equations and performing the calculations, we find that Δx is approximately 0.0971 meters.
To learn more about distance click here brainly.com/question/31713805
#SPJ11
#9 Magnetic field strength in the center of a ring Suppose a conductor in the shape of a perfectly circular ring bears a current of \( 0.451 \) Amperes, If the conductor has a radius of \( 0.0100 \) m
The distance between the plates decreases, the force exerted on the positive plate of the capacitor increases and vice versa. Given, Speed of parallel plate capacitor = v = 34 m/s
Magnetic field = B = 4.3 TArea of each plate = A = 9.3 × 10⁻⁴ m²
Electric field within the capacitor = E = 220 N/C
Let the distance between the plates of the capacitor be d.
Now, the magnitude of the magnetic force exerted on the positive plate of the capacitor is given by
F = qVB sinθ
where q = charge on a plate = C/d
V = potential difference between the plates = Edsinθ = 1 (since velocity is perpendicular to the magnetic field)
Thus,
F = qVB
Putting the values, we get
F = qVB
= (C/d) × (E/d) × B
= (EA)/d²= (220 × 9.3 × 10⁻⁴)/d²
= 0.2046/d²
Since d is not given, we cannot calculate the exact value of the magnetic force. However, we can say that the force is inversely proportional to the square of the distance between the plates.
To know more about capacitor visit:-
https://brainly.com/question/31627158
#SPJ11
Part A Superman throws a boulder of weight 2700 N at an adversary. What horizontal force must Superman apply to the boulder to give it a horizontal acceleration of 11.4 m/s²? Express your answer in newtons. 15. ΑΣΦ SAEED ? F = Submit Request Answer N
Superman must apply a horizontal force of approximately 3142.09 N to the boulder.
To find the horizontal force that Superman must apply to the boulder we can use Newton's second law of motion.
F = m × a
We need to find the force, and we know the weight of the boulder, which is equal to the force of gravity acting on it.
The weight (W) is given as 2700 N.
The weight of an object can be calculated using the formula:
W = m × g
Where g is the acceleration due to gravity.
g= 9.8 m/s².
Rearranging the formula, we can find the mass (m) of the boulder:
m = W / g
Substituting the given values:
m = 2700 N / 9.8 m/s²
= 275.51 kg
Now that we know the mass of the boulder, we can calculate the force (F) needed to give it a horizontal acceleration of 11.4 m/s²:
F = m × a
F = 275.51 kg× 11.4 m/s²
= 3142.09 N
To learn more on Force click:
https://brainly.com/question/13191643
#SPJ4
QUESTION 5 Which of the following is NOT true? The sum of two vectors of the same magnitude cannot be zero The location of a vector on a grid has no impact on its meaning The magnitude of a vector quantity is considered a scalar quantity Any vector can be expressed as the sum of two or more vectors QUESTION 6 What would be the distance from your starting position if you were to follow the directions: "Go North 10 miles, then East 4 miles and then South 7 miles" 7 miles 5 miles 21 miles 14 miles
QUESTION 5 is: The magnitude of a vector quantity is considered a scalar quantity. This statement is NOT true.
QUESTION 6 is: 7 miles.
The answer to QUESTION 5 is: The magnitude of a vector quantity is considered a scalar quantity. This statement is NOT true. The magnitude of a vector represents its size or length and is always considered a scalar quantity.
The answer to QUESTION 6 is: 7 miles.
If you start at a certain position and go North 10 miles, you would move 10 miles in the North direction. Then, if you go East 4 miles, you would move 4 miles in the East direction. Finally, if you go South 7 miles, you would move 7 miles in the South direction.
Since the 7-mile Southward movement cancels out the initial 7-mile Northward movement, the net displacement in the North-South direction is zero. The remaining 4-mile Eastward movement determines the final distance from the starting position, which is 4 miles.
To know more about vector quantity here
https://brainly.com/question/13930100
#SPJ4
QUESTION 5. The statement "The sum of two vectors of the same magnitude cannot be zero" is NOT true.
QUESTION 6. The distance from the starting position after following the directions "Go North 10 miles, then East 4 miles, and then South 7 miles" would be 7 miles.
QUESTION 5
The statement "The sum of two vectors of the same magnitude cannot be zero" is incorrect. In fact, the sum of two vectors of the same magnitude can be zero. This occurs when the two vectors have equal magnitudes but are in opposite directions. In such cases, their combined effect cancels out, resulting in a net sum of zero.
QUESTION 6
To calculate the distance from the starting position after following the directions "Go North 10 miles, then East 4 miles, and then South 7 miles," we need to determine the net displacement. Starting from the initial point and moving North by 10 miles, we establish a displacement of 10 miles in the North direction. Then, moving East by 4 miles adds a displacement of 4 miles in the East direction. However, when we move South by 7 miles, we have a displacement in the opposite direction of the initial North direction.
Taking these displacements into account, we find that the net displacement is given by 10 miles (North) + 4 miles (East) - 7 miles (South). Simplifying this expression, we get a net displacement of 7 miles.
Therefore, the correct option for the distance from the starting position is 7 miles.
