The G Command in Moving From Point 7 to Point 8, the Tool Diameter is .375" . USE THE TOOL CENTER PROGRAMMING APPROACH
A) G01 X.8660 Y-3.1875
B) G01 X.500 Y-3.00
C) G01 X.8175 Y-3.00
D) G01 X.8157 Y-3.1875

Answers

Answer 1

Given that the tool diameter is 0.375". We are to use the tool center programming approach to determine the correct G command in moving from Point 7 to Point 8.The tool center programming approach involves moving the tool along the path while offsetting the tool center by half the tool diameter, such that the path is followed by the cutting edge and not by the tool center.

Therefore, we have to determine the tool center path and adjust it to obtain the cutting path. This can be achieved by subtracting and adding the tool radius to the coordinates, depending on the direction of the movement. The correct G command in moving from Point 7 to Point 8 can be obtained by finding the coordinates that correspond to the tool center path.

Then we adjust it to obtain the cutting path by subtracting and adding the tool radius, depending on the direction of the movement. We can use the following steps to determine the correct G command.    Step 1: Determine the tool center path coordinates. The tool center path coordinates can be obtained by subtracting and adding the tool radius to the coordinates, depending on the direction of the movement.

Since we are moving in the X-axis direction, we will subtract and add the tool radius to the X-coordinate. Therefore, the tool center path coordinates are: X = 0.8157 + 0.1875 = 1.0032 (for Point 8)X = 0.8660 + 0.1875 = 1.0535 (for Point 7)Y = -3.1875 (for both points)Step 2: Adjust the tool center path coordinates to obtain the cutting path coordinates.

To know more about offsetting visit:

https://brainly.com/question/31814372

#SPJ11


Related Questions

An all-electric car (not a hybrid) is designed to run from a bank of 12.0 V batteries with total energy storage of 1.90 x 10⁷ J. (a) If the electric motor draws 6.20 kW as the car moves at a steady speed of 20.0 m/s, what is the current (in A) delivered to the motor?___A (b) How far (in km) can the car travel before it is "out of juice"?___km (c) What If? The headlights of the car each have a 65.0 W halogen bulb. If the car is driven with both headlights on, how much less will its range be (in m)?___m

Answers

(a) Current delivered to the motor: It is given that the electric motor draws 6.20 kW as the car moves at a steady speed of 20.0 m/s, We need to find the current delivered to the motor.

We can calculate the work done by the motor using the formula , Work done = Power × time Since the car moves at a steady speed, Power = force × velocity, So, work done = force × distance ⇒ distance = work done / force We can find the force using the formula, Power = force × velocity ⇒ force = Power / velocity Substituting the given values, We get ,force.5 s Distance = work done / force Substituting the given values, Distance = 1.90 × 10⁷/310 = 61290.32 m = 61.3 km Therefore, the car can travel 61.3 km before it is "out of juice".(c) The decrease in range due to the headlights The power consumed by both headlights is 2 × 65.0 W = 130.0 W .

The additional energy consumed due to the headlights is given by the formula ,Energy consumed = Power × time Substituting the given values ,Energy consumed = 130 × 3064.5Energy consumed = 398385 J The corresponding reduction in range can be calculated as, Reduction in range = Energy consumed / force Substituting the given values, Reduction in range = 398385 / 310 = 1285.12 m Therefore, the range of the car decreases by 1285.12 m when both headlights are on.

To know more about   motor visit:

brainly.com/question/14133424

#SPJ11

18) The result of adding +59 and -90 in binary is ________.

Answers

Binary addition is crucial in computer science and digital systems.  The result of adding +59 and -90 in binary is -54.

To add +59 and -90 in binary, we first represent both numbers in binary form. +59 is expressed as 0011 1011, while -90 is represented as 1010 1110 using two's complement notation.

Aligning the binary numbers, we add the rightmost bits. 1 + 0 equals 1, resulting in the rightmost bit of the sum being 1. Continuing this process for each bit, we obtain 1100 1001 as the sum.

However, since we used two's complement notation for -90, the leftmost bit indicates a negative value. Inverting the bits and adding 1, we get 1100 1010. Interpreting this binary value as a negative number, we convert it to decimal and find the result to be -54.

Thus, the answer is -54.

Learn more about Binary:

https://brainly.com/question/16612919

#SPJ11

A modified St. Venant-Kirchhoff constitutive behavior is defined by its corresponding strain energy functional Ψ as Ψ(J,E) = k/2(InJ)² +µIIE
where IIE = tr(E²) denotes the second invariant of the Green's strain tensor E,J is the Jacobian of the deformation gradient, and κ and μ are positive material constants. (a) Obtain an expression for the second Piola-Kirchhoff stress tensor S as a function of the right Cauchy-Green strain tensor C. (b) Obtain an expression for the Kirchhoff stress tensor τ as a function of the left Cauchy-Green strain tensor b. (c) Calculate the material elasticity tensor.

Answers

The expressions for the second Piola-Kirchhoff stress tensor S and the Kirchhoff stress tensor τ are derived for a modified St. Venant-Kirchhoff constitutive behavior. The material elasticity tensor is also calculated.

(a) The second Piola-Kirchhoff stress tensor S can be derived from the strain energy functional Ψ by taking the derivative of Ψ with respect to the Green's strain tensor E:

S = 2 ∂Ψ/∂E = 2µE + k ln(J) Inverse(C)

where Inverse(C) is the inverse of the right Cauchy-Green strain tensor C.

(b) The Kirchhoff stress tensor τ can be derived from the second Piola-Kirchhoff stress tensor S and the left Cauchy-Green strain tensor b using the relationship:

τ = bS

Substituting the expression for S from part (a), we get:

τ = 2µbE + k ln(J) b

(c) The material elasticity tensor can be obtained by taking the second derivative of the strain energy functional Ψ with respect to the Green's strain tensor E. The result is a fourth-order tensor, which can be expressed in terms of its components as:

Cijkl = 2µδijδkl + 2k ln(J) δijδkl - 2k δikδjl

where δij is the Kronecker delta, and i, j, k, l denote the indices of the tensor components.

The elasticity tensor C can also be expressed in terms of the Lamé constants λ and μ as:

Cijkl = λδijδkl + 2μδijδkl + λδikδjl + λδilδjk

where λ and μ are related to the material constants k and µ as:

λ = k ln(J)

μ = µ

In summary, the expressions for the second Piola-Kirchhoff stress tensor S, the Kirchhoff stress tensor τ, and the material elasticity tensor C have been derived for the modified St. Venant-Kirchhoff constitutive behavior defined by the strain energy functional Ψ.

know more about Green's strain tensor: brainly.com/question/31494898

#SPJ11

An adiabatic compressor compresses 23 L/s of R-134a at 70 kPa as a saturated vapor to 800 kPa and 90o C. Determine the power required to run the compressor in kW. State all of your assumptions and show all of your work (including mass and energy balances).

Answers

The power required to run the adiabatic compressor, we need to perform a mass and energy balance calculation.  Therefore, the power required to run the adiabatic compressor is approximately 22,049.59 kW.

    Step 1: Determine the specific enthalpy at the compressor inlet (h1) using the saturated vapor state at P1. We can use the R-134a refrigerant tables to find the specific enthalpy at P1. Since the state is saturated vapor, we look up the enthalpy value at the given pressure: h1 = 251.28 kJ/kg .Step 2: Determine the specific enthalpy at the compressor outlet (h2). Using the given outlet temperature (T2) and pressure (P2), we can find the specific enthalpy at the outlet state from the refrigerant tables: h2 = 388.95 kJ/kg. Step 3: Calculate the change in specific enthalpy (Δh).

Δh = h2 - h1 .Δh = 388.95 kJ/kg - 251.28 kJ/kg = 137.67 kJ/kg

      Step 4: Calculate the power required (W) using the mass flow rate (ṁ) and the change in specific enthalpy (Δh). The power can be calculated using the formula: W = ṁ * Δh .Since the mass flow rate is given in L/s, we need to convert it to kg/s. To do that, we need to know the density of R-134a at the compressor inlet state. Using the refrigerant tables, we find the density (ρ1) at the saturated vapor state and P1: ρ1 = 6.94 kg/m^3 .We can now calculate the mass flow rate (ṁ) by multiplying the volumetric flow rate (23 L/s) by the density (ρ1): ṁ = 23 L/s * 6.94 kg/m^3 = 159.62 kg/s Finally, we can calculate the power required (W): W = 159.62 kg/s * 137.67 kJ/kg = 22,049.59 kW  

Learn more about volumetric flow rate  here:

https://brainly.com/question/18724089

#SPJ11

A PITTMAN ID33000 series engine having the following data expressed in the international system, for a nominal voltage of 90 V.
Terminal resistance: 1.33 Ohms;
Inductance: 4.08mH;
Constant Torque (KT): 0.119 N.m/A;
Voltage constant: 0.119 V/rad/s;
a) Calculate and draw the points and the load line for the PITTMAN engine. Express the correct units.
b) A P.M.D.C in which, it increased from Gradually the input voltage was obtained that with a V input= 2.1 V and a current, i=0.12 A, it is managed to start turning the motor shaft. Calculate the input power required to achieve the "no-load current", for that motor.

Answers

The points and the load line for the PITTMAN engine can be calculated and represented as shown below: Points iA V
5.65 45.84Load line: y = 90 V - 1.33 Ω x.  Points of the graph are represented by (iA, V) where Constant Torque  iA is the current and V is the voltage.

The load line equation is of the form y = mx + c, where m is the slope of the line and c is the y-intercept.b) No load current is defined as the current drawn by the motor when it is running at no load condition. Since the given information shows that it was gradually increased from 2.1 V and a current of i = 0.12 A, to obtain the motor shaft to start turning, we can say that the no-load current is i = 0.12 A.

Power can be calculated by the formula, Power = VI, where V is the voltage and I is the current drawn by the motor at no load condition. The voltage constant of the PITTMAN engine is 0.119 V/rad/s. Therefore, the input power required to achieve the "no-load current", for the motor is as shown below: Power = VI = kVω * I= 0.119 * 2.1 * 0.12= 0.0304 W.An input power of 0.0304 W is required to achieve the "no-load current" for the given motor.

To know more about Constant Torque visit :-

https://brainly.com/question/32191533

#SPJ11

A smooth, flat plate, 3.0 meters wide and 0.6 meters long parallel to the flow, is immersed in 15°C water (p = 999.1 kg/m³, v = 1.139 x 106 m² /s) flowing at an undisturbed velocity of 0.9 m/s. a) How thick is the boundary layer at the plate's center? b) Find the location and magnitude of the minimum surface shear stress experienced by the plate. c) Find the total friction drag on one side of the plate.

Answers

The thickness of the boundary layer at the plate's center is approximately 6.32 x 10^(-6) meters. the location of the minimum surface shear stress is approximately 0.3984 meters from the leading edge of the plate, and its magnitude is approximately 533.46 Pa. Total friction drag on one side of the plate is 499.55kg.

a) The thickness of the boundary layer at the plate's center can be determined using the formula: δ = 5.0 * (ν / U)

where δ represents the boundary layer thickness, ν is the kinematic viscosity of water, and U is the undisturbed velocity of the flow.

Given:

Width of the plate (W) = 3.0 meters

Length of the plate (L) = 0.6 meters

Kinematic viscosity (ν) = 1.139 x 10^(-6) m²/s

Undisturbed velocity (U) = 0.9 m/s

Substituting these values into the formula, we can calculate the boundary layer thickness: δ = 5.0 * (1.139 x 10^(-6) m²/s) / (0.9 m/s)

δ ≈ 6.32 x 10^(-6) meters

Therefore, the thickness of the boundary layer at the plate's center is approximately 6.32 x 10^(-6) meters.

b) The location and magnitude of the minimum surface shear stress can be determined using the Blasius solution for a flat plate boundary layer. For a smooth plate, the minimum surface shear stress occurs at approximately 0.664 times the distance from the leading edge of the plate.

Given: Length of the plate (L) = 0.6 meters

The location of the minimum surface shear stress can be calculated as:

Location = 0.664 * L

Location ≈ 0.664 * 0.6 meters

Location ≈ 0.3984 meters

The magnitude of the minimum surface shear stress can be determined using the equation: τ = 0.664 * (ρ * U²)

where ρ is the density of water and U is the undisturbed velocity of the flow.

Given:

Density of water (ρ) = 999.1 kg/m³

Undisturbed velocity (U) = 0.9 m/s

Substituting these values into the equation, we can calculate the magnitude of the minimum surface shear stress:

τ = 0.664 * (999.1 kg/m³ * (0.9 m/s)²)

τ ≈ 533.46 Pa

Therefore, the location of the minimum surface shear stress is approximately 0.3984 meters from the leading edge of the plate, and its magnitude is approximately 533.46 Pa.

c) The total friction drag on one side of the plate can be calculated using the equation: Fd = 0.5 * ρ * U² * Cd * A

where ρ is the density of water, U is the undisturbed velocity of the flow, Cd is the drag coefficient, and A is the area of the plate.

Given:

Density of water (ρ) = 999.1 kg/m³

Undisturbed velocity (U) = 0.9 m/s

Width of the plate (W) = 3.0 meters

Length of the plate (L) = 0.6 meters

Cd = Drag coefficient

To calculate the total friction drag, we need to find the drag coefficient (Cd) for the flat plate. The drag coefficient depends on the flow regime and surface roughness. For a smooth, flat plate, the drag coefficient can be approximated using the Blasius solution as Cd ≈ 1.328.

Substituting the given values into the equation, we can calculate the total friction drag:

A = W * L

A = 3.0 meters * 0.6 meters

A = 1.8 m²

Fd = 0.5 * 999.1 kg = 499.55 kg

LEARN MORE ABOUT friction drag here: brainly.com/question/29355763

#SPJ11

please I want an electronic version not handwritten
3. Define and describe main functions of electrical apparatuses. 4. Explain switching off DC process. I

Answers

3. Electrical apparatuses are designed to manipulate and control electrical energy in order to accomplish a specific task. Electrical apparatuses are classified into three categories: power apparatuses.

Control apparatuses, and auxiliary apparatuses.3.1. Power Apparatuses Power apparatuses are used for the generation, transmission, distribution, and use of electrical energy. Power apparatuses are divided into two types: stationary and mobile.3.1.1 Stationary Apparatuses Transformers Generators Switchgear and control gear .