Learn more about vectors:
https://brainly.com/question/24256726
#SPJ11
2 Magnetic Domain Theory. Answer each of the following questions a) When a bar magnet is broken into two pieces, the two pieces actually become two independent magnets instead of a north-pole magnet and a south-pole magner. Explain this phenomenon b) When a magnet is heated up, it loses it magnetization power. However, when the temperature cools back down, the magnetism power returns (assuming the temperature is lower than the Curie point).
a) When a bar magnet is broken into two pieces, the two pieces become two independent magnets, and not a north-pole magnet and a south-pole magnet. This is because each piece contains its own magnetic domain, which is a region where the atoms are aligned in the same direction. The alignment of atoms in a magnetic domain creates a magnetic field. In a magnet, all the magnetic domains are aligned in the same direction, creating a strong magnetic field.
When a magnet is broken into two pieces, each piece still has its own set of magnetic domains and thus becomes a magnet itself. The new north and south poles of the pieces will depend on the arrangement of the magnetic domains in each piece.
b) When a magnet is heated up, the heat energy causes the atoms in the magnet to vibrate more, which can disrupt the alignment of the magnetic domains. This causes the magnetization power to decrease. However, when the temperature cools back down, the atoms in the magnet stop vibrating as much, and the magnetic domains can re-align, causing the magnetism power to return. This effect is assuming that the temperature is lower than the Curie point, which is the temperature at which a material loses its magnetization permanently.
Learn more about magnetism here: https://brainly.com/question/14411049
#SPJ11
I want to check the answers
A man pulls a sled along a rough horizontal surface by applying a constant force at an angle above the horizontal. In pulling the sled a horizontal distance d, the work done by the man is: Fd/cos 0 Fd
The work done by the man in pulling the sled a horizontal distance d is Fd/cos θ. Understanding this relationship allows us to calculate the work done in various scenarios involving forces applied at angles relative to the displacement.
When a force is applied at an angle above the horizontal to pull an object, the work done is calculated as the product of the force applied, the displacement of the object, and the cosine of the angle between the force and the displacement vectors.
In this case, the force applied by the man is F, and the displacement of the sled is d. The angle between the force and the displacement vectors is given as θ. Therefore, the work done can be calculated as:
Work = Force × Displacement × cos θ
Substituting the values, we have:
Work = F × d × cos θ
Thus, the work done by the man in pulling the sled a horizontal distance d is Fd/cos θ.
The work done by the man in pulling the sled a horizontal distance d is given by the formula Fd/cos θ, where F is the applied force, d is the displacement, and θ is the angle between the force and the displacement vectors. This formula takes into account the component of the force in the direction of displacement, which is determined by the cosine of the angle. Understanding this relationship allows us to calculate the work done in various scenarios involving forces applied at angles relative to the displacement.
To know more about displacement ,visit:
https://brainly.com/question/14422259
#SPJ11
Problem 1 (30 points) Consider two objects of masses m = 7.133 kg and m2 = 0.751 kg. The first mass (m) is traveling along the negative y-axis at 45.5 km/hr and strikes the second stationary mass m2, locking the two masses together. a) (5 Points) What is the velocity of the first mass before the collision? Vm= > m/s b) (3 Points) What is the velocity of the second mass before the collision? V m2=C m/s c) (1 Point) The final velocity of the two masses can be calculated using the formula number: (Note: use the formula-sheet given in the introduction section) d) (5 Points) What is the final velocity of the two masses? > m/s e) (4 Points) Choose the correct answer: f) (4 Points) What is the total initial kinetic energy of the two masses? Ki J g) (5 Points) What is the total final kinetic energy of the two masses? KE J h) (3 Points) How much of the mechanical energy is lost due to this collision? AEint-
The velocity of the first mass before the collision is [tex]$V_{m_1} = < -12.64 > \, \text{m/s}$[/tex].
the second mass is stationary (not moving) before the collision, its velocity before the collision is zero:
[tex]$V_{m_2} = < 0, 0, 0 > \, \text{m/s}$[/tex]. the final velocity of the two masses is [tex]$V_{m_f} = < -91.19 > \, \text{m/s}$[/tex]. the total initial kinetic energy of the two masses is [tex]$K_i = 570.305 \, \text{J}$[/tex].
Given:
Mass of the first object, m1 = 7.133 kg
Mass of the second object, m2 = 0.751 kg
Velocity of the first object before the collision, V1 = -45.5 km/hr
To solve the problem, we need to convert the given velocity to meters per second (m/s) and use the principles of conservation of momentum and kinetic energy.
a) To find the velocity of the first mass before the collision:
Given velocity, V1 = -45.5 km/hr
Converting km/hr to m/s:
V1 = (-45.5 km/hr) * (1000 m/km) * (1 hr/3600 s)
V1 = -12.64 m/s (rounded to two decimal places)
Therefore, the velocity of the first mass before the collision is [tex]$V_{m_1} = < -12.64 > \, \text{m/s}$[/tex].
b) Since the second mass is stationary (not moving) before the collision, its velocity before the collision is zero:
[tex]$V_{m_2} = < 0, 0, 0 > \, \text{m/s}$[/tex].
c) The final velocity of the two masses can be calculated using the law of conservation of momentum, which states that the total momentum before the collision is equal to the total momentum after the collision.
Total initial momentum = Total final momentum
[tex]$m_1 \cdot V_{m_1} + m_2 \cdot V_{m_2} = (m_1 + m_2) \cdot V_{m_f}$[/tex]
d) To find the final velocity of the two masses:
[tex]$m_1 \cdot V_{m_1} + m_2 \cdot V_{m_2} = (m_1 + m_2) \cdot V_{m_f}$[/tex]
Substituting the known values:
[tex]$(7.133 \, \text{kg}) \cdot (-12.64 \, \text{m/s}) + (0.751 \, \text{kg}) \cdot (0 \, \text{m/s}) = (7.133 \, \text{kg} + 0.751 \, \text{kg}) \cdot V_{m_f}$[/tex]
Solving for [tex]$V_{m_f}$[/tex]:
[tex]$V_{m_f} = -91.19 \, \text{m/s}$[/tex] (rounded to two decimal places)
Therefore, the final velocity of the two masses is [tex]$V_{m_f} = < -91.19 > \, \text{m/s}$[/tex].
f) To calculate the total initial kinetic energy of the two masses:
Initial kinetic energy of the first mass, [tex]$K_1 = \frac{1}{2} \cdot m_1 \cdot \left| V_{m_1} \right|^2$[/tex]
[tex]$K_1 = \frac{1}{2} \cdot 7.133 \, \text{kg} \cdot \left| -12.64 \, \text{m/s} \right|^2$[/tex]
Initial kinetic energy of the second mass, [tex]$K_2 = \frac{1}{2} \cdot m_2 \cdot \left| V_{m_2} \right|^2$[/tex]
[tex]$K_2 = \frac{1}{2} \cdot 0.751 \, \text{kg} \cdot \left| 0 \, \text{m/s} \right|^2$[/tex]
Total initial kinetic energy, [tex]$K_i = K_1 + K_2$[/tex]
Calculating the values:
[tex]$K_1 = 570.305 \, \text{J}$[/tex] (rounded to three decimal places)
[tex]$K_2 = 0 \, \text{J}$[/tex] (since the second mass is stationary)
[tex]$K_i = 570.305 \, \text{J}$[/tex]
Therefore, the total initial kinetic energy of the two masses is [tex]$K_i = 570.305 \, \text{J}$[/tex].
g) To calculate the total final kinetic energy of the two masses:
Final kinetic energy of the combined masses, [tex]$K_f = \frac{1}{2} \cdot (m_1 + m_2) \cdot \left| V_{m_f} \right|^2$[/tex]
[tex]$K_f = \frac{1}{2} \cdot (7.133 \, \text{kg} + 0.751 \, \text{kg}) \cdot \left| -91.19 \, \text{m/s} \right|^2$[/tex]
Calculating the value:
[tex]$K_f = 30263.929 \, \text{J}$[/tex] (rounded to three decimal places)
Therefore, the total final kinetic energy of the two masses is [tex]$K_f = 30263.929 \, \text{J}$[/tex].
h) The change in mechanical energy can be calculated as:
[tex]$\Delta E_{\text{int}} = K_f - K_i$[/tex]
Calculating the value:
[tex]$\Delta E_{\text{int}} = 30263.929 \, \text{J} - 570.305 \, \text{J}$[/tex]
[tex]$\Delta E_{\text{int}} = 29693.624 \, \text{J}$[/tex] (rounded to three decimal places)
Therefore, the change in mechanical energy due to this collision is [tex]$\Delta E_{\text{int}} = 29693.624 \, \text{J}$[/tex].
Know more about kinetic energy:
https://brainly.com/question/999862
#SPJ4
"Two converging lenses with the same focal length of 10 cm are 40
cm apart. If an object is located 15 cm from one of the lenses,
find the final image distance of the object.
a. 0 cm
b. 5 cm
c. 10 cm
d 15 cm
The final image distance of the object, if the object is located 15 cm from one of the lenses is 6 cm. So none of the options are correct.
To determine the final image distance of the object in the given setup of two converging lenses, we can use the lens formula:
1/f = 1/di - 1/do
Where: f is the focal length of the lens, di is the image distance, do is the object distance.
Given that both lenses have the same focal length of 10 cm, we can consider them as a single lens with an effective focal length of 10 cm. The lenses are 40 cm apart, and the object distance (do) is 15 cm.
Using the lens formula, we can rearrange it to solve for di:
1/di = 1/f + 1/do
1/di = 1/10 cm + 1/15 cm
= (15 + 10) / (10 * 15) cm⁻¹
= 25 / 150 cm⁻¹
= 1 / 6 cm⁻¹
di = 1 / (1 / 6 cm⁻¹) = 6 cm
Therefore, the final image distance of the object is 6 cm. So, none of the options are correct.