Equipment Circuit breakers Disconnecting switches Surge a r re s to rs Bus ducts and bus bars3.1.2 Mobile Apparatuses Mobile generators Mobile switch gear Auxiliary power supply equipment3.2. Control Apparatuses Control apparatuses are used to regulate and control the electrical power delivered by the power apparatus. Control apparatuses are divided into two types.

To know more about apparatuses visit:

https://brainly.com/question/33336978

#SPJ11

QI Answer: Consider an analog signal x(t) = 10cos(5at) which is then sampled using Ts=0.01 sec and 0.1 sec. Obtain the equivalent discrete signal for both Ts. Is the discrete signal periodic or not? If yes, calculate the fundamental period.

Answers

The equivalent discrete signals for Ts = 0.01 sec and Ts = 0.1 sec are xs(n) = 10cos(0.5anπ) and xs(n) = 10cos(anπ) respectively.

Both discrete signals are periodic, and their fundamental periods are 0.4 sec.

The given analog signal is x(t) = 10cos(5at).

Using the sampling period, Ts = 0.01 sec, the sampled signal is xs(t) = x(t) * δ(t), which simplifies to xs(t) = 10cos(5at) * δ(t).

The sampling frequency is fs = 1/Ts = 100 Hz.

Let the sampled signal be xs(n). At nTs, the sampled signal is xs(n) = 10cos(5anTs). Plugging in the values, we get xs(n) = 10cos(5an0.01) = 10cos(0.5anπ).

At Ts = 0.01 sec, the equivalent discrete signal for xs(n) is xs(n) = 10cos(0.5anπ).

Using the sampling period, Ts = 0.1 sec, the sampling frequency is fs = 1/Ts = 10 Hz.

Let the sampled signal be xs(n). At nTs, the sampled signal is xs(n) = 10cos(5anTs). Plugging in the values, we get xs(n) = 10cos(5an0.1) = 10cos(anπ).

At Ts = 0.1 sec, the equivalent discrete signal for xs(n) is xs(n) = 10cos(anπ).

The discrete signal is periodic because it is a discrete-time signal, and its amplitude is a periodic function of time. The fundamental period of a periodic function is the smallest T such that f(nT) = f((n+1)T) = f(nT + T), for all integers n.

Using this equation for the given discrete signal xs(n) = 10cos(anπ), we find that the smallest value of k for which this equation holds true for all values of n is k = 1.

So, the fundamental period is T = 2π/a = 2π/5a = 0.4 sec.

Learn more about discrete signals

https://brainly.com/question/33315708

#SPJ11

A pitot tube is placed in front of a submarine which moves horizontally under seawater. The u tube mercury manometer shows height of 0.15 m. Calculate the velocity of the submarine if the density of the seawater is 1026 kg/m³. (6 marks)

Answers

To calculate the velocity of the submarine using the given information, we can apply Bernoulli's equation, which relates the pressure.

The pitot tube is placed in front of the submarine, so the stagnation point (point 1) is where the velocity is zero. The U-tube manometer measures the difference in height, h1, caused by the pressure difference between the stagnation point and the ambient ,Turbulent flows are ubiquitous in various natural and engineered systems, such as atmospheric airflows, river currents, and industrial processes. Understanding the energy distribution in turbulent flows is crucial for predicting their behavior and optimizing their applications.

To know more about optimizing visit :

https://brainly.com/question/28587689

#SPJ11

The minimum pressure on an object moving horizontally in water (Ttemperatu at10 degree centrigrade) at (x + 5) mm/s (where x is the last two digits of your student ID) at a depth of 1 m is 80 kPa (absolute). Calculate the velocity that will initiate cavitation. Assume the atmospheric pressure as 100 kPa (absolute). Scan the solution and upload in vUWS before moving to the next question.

Answers

The pressure at a depth h below the water surface is given byP = P₀ + ρghwhereρ is the density of water, g is the acceleration due to gravity, and h is the depth of the object.

From the above equations, P = P₀ + ρghρ₀ = 1000 kg/m³ (density of water at T₀ = 4°C)β = 2.07 × 10⁻⁴ /°C (volumetric coefficient of thermal expansion of water)Pv = 1.227 kPa (vapor pressure of water at 10°C)ρ = ₀ [1 - β(T - T₀)] = 1000 [1 - 2.07 × 10⁻⁴ (10 - 4)]ρ = 999.294 kg/m³P = 100 + 999.294 × 9.81 × 1P = 1.097 MPa (absolute)Since the minimum pressure on the object is 80 kPa (absolute), there is no cavitation. To initiate cavitation, we need to find the velocity of the object that will reduce the pressure to the vapor pressure of water.v² = (P₀ - Pv) × 2 / ρv = (100 - 1.227) × 2 / 999.294v = 0.0175 m/sv = 17.5 mm/sThe velocity that will initiate cavitation is 17.5 mm/s.

To know more about acceleration visit:-

https://brainly.com/question/33165116

#SPJ11

The 602SE NI-DAQ card allows several analog input channels. The resolution is 12 bits, and allows several ranges from +-10V to +-50mV. If the actual input voltage is 1.190 mv, and the range is set to +-50mv. Calculate the LabVIEW display of this voltage (mv). Also calculate the percent error relative to the actual input. ans: 2 1 barkdrHW335) 1: 1.18437 2: -0.473028

Answers

To calculate the LabVIEW display of the voltage and the percent error relative to the actual input, we can follow these steps:

Actual input voltage (V_actual) = 1.190 mV

Range (V_range) = ±50 mV

First, let's calculate the LabVIEW display of the voltage (V_display) using the resolution of 12 bits. The resolution determines the number of steps or divisions within the given range.

The number of steps (N_steps) can be calculated using the formula:

N_steps = 2^12 (since the resolution is 12 bits)

The voltage per step (V_step) can be calculated by dividing the range by the number of steps:

V_step = V_range / N_steps

Now, let's calculate the LabVIEW display of the voltage by finding the closest step to the actual input voltage and multiplying it by the voltage per step:

V_display = (closest step) * V_step

To calculate the percent error, we need to compare the difference between the actual input voltage and the LabVIEW display voltage with the actual input voltage. The percent error (PE) can be calculated using the formula:

PE = (|V_actual - V_display| / V_actual) * 100

Now, let's substitute the given values into the calculations:

N_steps = 2^12 = 4096

V_step = ±50 mV / 4096 = ±0.0122 mV (approximately)

To find the closest step to the actual input voltage, we calculate the difference between the actual input voltage and each step and choose the step with the minimum difference.

Closest step = step with minimum |V_actual - (step * V_step)|

Finally, substitute the closest step into the equation to calculate the LabVIEW display voltage, and calculate the percent error using the formula above.

Note: The provided answers (2 1 barkdrHW335) 1: 1.18437 2: -0.473028) seem to be specific values obtained from the calculations mentioned above.

To know more about LabVIEW display visit:

https://brainly.com/question/31675223

#SPJ11

Q1. a) Sensors plays a major role in increasing the range of task to be performed by an industrial robot. State the function of each category. i. Internal sensor ii. External sensor iii. Interlocks [6 Marks] b) List Six advantages of hydraulic drive that is used in a robotics system. [6 Marks] c) Robotic arm could be attached with several types of end effector to carry out different tasks. List Four different types of end effector and their functions. [8 Marks]

Answers

Sensors plays a major role in increasing the range of task to be performed by an industrial robot. The functions of the different categories of sensors are:Internal sensor.

The internal sensors are installed inside the robot. They measure variables such as the robot's motor torque, position, velocity, or its acceleration.External sensor: The external sensors are mounted outside the robot. They measure parameters such as force, position.

and distance to aid the robot in decision-making. Interlocks: These are safety devices installed in the robots to prevent them from causing damage to objects and injuring people. They also help to maintain the robot's safety and efficiency.

To know more about Sensors visit:

https://brainly.com/question/33219578

#SPJ11

-2y + 5e-x dx Solve the differential equation from x=0 to x=0.4, taking the step size h=0.2, using the fourth-order Runge-Kutta method for the initial condition y(0)=2. (Use at least 3 digits after th

Answers

The differential equation -2y + 5e-x dx can be solved using the fourth-order Runge-Kutta method for the initial condition.

y(0) = 2,

and taking the step size h = 0.2

for the interval from x = 0 to

x = 0.4. Here's how to do it:

First, we need to rewrite the equation in the form

dy/dx = f(x, y).
We have:-2y + 5e-x dx = dy/dx

Rearranging, we get

:dy/dx = 2y - 5e-x dx

Now, we can apply the fourth-order Runge-Kutta method. The general formula for this method is:

yk+1 = yk + (1/6)

(k1 + 2k2 + 2k3 + k4)

where k1, k2, k3, and k4 are defined ask

1 = hf(xi, yi)

k2 = hf(xi + h/2, yi + k1/2)

k3 = hf(xi + h/2, yi + k2/2)

k4 = hf(xi + h, yi + k3)

In this case, we have:

y0 = 2h = 0.2x0 = 0x1 = x0 + h = 0.2x2 = x1 + h = 0.4

We need to find y1 and y2 using the fourth-order Runge-Kutta method. Here's how to do it:For

i = 0, we have:y0 = 2k1 = h

f(xi, yi) = 0.2(2y0 - 5e-x0) = 0.4 - 5 = -4.6k2 = hf(xi + h/2, yi + k1/2) = 0.2

(2y0 - 5e-x0 + k1/2) = 0.4 - 4.875 = -4.475k3 = hf

(xi + h/2, yi + k2/2) = 0.2

(2y0 - 5e-x0 + k2/2) = 0.4 - 4.7421875 = -4.3421875k4 = hf

(xi + h, yi + k3) = 0.2(2y0 - 5e-x1 + k3) = 0.4 - 4.63143097 = -4.23143097y1 = y

0 + (1/6)(k1 + 2k2 + 2k3 + k4) = 2 + (1/6)(-4.6 -

2(4.475) - 2(4.3421875) - 4.23143097) = 1.2014021667

For i = 1, we have:

y1 = 1.2014021667k1 = hf(xi, yi) = 0.2

(2y1 - 5e-x1) = -0.2381773832k2 = hf

(xi + h/2, yi + k1/2) = 0.2(2y1 - 5e-x1 + k1/2) = -0.2279237029k3 = hf

To know more about differential equation visit:

https://brainly.com/question/32645495

#SPJ11

Two arrays, one of length 4 (18, 7, 22, 35) and the other of length 3 (9, 11, (12) 2) are inputs to an add function of LabVIEV. Show these and the resulting output.

Answers

Here are the main answer and explanation that shows the inputs and output from the LabVIEW.

Addition in LabVIEWHere, an add function is placed to obtain the sum of two arrays. This function is placed in the block diagram and not in the front panel. Since it does not display anything in the front panel.1. Here is the front panel. It shows the input arrays.

Here is the block diagram. It shows the inputs from the front panel that are passed through the add function to produce the output.3. Here is the final output. It shows the sum of two arrays in the form of a new array. Note: The resultant array has 4 elements. The sum of the first and the third elements of the first array with the first element of the second array, the sum of the second and the fourth elements of the first array with the second element of the second array,

To know more about LabVIEW visit:-

https://brainly.com/question/29751884

#SPJ11

4. (a) (i) Materials can be subject to structural failure via a number of various modes of failure. Briefly explain which failure modes are the most important to consider for the analyses of the safety of a loaded structure? (4 marks)
(ii) Identify what is meant by a safety factor and how this relates to the modes of failure identified above. (2 marks) (b) (i) Stresses can develop within a material if it is subject to loads. Describe, with the aid of diagrams the types of stresses that may be developed at any point within a load structure. (7 marks)
(ii) Comment on how complex stresses at a point could be simplified to develop a reliable failure criteria and suggest the name of criteria which is commonly used to predict failure based on yield failure criteria in ductile materials. (5 marks)
(iii) Suggest why a yield strength analysis may not be appropriate as a failure criteria for analysis of brittle materials. (2 marks)

Answers

(a) (i) The most important failure modes that should be considered for the analyses of the safety of a loaded structure are: Fracture due to high applied loads. This type of failure occurs when the material is subjected to high loads that cause it to break and separate completely.

Shear failure is another type of failure that occurs when the material is subjected to forces that cause it to break down along the plane of the force. In addition, buckling failure occurs when the material is subjected to compressive loads that are too great for it to withstand, causing it to buckle and fail. Finally, Fatigue failure, which is a type of failure that occurs when a material is subjected to repeated cyclic stresses over time, can also lead to structural failure.

(ii) A safety factor is a ratio of the ultimate strength of a material to the maximum expected stress in a material. It is used to ensure that a material does not fail under normal working conditions. Safety factors are used in the design process to ensure that the structure can withstand any loads or forces that it may be subjected to. The safety factor varies depending on the type of material and the nature of the loading. The safety factor is used to determine the maximum expected stress that a material can withstand without failure, based on the mode of failure identified above.
(b) (i) Stresses can develop within a material if it is subject to loads. Describe, with the aid of diagrams the types of stresses that may be developed at any point within a loaded structure. (7 marks)There are three types of stresses that may be developed at any point within a loaded structure:Tensile stress: This type of stress occurs when a material is pulled apart by two equal and opposite forces. It is represented by a positive value, and the direction of the stress is away from the center of the material.Compressive stress: This type of stress occurs when a material is pushed together by two equal and opposite forces. It is represented by a negative value, and the direction of the stress is towards the center of the material.Shear stress: This type of stress occurs when a material is subjected to a force that is parallel to its surface. It is represented by a subscript xy or τ, and the direction of the stress is parallel to the surface of the material.

(ii) The complex stresses at a point can be simplified to develop a reliable failure criterion by using principal stresses and a failure criterion. The Von Mises criterion is commonly used to predict failure based on yield failure criteria in ductile materials. It is based on the principle of maximum shear stress and assumes that a material will fail when the equivalent stress at a point exceeds the yield strength of the material.
(iii) A yield strength analysis may not be appropriate as a failure criterion for the analysis of brittle materials because brittle materials fail suddenly and without any warning. They do not exhibit plastic deformation, which is the characteristic of ductile materials. Therefore, it is not possible to determine the yield strength of brittle materials as they do not have a yield point. The failure of brittle materials is dependent on their fracture toughness, which is a measure of a material's ability to resist the propagation of cracks.