To learn more about focal length: https://brainly.com/question/9757866
#SPJ11
Suppose you are on another planet and you want to measure its acceleration of gravity so you drop an object from rest. It hits the ground, traveling a distance of 0.8 min 0.5 second and then bounces back up and stops exactly where it started from. a) Please calculate the acceleration of gravity on this planet. b) Taking downward to be positive, how does the ball's average speed compare to the magnitude of its average velocity on the way down? c) Taking the beginning of the motion as the time the ball was dropped, how does its average speed compare to the magnitude of its average velocity on the way up? d) with what speed did the ball hit the ground? e) When distance is divided by time the result is 1.6 m/sec
Given that an object is dropped from rest on another planet and hits the ground, travelling a distance of 0.8 m in 0.5 s and bounces back up and stops exactly where it started from.
Let's find out the acceleration of gravity on this planet. Step-by-step explanation: a) To calculate the acceleration of gravity on this planet, we use the formula d = 1/2 gt².Using this formula, we get0.8 m = 1/2 g (0.5 s)²0.8 m = 0.125 g0.125 g = 0.8 mg = 0.8/0.125g = 6.4 m/s²The acceleration of gravity on this planet is 6.4 m/s².b) Taking downward to be positive, the ball's average speed is equal to its magnitude of average velocity on the way down.
Therefore, the average speed of the ball is equal to the magnitude of its average velocity on the way down.c) The ball's initial speed (when dropped) is zero, so the magnitude of its average velocity on the way up is equal to its final velocity divided by the time taken to stop. Using the formula v = u + gt where v = 0 m/s and u = -6.4 m/s² (negative because the ball is moving up), we get0 = -6.4 m/s² + g*t t = 6.4/gt = √(0.8 m/6.4 m/s²)t = 0.2 seconds.
To know more about distance visit:
https://brainly.com/question/13034462
#SPJ11
A
body whose density is 2500 kg/m' weighs 98 N in air and 66.64 N
submerged in a liquid. N. Find the density of the liquid
Answer: the density of the liquid is approximately 2499.2 kg/m³
Explanation:
To find the density of the liquid, we can use Archimedes' principle, which states that the buoyant force experienced by an object submerged in a fluid is equal to the weight of the fluid displaced by the object.
The weight of the body in air is given as 98 N, and the weight of the body submerged in the liquid is given as 66.64 N. The difference in weight between the two states represents the weight of the liquid displaced by the body.
Weight of the liquid displaced = Weight in air - Weight submerged = 98 N - 66.64 N = 31.36 N
Now, we can use the formula for density:
Density = (Weight of the liquid displaced) / (Volume of the liquid displaced)
Since the weight of the liquid displaced is 31.36 N and the density of the body is given as 2500 kg/m³, we can rearrange the formula to solve for the volume of the liquid displaced:
Volume of the liquid displaced = (Weight of the liquid displaced) / (Density of the body)
Volume of the liquid displaced = 31.36 N / 2500 kg/m³ = 0.012544 m³
Now, we can find the density of the liquid:
Density of the liquid = (Weight of the liquid displaced) / (Volume of the liquid displaced)
Density of the liquid = 31.36 N / 0.012544 m³ ≈ 2499.2 kg/m³
a ball hits a wall head on and sticks to it. if instead the ball bounces off the wall with one-half of the original velocity and the collision lasts the same time, the average force on the ball would be times greater. group of answer choices none of them 1.5 2.0 0.5 1.0
The average force on the ball would be 2.0 times greater. When a ball hits a wall head on and sticks to it, the change in velocity is equal to the original velocity of the ball. In this case, the change in velocity is 2 times the original velocity.
If the ball bounces off the wall with one-half of the original velocity, the change in velocity would be half of the original velocity. Therefore, the change in velocity is now 0.5 times the original velocity. Since the collision lasts the same time in both scenarios, we can compare the average force using the formula: force = mass × change in velocity / time.
In the first scenario, the average force would be F₁ = m × (2v) / t.
In the second scenario, the average force would be F₂ = m × (0.5v) / t.
Dividing F₂ by F₁, we get F₂ / F₁ = (m × 0.5v / t) / (m × 2v / t).
The mass (m) and time (t) cancel out, leaving us with F₂ / F₁ = (0.5v) / (2v)
= 0.25.
Therefore, the average force on the ball in the second scenario is 0.25 times the average force in the first scenario.
Since we are comparing the average force, we can take the reciprocal to find the ratio: 1 / 0.25 = 4.
Thus, the average force on the ball would be 4 times greater in the second scenario, which is equivalent to 2.0 times greater.When a ball hits a wall head on and sticks to it, the change in velocity is equal to the original velocity of the ball. In this case, the change in velocity is 2 times the original velocity.
Since we are comparing the average force, we can take the reciprocal to find the ratio: 1 / 0.25 = 4.
Thus, the average force on the ball would be 4 times greater in the second scenario, which is equivalent to 2.0 times greater.
To know more about velocity visit:
https://brainly.com/question/30559316
#SPJ11
A circuit operating at 90 Hz and contains only two circuit elements, but it is not known if they are L, R, or C. A maximum voltage of 175 V is applied by the source. If the maximum current in the circuit is 13.6 A and lags the voltage by 37 ∘
, a. Draw a phashor diagram of this circuit b. What two circuit elements are connected? Explain c. Calculate the values of the two circuit elements.
Resistance (R) = 12.87 Ω
Inductance (L) = 35 mH (or 0.000035 H)
a. Phasor diagram of the circuit is given below:b. The two circuit elements are connected are inductance (L) and resistance (R).
In a purely inductive circuit, voltage and current are out of phase with each other by 90°. In a purely resistive circuit, voltage and current are in phase with each other. Hence, by comparing the phase difference between voltage and current, we can determine that the circuit contains inductance (L) and resistance (R).
c. We know that;
Maximum voltage (V) = 175 VMaximum current (I) = 13.6
APhase angle (θ) = 37°
We can find out the Impedance (Z) of the circuit by using the below relation;
Impedance (Z) = V / IZ = 175 / 13.6Z = 12.868 Ω
Now, we can find out the values of resistance (R) and inductance (L) using the below relations;
Z = R + XL
Here, XL = 2πfL
Where f = 90 Hz
Therefore,
XL = 2π × 90 × LXL = 565.49 LΩ
Z = R + XL12.868 Ω = R + 565.49 LΩ
Maximum current (I) = 13.6 A,
so we can calculate the maximum value of R and L using the below relations;
V = IZ175 = 13.6 × R
Max R = 175 / 13.6
Max R = 12.87 Ω
We can calculate L by substituting the value of R
Max L = (12.868 − 12.87) / 565.49
Max L = 0.000035 H = 35 mH
Therefore, the two circuit elements are;
Resistance (R) = 12.87 Ω
Inductance (L) = 35 mH (or 0.000035 H)
learn more about Resistance on:
https://brainly.com/question/28135236
#SPJ11
Destructive interference of two superimposed waves requires the waves to travel in opposite directions. Select one: True False
The given statement, "Destructive interference of two superimposed waves requires the waves to travel in opposite directions" is false because destructive interference of two superimposed waves requires the waves to be traveling in the same direction and having a phase difference of π or an odd multiple of π.
In destructive interference, the two waves will have a phase difference of either an odd multiple of π or an odd multiple of 180 degrees. When the phase difference is an odd multiple of π, it results in a complete cancellation of the two waves in the region where they are superimposed and the resultant wave has zero amplitude. In constructive interference, the two waves will have a phase difference of either an even multiple of π or an even multiple of 180 degrees. When the phase difference is an even multiple of π, it results in a reinforcement of the two waves in the region where they are superimposed and the resultant wave has maximum amplitude.
Learn more about Destructive interference at https://brainly.com/question/23594941
#SPJ11
6) Write the expressions for the electric and magnetic fields, with their corresponding directions, of an electromagnetic wave that has an electric field parallel to the axis and whose amplitude is 300 V/m. Also, this wave has a frequency of 3.0 GHz and travels in the +y direction.
The electric field (E) is along the y-axis and given by E(y, t) = 300 sin(2π(3.0 GHz)t) V/m. The magnetic field (B) is along the x-axis and given by B(y, t) = (300 V/m) / (3.0 x 10^8 m/s) sin(2π(3.0 GHz)t).
The general expression for an electromagnetic wave in free space can be written as:
E(x, t) = E0 sin(kx - ωt + φ)
where:
E(x, t) is the electric field as a function of position (x) and time (t),
E0 is the amplitude of the electric field,
k is the wave number (related to the wavelength λ by k = 2π/λ),
ω is the angular frequency (related to the frequency f by ω = 2πf),
φ is the phase constant.
For the given wave with an electric field parallel to the axis (along the y-axis) and traveling in the +y direction, the expression can be simplified as:
E(y, t) = E0 sin(ωt)
where:
E(y, t) is the electric field as a function of position (y) and time (t),
E0 is the amplitude of the electric field,
ω is the angular frequency (related to the frequency f by ω = 2πf).
In this case, the electric field remains constant in magnitude and direction as it propagates in the +y direction. The amplitude of the electric field is given as 300 V/m, so the expression becomes:
E(y, t) = 300 sin(2π(3.0 GHz)t)
Now let's consider the magnetic field associated with the electromagnetic wave. The magnetic field is perpendicular to the electric field and the direction of wave propagation (perpendicular to the y-axis). Using the right-hand rule, the magnetic field can be determined to be in the +x direction.
The expression for the magnetic field can be written as:
B(y, t) = B0 sin(kx - ωt + φ)
Since the magnetic field is perpendicular to the electric field, its amplitude (B0) is related to the amplitude of the electric field (E0) by the equation B0 = E0/c, where c is the speed of light. In this case, the wave is propagating in free space, so c = 3.0 x 10^8 m/s.
Therefore, the expression for the magnetic field becomes:
B(y, t) = (E0/c) sin(ωt)
Substituting the value of E0 = 300 V/m and c = 3.0 x 10^8 m/s, the expression becomes:
B(y, t) = (300 V/m) / (3.0 x 10^8 m/s) sin(2π(3.0 GHz)t)
To summarize:
- The electric field (E) is along the y-axis and given by E(y, t) = 300 sin(2π(3.0 GHz)t) V/m.