To know more about Shear failure refer to:

https://brainly.com/question/13108235

#SPJ11

Name and briefly explain 3 methods used to design digital
filters, clearly identifying the advantages and disadvantages of
each method

Answers

There are various methods used to design digital filters. Three commonly used methods are:

1. Windowing method:
The windowing method is a time-domain approach to designing filters. It is a technique used to convert an ideal continuous-time filter into a digital filter. The approach involves multiplying the continuous-time filter's impulse response with a window function, which is then sampled at regular intervals. The major advantage of this method is that it allows for fast and efficient implementation of digital filters. However, this method suffers from a lack of stop-band attenuation and increased sidelobe levels.

2. Frequency Sampling method:
Frequency Sampling is a frequency-domain approach to designing digital filters. This method works by taking the Fourier transform of the desired frequency response and then setting the coefficients of the digital filter to match the transform's values. The advantage of this method is that it provides high stop-band attenuation and low sidelobe levels. However, this method is computationally complex and can be challenging to implement in real-time systems.

3. Pole-zero placement method:
The pole-zero placement method involves selecting the number of poles and zeros in a digital filter and then placing them at specific locations in the complex plane to achieve the desired frequency response. The advantage of this method is that it provides excellent control over the filter's frequency response, making it possible to design filters with very sharp transitions between passbands and stopbands. The main disadvantage of this method is that it is computationally complex and may require a significant amount of time to optimize the filter's performance.

In conclusion, the method used to design digital filters depends on the application requirements and the desired filter characteristics. Windowing is ideal for designing filters with fast and efficient implementation, Frequency Sampling is ideal for designing filters with high stop-band attenuation and low sidelobe levels, and Pole-zero placement is ideal for designing filters with very sharp transitions between passbands and stopbands.

To know more about designing digital filters visit:

https://brainly.com/question/33214970

#SPJ11

Unpolarised light is incident on an air-glass interface from the air side. You are told that the glass has a refractive index of 1.45, explain what measurement, involving polarisation, that you could do to confirm this is correct.

Answers

To confirm the refractive index of the glass, a measurement involving polarization could be done by observing the phenomenon of Brewster's angle.

Brewster's angle is the angle of incidence at which light that is polarized parallel to the plane of incidence (s-polarized) is perfectly transmitted through a transparent medium, while light polarized perpendicular to the plane of incidence (p-polarized) is completely reflected.

This angle can be used to determine the refractive index of a material.

In this case, unpolarised light is incident on the air-glass interface. The first step would be to pass this unpolarised light through a polarising filter to obtain polarised light.

The polarising filter allows only light waves oscillating in a particular direction (perpendicular to the filter's polarization axis) to pass through, while blocking light waves oscillating in other directions.

Next, the polarised light is directed towards the air-glass interface. By varying the angle of incidence of the polarised light, we can observe the intensity of the reflected light.

When the angle of incidence matches Brewster's angle for the glass with a refractive index of 1.45, the reflected intensity of p-polarized light will be minimum. This minimum intensity indicates that the light is polarized parallel to the plane of incidence, confirming the refractive index of the glass.

By measuring the angle at which the minimum intensity occurs, we can calculate the refractive index of the glass using the equation:

n = tan(θB),

where n is the refractive index and θB is Brewster's angle.

Learn more about glass

brainly.com/question/31666746

#SPJ11

A mesh of 4-node pyramidic elements (i.e. lower order 3D solid elements) has 383 nodes, of which 32 (nodes) have all their translational Degrees of Freedom constrained. How many Degrees of Freedom of this model are constrained?

Answers

A 4-node pyramidic element mesh with 383 nodes has 95 elements and 1900 degrees of freedom (DOF). 32 nodes have all their translational DOF constrained, resulting in 96 constrained DOF in the model.

A 4-node pyramid element has 5 degrees of freedom (DOF) per node (3 for translation and 2 for rotation), resulting in a total of 20 DOF per element. Therefore, the total number of DOF in the model is:

DOF_total = 20 * number_of_elements

To find the number of elements, we need to use the information about the number of nodes in the mesh. For a pyramid element, the number of nodes is given by:

number_of_nodes = 1 + 4 * number_of_elements

Substituting the given values, we get:

383 = 1 + 4 * number_of_elements

number_of_elements = 95

Therefore, the total number of DOF in the model is:

DOF_total = 20 * 95 = 1900

Out of these, 32 nodes have all their translational DOF constrained, which means that each of these nodes has 3 DOF that are constrained. Therefore, the total number of DOF that are constrained is:

DOF_constrained = 32 * 3 = 96

Therefore, the number of Degrees of Freedom of this model that are constrained is 96.

To know more about degrees of freedom, visit:
brainly.com/question/32093315
#SPJ11

10.11 At f=100MHz, show that silver (σ=6.1×107 S/m,μr​=1,εr=1) is a good conductor, while rubber (σ=10−15 S/m,μr=1,εr=3.1) is a good insulator.

Answers

Conductors conduct electricity because of the presence of free electrons in them. On the other hand, insulators resist the flow of electricity. There are several reasons why certain materials behave differently under the influence of an electric field.

Insulators have very few free electrons in them, and as a result, they do not conduct electricity. Their low conductivity and resistance to the flow of current are due to their limited mobility and abundance of electrons. Silver is an excellent conductor because it has a high electrical conductivity. At f=100MHz, the electrical conductivity of silver (σ=6.1×107 S/m) is so high that it is a good conductor. At this frequency, it has a low skin depth.

Its low electrical conductivity is due to the fact that it does not have enough free electrons to move about the material. Moreover, rubber has a high dielectric constant (εr=3.1) due to the absence of free electrons. In the presence of an electric field, the dielectric material becomes polarized, which limits the flow of current.

To know more about Conductors visit:

https://brainly.com/question/14405035

#SPJ11

Vibrations of harmonic motion can be represented in a vectorial form. Analyze the values of displacement, velocity, and acceleration if the amplitude, A=2+Tm, angular velocity, ω=4+U rad/s and time, t=1 s. The values of T and U depend on the respective 5th and 6th digits of your matric number. For example, if your matric number is AD201414, it gives the value of T=1 and U=4. (6 marks) T=9,U=5

Answers

To analyze the values of displacement, velocity, and acceleration in harmonic motion, we can use the following equations:

Displacement (x) = A * cos(ω * t)

Velocity (v) = -A * ω * sin(ω * t)

Acceleration (a) = -A * ω^2 * cos(ω * t)

Given that A = 2 + Tm, ω = 4 + U, and t = 1 s, we can substitute the values of T = 9 and U = 5 into the equations to calculate the values:

Displacement:

x = (2 + 9m) * cos((4 + 5) * 1)

x = (2 + 9m) * cos(9)

Velocity:

v = -(2 + 9m) * (4 + 5) * sin((4 + 5) * 1)

v = -(2 + 9m) * 9 * sin(9)

Acceleration:

a = -(2 + 9m) * (4 + 5)^2 * cos((4 + 5) * 1)

a = -(2 + 9m) * 81 * cos(9)

Now, to calculate the specific values of displacement, velocity, and acceleration, we need the value of 'm' from the 6th digit of your matric number, which you haven't provided. Once you provide the value of 'm', we can substitute it into the equations above and calculate the corresponding values for displacement, velocity, and acceleration at t = 1 s.

To know more about Velocity refer to:

https://brainly.com/question/16618732

#SPJ11

Four kilograms of carbon dioxide (CO2) is contained in a piston-cylinder assembly with a constant pressure of 2 bar and initial volume of 1m². Energy is transferred by heat to the CO2 at a rate of 15 W for 2.5 hours. During this process, the specific internal energy increases by 10 kJ/kg. If no change in kinetic and potential energy occur, determine: (al The heat transfer, in kJ. (b) The final volume, in m². Enter the value for problem 8, part (a). Enter the value for problem 8, part (b).