- The magnetic field (B) is along the x-axis and given by B(y, t) = (300 V/m) / (3.0 x 10^8 m/s) sin(2π(3.0 GHz)t).
Visit here to learn more about electric field brainly.com/question/11482745
#SPJ11
1₁ Mass=60kg Velocity=0.10m/s height=1.16m 9=0.99M15 2. Mass= 60kg Velocity 0. M/S accitration=1.04MIS height=2.89M 3. mass= боку. Velocity 20.11M/S height=4.02M allleration = 1.21M/S 4. Mass=60kg. Finding entiny Velocity 0.52M/S height=5.36M accleration = 1.68M/S velocity 0.6OMIS height = 5.73M accleration=1.76 MIS 5. Mass=60kg
The main answer to the given question is that the information provided consists of different sets of data related to mass, velocity, height, and acceleration for a given object.
The provided information presents multiple sets of data for an object with a mass of 60kg. Each set includes values for velocity, height, and acceleration. Let's break down the information step by step. In the first set, the object has a mass of 60kg, a velocity of 0.10m/s, and a height of 1.16m. Unfortunately, the symbol "9=0.99M15" appears to be unclear or incorrectly specified, so it's difficult to interpret its meaning.
Moving on to the second set, we have the same mass of 60kg, but this time the velocity is unspecified ("0. M/S"), and the acceleration is given as 1.04m/s. The height is stated as 2.89m. The third set provides the mass as "боку," which seems to be a typographical error or an unclear symbol. The velocity is given as 20.11m/s, the height as 4.02m, and the acceleration as 1.21m/s.
In the fourth set, the mass remains 60kg. It presents multiple values for velocity and height, indicating different instances. Initially, the velocity is given as 0.52m/s, and the height is 5.36m. Later, another velocity value of 0.6m/s is mentioned alongside a height of 5.73m. The acceleration for this set is 1.68m/s.
Unfortunately, no information is provided for the fifth set, except for the mass, which remains at 60kg.
In summary, the given information contains different sets of data related to an object with a mass of 60kg, including values for velocity, height, and acceleration. However, there are some ambiguities and unclear symbols that make it difficult to interpret the complete meaning of each set.
Learn more about Acceleration
brainly.com/question/2303856
#SPJ11
A dipole is formed by point charges +3.5 μC and -3.5 μC placed on the x axis at (0.30 m , 0) and (-0.30 m , 0), respectively.
At what positions on the x axis does the potential have the value 7.3×105 V ?
x1, x2 = _____ m
A dipole is formed by point charges +3.5 μC and -3.5 μC placed on the x axis at (0.30 m , 0) and (-0.30 m , 0), respectively.The expression for the electric potential due to the point charges along the x-axis is given by;V=kq1/x1+kq2/x2where,k=9.0×10^9 Nm²/C²q1=+3.5 μCq2=-3.5 μCV=7.3×105 VX-axis coordinates of the charges are x1=0.30 m and x2=-0.30 m.
Substitute the given values in the above expression, V=kq1/x1+kq2/x2=9.0×10^9×3.5×10⁻⁶/|x1|+9.0×10^9×3.5×10⁻⁶/|x2|=9.0×10^9×3.5×10⁻⁶(|x1|+|x2|)/|x1x2|=7.3×10⁵On simplifying, we get,(|x1|+|x2|)/|x1x2|=8.11x1x2=x1(x1+x2)=9.0×10^9×3.5×10⁻⁶/7.3×10⁵=4.32×10⁻⁴Solve for x2,x2=-x1-x2=-0.3-0.3= -0.6mx1+x2=0.432x1-0.6=0x1=1.39m. Substitute the value of x1 in x1+x2=0.432,We get,x2= -1.39m.Thus, x1=1.39m and x2=-1.39m.
Learn more about dipole:
brainly.com/question/20813317
#SPJ11
An electron microscope produces electrons with a wavelength of 2.8 pm
d= 2.8 pm
If these are passed through a 0.75 um single slit, at what angle (in degrees) will the first diffraction minimum be found?
For an electron microscope produces electrons with a wavelength of 2.8 pm d= 2.8 pm, if these are passed through a 0.75 the diffraction can be calculated. The angle at which the first diffraction minimum will be found is approximately 0.028 degrees.
To calculate the angle at which the first diffraction minimum occurs, we can use the formula for the angular position of the minima in single-slit diffraction:
θ = λ / (2d)
Where:
θ is the angle of the diffraction minimum,
λ is the wavelength of the electrons, and
d is the width of the single slit.
Given that the wavelength of the electrons is 2.8 pm (2.8 × [tex]10^{-12}[/tex] m) and the width of the single slit is 0.75 μm (0.75 × [tex]10^{-6}[/tex] m), we can substitute these values into the formula to find the angle:
θ = (2.8 × [tex]10^{-12}[/tex] m) / (2 × 0.75 × [tex]10^{-6}[/tex] m)
Simplifying the expression, we have:
θ = 0.028
Therefore, the angle at which the first diffraction minimum will be found is approximately 0.028 degrees.
To learn more about diffraction click here:
brainly.com/question/8645206
#SPJ11
system has a mass m = 1 x 10-26 kg and the energy gap between the 2nd and 3rd excited states is 1 eV. a) ( ) Calculate in joules, the energy gap between the 1st and 2nd excited states: E= J
The energy gap between the 1st and 2nd excited states is 1.602 x 10^(-19) J.
To calculate the energy gap between the 1st and 2nd excited states, we need to use the concept of energy levels in quantum mechanics. The energy gap between consecutive energy levels is given by the formula:
ΔE = E_n - E_m
Where ΔE is the energy gap, E_n is the energy of the nth level, and E_m is the energy of the mth level.
Given that the energy gap between the 2nd and 3rd excited states is 1 eV, we can convert it to joules using the conversion factor 1 eV = 1.602 x 10^(-19) J.
Therefore, the energy gap between the 2nd and 3rd excited states is:
ΔE = 1 eV = 1.602 x 10^(-19) J.
Since the energy levels in the system are evenly spaced, the energy gap between the 1st and 2nd excited states will be the same as the gap between the 2nd and 3rd excited states.
Therefore, the energy gap between the 1st and 2nd excited states is also:
ΔE = 1.602 x 10^(-19) J.
learn more about "energy ":- https://brainly.com/question/13881533
#SPJ11
When the Venera 14 probe landed on Venus's surface, its barometer measured an air pressure of 9.5 MPa. The surface acceleration due to gravity was measured to be 8.87 m/s2. If Earth's atmosphere with a pressure of 101 kPa raises mercury 0.760 m where gravitational acceleration is 9.81 m/s2. To what height in m to two significant digits would Venus's atmosphere raise liquid mercury?
The height to which Venus's atmosphere would raise liquid mercury is determined based on the given air pressure and surface acceleration due to gravity. The calculation involves comparing the pressure in Venus's atmosphere to Earth's atmosphere and using the difference to determine the height of the mercury column.
To calculate the height to which Venus's atmosphere would raise liquid mercury, we can use the principle of hydrostatic pressure. The pressure difference between two points in a fluid column is directly proportional to the difference in height.Given that Earth's atmosphere raises mercury to a height of 0.760 m when the pressure is 101 kPa and the acceleration due to gravity is 9.81 m/s^2, we can set up a proportion to find the height in Venus's atmosphere.
The ratio of pressure to height is constant, so we can write:
(9.5 MPa / 101 kPa) = (8.87 m/s^2 / 9.81 m/s^2) * (h / 0.760 m)
Solving for h, we can find the height to which Venus's atmosphere would raise liquid mercury.
By rearranging the equation and substituting the given values, we can calculate the height to two significant digits.
Therefore, the height to which Venus's atmosphere would raise liquid mercury can be determined using the given air pressure and surface acceleration due to gravity.
Learn more about gravity here:
https://brainly.com/question/31321801
#SPJ11
Create a dictionary of physical terms and write by hand from a physics textbook (Baryakhtar) the definitions of the following concepts and some formulas:
Electric charge + [formula demonstrating the discreteness of electric charge]
Electrification
Electric field
Electric field lines of force
Law of conservation of electric charge
Coulomb's law + [Coulomb's law formula]
Electric current
Conductors
Dielectrics
Electrical diagram + [redraw the symbols of the main elements of the electrical circuit]
Amperage + [amperage formula]
Electric voltage + [voltage formula]
Electrical resistance + [resistance formula]
Volt-ampere characteristic of the conductor
Specific resistance of the substance + [formula of the specific resistance of the substance]
Rewrite the basic formulas for serial connection
Rewrite the basic formulas for parallel connection
Electric current power + [electric current power formula]
Joule-Lenz law + [formula for the Joule-Lenz law]
Electric current in metals
Electrolytic dissociation
Electric current in electrolytes
Electrolytes
Electrolysis
Faraday's first law + [Faraday's first law formula]
Galvanostegia
Ionization
Electric current in gases
Write SI units for charge, current, voltage, resistance, work, power.
Study the infographic on p. 218-219.
Solve problems:
Two resistors are connected in series in the circuit. The resistance of the first is 60 ohms; a current of 0.1 A flows through the second. What will be the resistance of the second resistor if the battery voltage is 9 V?
Two bulbs are connected in parallel. The voltage and current in the first bulb are 50 V and 0.5 A. What will be the total resistance of the circuit if the current in the second bulb is 2 A?
Calculate the current strength and the work it performs in 20 minutes, if during this time 1800 K of charge passes through the device at a voltage of 220 V.