Answers

Heat transfer rate = q = 15 W × 2.5 × 60 × 60 sec = 135000 J = 135 kJ. Final Volume can be obtained as follows:

We know that at constant pressure, Specific heat at constant pressure = Cp = (Δh / Δt) p For 1 kg of CO2, Δh = Cp × Δt = 1.134 × ΔtTherefore, for 4 kg of CO2, Δh = 4 × 1.134 × Δt = 4.536 × ΔtGiven that the specific internal energy increases by 10 kJ/kg, Therefore, The internal energy of 4 kg of CO2 = 4 kg × 10 kJ/kg = 40 kJ.  We know that the change in internal energy is given asΔu = q - w As there is no change in kinetic and potential energy, w = 0Δu = q - 0Therefore, q = Δu = 40 kJ = 40000 J. Final Volume is given byV2 = (m × R × T2) / P2For 4 kg of CO2, R = 0.287 kJ/kg KAt constant pressure, The formula can be written asP1V1 / T1 = P2V2 / T2We know that T1 = T2T2 = T1 + (Δt) = 273 + 40 = 313 K Given thatP1 = P2 = 2 bar = 200 kPaV1 = 1 m³We know that m = 4 kgV2 = (P1V1 / T1) × T2 / P2 = (200 × 1) / 273 × 313 / 200 = 0.907 m³Therefore, the explanation of the problem is: Heat transfer rate q = 135 kJ. The final volume, V2 = 0.907 m³.

To know more about  transfer visit:-

https://brainly.com/question/13709592

#SPJ11

Determine the radius (in mm) of a solid circular shaft with a twist angle of 21.5 degrees between the two ends, length 4.7 m and applied torsional moment of 724.5 Nm. Take the shear modulus as 98.5 GPa. Please provide the value only and in 2 decimal places

Answers

The formula to calculate the radius of a solid circular shaft with a twist angle can be obtained using the following steps:The maximum shear stress τmax = T .r / JWhere, T is the torque in Nm, r is the radius of the shaft in m and J is the polar moment of inertia, J = π r4 / 2Using the formula τmax = G .θ .r / L,

the polar moment of inertia can be obtained as J = π r4 / 2 = T . L / (G . θ )Where, G is the modulus of rigidity in N/m², θ is the twist angle in radians, and L is the length of the shaft in mSo, the radius of the shaft can be obtained asr = [T . L / (G . θ π / 2)]^(1/4)Given, torsional moment, T = 724.5 NmLength, L = 4.7 mTwist angle, θ = 21.5°

= 21.5° x π / 180° = 0.375 radModulus of rigidity, G = 98.5 GPa = 98.5 x 10^9 N/m²Substituting these values in the above equation,r = [724.5 x 4.7 / (98.5 x 10^9 x 0.375 x π / 2)]^(1/4)≈ 1.41 mmTherefore, the radius of the solid circular shaft with a twist angle of 21.5 degrees between the two ends, length 4.7 m and applied torsional moment of 724.5 Nm is approximately 1.41 mm.

To know more about calculate visit:

https://brainly.com/question/30151794

#SPJ11

nly decimals 0,3,4 and 9 are inputs to a logic system, the minimum number of bits needed to represent these numbers in binary is Select one: a. 2 b. 3 C. 4 d. 5

Answers

The minimum number of bits needed to represent these numbers in binary is option C, that is, 4.

Given that only decimals 0, 3, 4, and 9 are inputs to a logic system. We need to determine the minimum number of bits needed to represent these numbers in binary.

To represent a decimal number in binary format, we can use the following steps:

Step 1: Divide the decimal number by 2.

Step 2: Write the remainder (0 or 1) on the right side of the dividend.

Step 3: Divide the quotient of the previous division by 2.

Step 4: Write the remainder obtained in Step 2 to the right of this new quotient.

Step 5: Repeat Step 3 and Step 4 until the quotient obtained in any division becomes 0 or 1. Step 6: Write the remainders from bottom to top, that is, the bottom remainder is the most significant bit (MSB) and the top remainder is the least significant bit (LSB).

Let's represent the given decimal numbers in binary format:

To represent decimal number 0 in binary format:0/2 = 0 remainder 0

So, the binary format of 0 is 0.

To represent decimal number 3 in binary format:

3/2 = 1 remainder 1(quotient is 1) 1/2 = 0 remainder 1

So, the binary format of 3 is 0011.

To represent decimal number 4 in binary format:

4/2 = 2 remainder 0(quotient is 2)

2/2 = 1 remainder 0(quotient is 1)

1/2 = 0 remainder 1

So, the binary format of 4 is 0100.

To represent decimal number 9 in binary format:

9/2 = 4 remainder 1(quotient is 4)

4/2 = 2 remainder 0(quotient is 2)

2/2 = 1 remainder 0(quotient is 1)

1/2 = 1 remainder 1

So, the binary format of 9 is 1001.

The maximum value that can be represented by using 3 bits is 2³ - 1 = 7.

Hence, we need at least 4 bits to represent the given decimal numbers in binary.

To know more about the binary, visit:

https://brainly.com/question/32260955

#SPJ11

Question 1: related to Spanning Tree Protocol (STP) A. How many root bridges can be available on a STP configured network? B. If the priority values of the two switches are same, which switch would be elected as the root bridge? C. How many designated ports can be available on a root bridge? Question 2: related to Varieties of Spanning Tree Protocols A. What is the main difference between PVST and PVST+? B. What is the main difference between PVST+ and Rapid-PVST+? C. What is the main difference between PVST+ and Rapid Spanning Tree (RSTP)? D. What is IEEE 802.1w? Question 3: related to Inter-VLAN Routing A. What is Inter-VLAN routing? B. What is meant by "router on stick"? C. What is the method of routing between VLANs on a layer 3 switch?

Answers

1: A. Only one root bridge can be available on a STP configured network.

B. If the priority values of the two switches are the same, then the switch with the lowest MAC address will be elected as the root bridge.

C. Only one designated port can be available on a root bridge.

2: A. The main difference between PVST and PVST+ is that PVST+ has support for IEEE 802.1Q. PVST only supports ISL.

B. The main difference between PVST+ and Rapid-PVST+ is that Rapid-PVST+ is faster than PVST+. Rapid-PVST+ immediately reacts to changes in the network topology, while PVST+ takes a while.

C. The main difference between PVST+ and Rapid Spanning Tree (RSTP) is that RSTP is faster than PVST+.RSTP responds to network topology changes in a fraction of a second, while PVST+ takes several seconds.

D. IEEE 802.1w is a Rapid Spanning Tree Protocol (RSTP) which was introduced in 2001. It is a revision of the original Spanning Tree Protocol, which was introduced in the 1980s.

3: A. Inter-VLAN routing is the process of forwarding network traffic between VLANs using a router. It allows hosts on different VLANs to communicate with one another.

B. The "router on a stick" method is a type of inter-VLAN routing in which a single router is used to forward traffic between VLANs. It is called "router on a stick" because the router is connected to a switch port that has been configured as a trunk port.

C. The method of routing between VLANs on a layer 3 switch is known as "switched virtual interfaces" (SVIs). An SVI is a logical interface that is used to forward traffic between VLANs on a switch.

Know more about STP configured network:

https://brainly.com/question/30031715

#SPJ11

A company has designed and built a new air compressor section for our advanced Gas turbine engine used in electrical power generation. They state that their compressor operates adiabatically, and has a pressure ratio of 30. The inlet temperature is 35 deg C and the inlet pressure is 100 kPa. The mass flow rate is steady and is 50 kg/s The stated power to run the compressor is 24713 kW Cp = 1.005 kJ/kg K k=1.4 What is the actual temperature at the compressor outlet? O 800 K
O 656 K
O 815 K
O 92.6 deg C

Answers

Given that an air compressor operates adiabatically and has a pressure ratio of 30, the inlet temperature is 35°C, the inlet pressure is 100 kPa, the mass flow rate is steady and is 50 kg/s, the power to run the compressor is 24713 kW, Cp = 1.005 kJ/kg K k=1.4.

We have to find the actual temperature at the compressor outlet.We use the isentropic process to determine the actual temperature at the compressor outlet.Adiabatic ProcessAdiabatic Process is a thermodynamic process in which no heat exchange occurs between the system and its environment. The adiabatic process follows the first law of thermodynamics, which is the energy balance equation.

It can also be known as an isentropic process because it is a constant entropy process. P1V1^k = P2V2^k. Where:P1 = Inlet pressureV1 = Inlet volumeP2 = Outlet pressureV2 = Outlet volumeK = Heat capacity ratioThe equation for the isentropic process for an ideal gas isT1/T2 = (P1/P2)^(k-1)/kThe actual temperature at the compressor outlet is 815K (541.85+273). Therefore, option (C) 815 K is the correct answer.

To know more about compressor operator visit:

brainly.com/question/33297273

#SPJ11

The new airport at Chek Lap Kok welcomed its first landing when Government Flying Service's twin engine Beech Super King Air touched down on the South Runway on 20 February 1997. At around 1:20am on 6 July 1998, Kai Tak Airport turned off its runway lights after 73 years of service. (a) What are the reasons, in your opinion, why Hong Kong need to build a new airport at Chek Lap Kok?

Answers

The new airport was built to meet the demands of a growing aviation industry in Hong Kong. The old airport could no longer accommodate the growing number of passengers and the modern aircraft required. The new airport is better equipped to handle the needs of modern travelers and the aviation industry.

There are several reasons why Hong Kong needed to build a new airport at Chek Lap Kok. These reasons are as follows:

Expansion and capacity: The old airport, Kai Tak, was limited in terms of its capacity for expansion. The new airport was built on an artificial island which provided a vast area for runway expansion. The Chek Lap Kok airport has two runways, which is an advantage over the single runway at Kai Tak. This means that the airport can handle more air traffic and larger planes which it couldn't do before.

Modern facilities: The facilities at the old airport were outdated and couldn't meet the modern demands of the aviation industry. The new airport was built with modern and state-of-the-art facilities that could handle the latest technology in air travel. The new airport has faster check-in procedures, a wider range of shops, lounges, and restaurants for passengers.

Convenience: Kai Tak airport was located in a densely populated residential area, causing noise and environmental pollution. The new airport is located on an outlying island that has ample space to accommodate the airport's facilities. The airport is connected to the city by an express train, making it more convenient for travelers and residents alike.

To know more about airport visit:

https://brainly.com/question/30525193

#SPJ11

An I-beam made of 4140 steel is heat treated to form tempered martensite. It is then welded to a 4140 steel plate and cooled rapidly back to room temperature. During use, the I-beam and the plate experience an impact load, but it is the weld which breaks. What happened?

Answers

The weld between the 4140 steel I-beam and the 4140 steel plate broke due to a phenomenon known as weld embrittlement.

Weld embrittlement occurs when the heat-affected zone (HAZ) of the base material undergoes undesirable changes in its microstructure, leading to reduced toughness and increased brittleness. In this case, the rapid cooling of the welded joint after heat treatment resulted in the formation of a brittle microstructure known as martensite in the HAZ.

4140 steel is typically heat treated to form tempered martensite, which provides a balance between strength and toughness. However, when the HAZ cools rapidly, it can become overly hard and brittle, making it susceptible to cracking and fracture under impact loads.

To confirm if weld embrittlement occurred, microstructural analysis of the fractured weld area is necessary. Examination of the weld using techniques such as scanning electron microscopy (SEM) or optical microscopy can reveal the presence of brittle microstructures indicative of embrittlement.

The weld between the 4140 steel I-beam and plate broke due to weld embrittlement caused by rapid cooling during the welding process. This embrittlement resulted in a brittle microstructure in the heat-affected zone, making it prone to fracture under the impact load. To mitigate weld embrittlement, preheating the base material before welding and using post-weld heat treatment processes, such as stress relief annealing, can be employed to restore the toughness of the heat-affected zone. Additionally, alternative welding techniques or filler materials with improved toughness properties can be considered to prevent future weld failures.

To know more about embrittlement visit :

https://brainly.com/question/27839310

#SPJ11

Regarding the Nafolo Prospect
3. Development Mining a. List the infrastructural development that would be needed for the Nafolo project and state the purpose for each. b. From your observation, where is most of the development, in the ore or waste rock? What does this mean for the project? c. What tertiary development is required before production drilling can commence? .
4. Production Mining a. Which type of drilling pattern(s) would be used at Syama and at Nafolo, respectively? b. Recommend suitable drill rigs (development and stoping), LHD and truck that can be used for the mining operation. Supply an image of each. (Hint: Search through OEM supplier websites)

Answers

Infrastructure development that would be needed for the Nafolo project and their purposes:

Access road - To provide access to the mine site and to transport ore, equipment, and personnel
Water storage facilities - For the mining operation, to prevent interruption of the mining operation due to insufficient water supply Power supply - To provide electricity to the mine and its
operation facilities Workshop - To repair and maintain equipment that is being used in the mine and its operation facilities

Tertiary development required before production drilling can commence is the underground construction. This includes the excavation of underground mine portals, the construction of underground infrastructure (e.g. workshops, powerlines, waterlines), the installation of the underground services (e.g. water, power, ventilation), and the construction of underground development drives.

LHDs that can be used are the Sandvik LH621, which is a high-capacity load-haul-dump (LHD) machine that is designed for demanding underground applications, and the Sandvik LH514, which is a compact, high-capacity LHD machine that is designed for low-profile underground applications.

A truck that can be used is the Sandvik TH430, which is a low-profile underground mining truck that is designed for high-capacity hauling in small and medium-sized underground mines.

To know more about Infrastructure visit:-

https://brainly.com/question/32687235

#SPJ11

A machine has a mass of 130 kg as shown in figure 1. It rests on an isolation pad which has a stiffness such that the undamped resonant frequency of the system is 20 Hertz. The damping ratio of the system is = 0.02. If a force is created in the machine having amplitude 100 N at all frequencies, at what frequency will the amplitude of the force transmitted to the base be greatest? What will be the amplitude of the maximum transmitted force? Neglect gravity.

Answers

A machine has a mass of 130 kg as shown in figure 1. It rests on an isolation pad which has a stiffness such that the undamped resonant frequency of the system is 20 Hertz. The damping ratio of the system is = 0.02. A force is created in the machine having amplitude 100 N at all frequencies.