This is a dictionary of physical terms and formulas related to electricity, including definitions and problem-solving examples on electric current, voltage, and resistance. The resistance of the 2nd resistor is 54 [tex]\Omega[/tex], the total resistance of the circuit is 25 [tex]\Omega[/tex] and the current strength is 1.5 A, and the work is 198000 J
A dictionary of physical terms comprises Electric charge, Electrification, Electric field, Electric field lines of force, Law of conservation of electric charge, Coulomb's law, Electric current, Conductors, Dielectrics, Electrical diagram, Amperage, Electric voltage, Electrical resistance, Volt-ampere characteristic of the conductor, Specific resistance of the substance, Rewriting of the basic formulas for serial connection, Rewriting of the basic formulas for parallel connection, Electric current power, Joule-Lenz law, Electric current in metals, Electrolytic dissociation, Electric current in electrolytes, Electrolytes, Electrolysis, Faraday's first law, Galvanostegia, Ionization, Electric current in gases, and SI units for a charge, current, voltage, resistance, work, and power. A battery voltage of 9 V flows through two resistors connected in a series in the circuit. The resistance of the first resistor is 60 ohms, and a current of 0.1 A flows through the second. The resistance of the second resistor will be 54 ohms. Two bulbs are connected in parallel, and the voltage and current in the first bulb are 50 V and 0.5 A. The total resistance of the circuit will be 25 ohms if the current in the second bulb is 2 A. If 1800 K of charge passes through the device at a voltage of 220 V in 20 minutes, the current strength and the work it performs can be calculated, and the current strength is 1.5 A, and the work is 198000 J (Joules). Hence, this is about a dictionary of physical terms along with some formulas and definitions along with problem-solving on electric current, electric voltage, and electrical resistance in a detailed manner.For more questions on electric current
https://brainly.com/question/1100341
#SPJ8
A roller coaster car is at the top of a huge hill and is at rest briefly. Then it rolls down the track and accelerates as its passengers scream. By the time it is 20 m down the track, it is moving at 3 m/s. If the hill is at 9°, what is the coefficient of friction between the car and the track?
The coefficient of friction between the car and the track is approximately -0.158. To determine the coefficient of friction between the roller coaster car and the track, we need to consider the forces acting on the car and apply the principles of Newtonian mechanics.
Distance down the track (d) = 20 m
Velocity of the car (v) = 3 m/s
Angle of the hill (θ) = 9°
First, let's calculate the acceleration of the car using the kinematic equation:
v^2 = u^2 + 2ad
where:
v is the final velocity (3 m/s),
u is the initial velocity (0 m/s, as the car is at rest),
a is the acceleration, and
d is the distance (20 m).
Solving for a:
a = (v^2 - u^2) / (2d)
= (3^2 - 0) / (2 * 20)
= 0.225 m/s^2
The force acting on the car down the hill is the component of the gravitational force parallel to the incline. It can be calculated using:
F = m * g * sin(θ)
where:
m is the mass of the car, and
g is the acceleration due to gravity (approximately 9.8 m/s^2).
Now, we can calculate the normal force (N) acting on the car perpendicular to the incline. It is equal to the weight of the car, given by:
N = m * g * cos(θ)
The frictional force (f) between the car and the track opposes the motion and is given by:
f = μ * N
where:
μ is the coefficient of friction.
Since the car is accelerating down the track, the frictional force is directed opposite to the motion and can be written as:
f = -μ * N
Now, equating the frictional force to the force down the hill:
-μ * N = m * g * sin(θ)
Substituting the expressions for N and f:
-μ * (m * g * cos(θ)) = m * g * sin(θ)
Canceling out the mass and acceleration due to gravity:
-μ * cos(θ) = sin(θ)
Simplifying:
μ = -tan(θ)
Substituting the value of θ (9°):
μ = -tan(9°)
Calculating:
μ ≈ -0.158
The negative sign indicates that the coefficient of friction is acting in the direction opposite to the motion of the car. Therefore, the coefficient of friction between the car and the track is approximately -0.158.
Learn more about friction here:
https://brainly.com/question/13000653
#SPJ11
A loop of wire is stretched into the shape of a square with sides of length L = 10.8 cm. The loop carries current I = 0.300 A. Determine the magnitude of the magnetic field at the center of the loop due to the current-carrying wire. Your Response History: 1. Incorrect. Your answer: "230.1 µT". Correct answer: "3.16 μT". The data used on this submission: 0.302 A; Submitted 2 days after late deadline. Score: 0/4 You may change your answer and resubmit: μT ( ± 0.02 μ.)
The magnetic field at the center of a square loop carrying current can be calculated using the formula B = (μ₀ * I) / (2 * r). The magnitude of the magnetic field at the center of the loop is 3.16 μT (microtesla).
The formula to calculate the magnetic field at the center of a square loop is B = (μ₀ * I) / (2 * r). The permeability of free space, μ₀, is a constant value equal to 4π × 10^(-7) T·m/A. The current, I, is given as 0.300 A.
To determine the distance, r, from the center of the loop to the wire, we can use the fact that the center of a square is equidistant from all its sides. In this case, the distance from the center to any side of the square is half the length of the side, which is L/2. Given that L = 10.8 cm, we have r = 5.4 cm.
Now we can substitute the values into the formula to calculate the magnetic field at the center: B = (4π × 10^(-7) T·m/A * 0.300 A) / (2 * 5.4 cm). Simplifying the equation, we get B ≈ 3.16 μT. Therefore, the magnitude of the magnetic field at the center of the loop is approximately 3.16 μT (microtesla).
To learn more about magnetic field click here : brainly.com/question/3160109
#SPJ11