Neglect gravity. We are supposed to find out at what frequency will the amplitude of the force transmitted to the base be greatest and what will be the amplitude of the maximum transmitted force. The equation of motion of the forced damped vibration system is given as:

We know that the frequency of the maximum transmitted force is [tex]ω = ωn(1-ζ^2)[/tex] Now given that, the undamped resonant frequency of the system ωn= 20Hz, and the damping ratio of the system ζ= 0.02. So, putting these values, we get;

[tex]ω = ωn(1-ζ^2)

= 20(1-0.02^2)

= 19.9984Hz[/tex]

To know more about transmitted visit:

https://brainly.com/question/14702323

#SPJ11

1. An open Brayton cycle using air operates with a maximum cycle temperature of 1300°F The compressor pressure ratio is 6.0. Heat supplied in the combustion chamber is 200 Btu/lb The ambient temperature before the compressor is 95°F. and the atmospheric pressure is 14.7 psia. Using constant specific heat, calculate the temperature of the air leaving the turbine, 'F; A 959 °F C. 837°F B. 595°F D. 647°F

Answers

The correct answer is A. 959°F.

In an open Brayton cycle, the temperature of the air leaving the turbine can be calculated using the isentropic efficiency of the turbine and the given information. First, convert the temperatures to Rankine scale: Maximum cycle temperature = 1300 + 459.67 = 1759.67°F. Ambient temperature = 95 + 459.67 = 554.67°F. Next, calculate the compressor outlet temperature: T_2 = T_1 * (P_2 / P_1)^((k - 1) / k). Where T_1 is the ambient temperature, P_2 is the compressor pressure ratio, P_1 is the atmospheric pressure, and k is the specific heat ratio of air.T_2 = 554.67 * (6.0)^((1.4 - 1) / 1.4) = 1116.94°F. Then, calculate the turbine outlet temperature: T_4 = T_3 * (P_4 / P_3)^((k - 1) / k), Where T_3 is the maximum cycle temperature, P_4 is the atmospheric pressure, P_3 is the compressor pressure ratio, and k is the specific heat ratio of air. T_4 = 1759.67 * (14.7 / 6.0)^((1.4 - 1) / 1.4) = 959.01°F.

To know more about  Brayton cycle, visit

https://brainly.com/question/30364427

SPJ11

Other Questions
Determine the displacement thickness and the momentum thickness for the following fluid flow conditions. The velocity profile for a fluid flow over a flat plate is given as u/U=(5y/7) where u is velocity at a distance of "y" from the plate and u=U at y=, where is the boundary layer thickness. Q1. What is systems engineering and how has Elon Musk applied systems engineering to cut costs and increase profits? Are Musk's innovations subject to competition, copycats, and creative destruction? 1.Statement 1: Dendritic cells are phagocytes with professional antigen-presenting properties.Statement 2: Neutrophils circulate as part of the blood and act as surveillance to detect presence of pathogens.A) Statement 1 is true. Statement 2 is false.B) Statement 2 is true. Statement 1 is false.C) Both statements are true.D) Both statements are false.2. Histamine is a signaling molecule that plays a significant role in regulating immune responses such as during allergic reactions and inflammation. It causes blood vessels to dilate and become more permeable so that white blood cells can immediately reach the site of injury, damage, or infection. What types of white blood cells can release histamine?A) basophils and mast cellsB) B cells and T cellsC) dendritic cellsD) neutrophils3. What molecules are released by activated helper T cells?A) immunoglobulinsB) antigenC) cytokinesD) histamine Write the following expression as a single trigonometric ratio: \( \frac{\sin 4 x}{\cos 2 x} \) Select one: a. \( 2 \sin x \) b. \( 2 \sin 2 x \) c. \( 2 \tan 2 x \) d. \( \tan 2 x \) Microtubules are dynamically unstable.What is dynamic instability, and what does this mean for the function of the microtubules?Explain the mechanism behind this process. The cost to cater a wedding for 100 people includes $1200.00 for food, $800.00 for beverages, $900.00 for rental items, and $800.00 for labor. If a contribution margin of $14.25 per person is added to the catering cost, then the target price per person for the party is $___. rDNA O when 2 different DNA from two different species are joined togetherO example human insulin gene placed in a bacterial cell O DNA is copied along with bacterial DNA O Proteins are then made known as recombinant proteins. O All of the above Iam having some difficulty with this lab work. im not really lookingfor someone to do the work, but i need help with the formulas forthe variius parts. i also get that i will have to graph and use7/7/12 Determination of Equilibrium Constant The purpose of this experiment is to determine the equilibrium constant, K., of the following equilibrium reaction. Duc 10 A CIL Fe+ (aq) + SCN- (aq) = F 5. Evaluate each of the following and express each answer in SI units using an appropriate prefix: a. 217 MN/21.3 mm b. 0.987 kg (30 km) /0.287 kN c. (627 kg)(200ms) A piston-cylinder device contains 5 kg of saturated liquid water at 350C. The water undergoes a constant pressure process until its quality is 0.7. How much boundary work (kJ) does the water do during this process?a. 82 (kJ)b. 3126 (kJ) c. 366 (kJ) d. 409 (kJ) e. Unanswerable or none of these are within 5% f. 2716 (kJ) Which collectors have the highest efficiencies under practical operating conditions?- Single-glazing- Double-glazing- No-glazing- What is main the idea of using PVT systems?- What is the maximum temperature obtained in a solar furnace Calculate the peak solar hours in the area withillumination of 5300 (PSH). Watts / day Why are certain amino acids defined as essential for human beings?Select one alternative:Because human beings do not have biochemical pathways to synthesize these amino acids from simpler precursorsBecause human beings do not have biochemical pathways to break down these amino acids from more complex precursorsBecause human beings do not have enough protein to synthesize these amino acidsAll statements are true The compression ratio of an air-standard Otto cycle is 7. Prior to the isentropic compression process, the air is at 100 kPa, 308 K. The temperature at the end of the isentropic expansion process is 800 K. Use cold air properties. i) Draw the P-V diagram, and determine ii) The highest temperature and pressure in the cycle, iii) The amount of heat transferred during combustion process, in kJ/kg, iv) The thermal efficiency, v) The mean effective pressure. In some insect species the males are haploid. What process (meiosis or mitosis) is used to produce gametes in these males?Wiskott-Aldrich Syndrome (WAS) is an X-linked disorder characterized by low platelet counts, eczema, and recurrent infections that usually kill the child by mid childhood. A woman with one copy of the mutant gene has normal phenotype but a woman with two copies will have WAS. Select all that apply: WAS shows the followingPleiotropyOverdominanceIncomplete dominanceDominance/RecessivenessEpistasis Transmembrane movement of a substance down a concentration gradient with no involvement of membrane protein a.belongs to passive transportb. is called facilitated diffusion c.belongs to active transport d.is called simple diffusion original sin has afflicted the entire human race and is harmful to both individuals and society. true false (1 point) Evaluate the limit below in two steps by using algebra to simplify the difference quotient and then evaluating the limit. lim h 10+ Vh2 + 12h + 7 17 h 7-)-- = lim h0+ II what type of explosion could occur inside the reactorvessel?. Describe how mutations in oncogenes can induce genome instability, and contrast with genome instability induced by mutations in tumour suppressor genes.