a. Velocity function: v(t) = -2t + 24
Acceleration function: a(t) = -2
b. The particle is stopped at t = 12 seconds.
c. There is no time at which the acceleration of the particle is zero.
d. The particle is always slowing down.
a. To find the velocity function, we take the derivative of the position function with respect to time:
v(t) = s'(t) = -2t + 24
To find the acceleration function, we take the derivative of the velocity function with respect to time:
a(t) = v'(t) = -2
b. The particle is stopped when its velocity is zero. We set v(t) = 0 and solve for t:
-2t + 24 = 0
2t = 24
t = 12
Therefore, the particle is stopped at t = 12 seconds.
c. The acceleration of the particle is equal to zero when a(t) = 0. Since the acceleration function is a constant -2, it is never equal to zero. Therefore, there is no time at which the acceleration of the particle is zero.
d. The particle is speeding up when its acceleration and velocity have the same sign. In this case, since the acceleration is always -2, the particle is always slowing down.
Learn more about velocity here:
https://brainly.com/question/29080451
#SPJ11
8 Sº f(x)da - ' [ f(a)dx = ° f(a)dx si 3 a where a = and b =
The given equation represents the Fundamental Theorem of Calculus, which provides a fundamental connection between the definite integral and the antiderivative of a function.
The given expression represents the equation of the Fundamental Theorem of Calculus, stating that the definite integral of a function f(x) with respect to x over the interval [a, b] is equal to the antiderivative of f(x) evaluated at b minus the antiderivative of f(x) evaluated at a. This theorem allows us to calculate definite integrals by evaluating the antiderivative of the integrand function at the endpoints. The Fundamental Theorem of Calculus relates the definite integral of a function to its antiderivative. The equation can be written as:
∫[a, b] f(x) dx = F(b) - F(a)
where F(x) is the antiderivative (or indefinite integral) of f(x).
The left-hand side of the equation represents the definite integral of f(x) with respect to x over the interval [a, b]. It calculates the net area under the curve of the function f(x) between the x-values a and b. The right-hand side of the equation involves evaluating the antiderivative of f(x) at the endpoints b and a, respectively. This is done by finding the antiderivative of f(x) and plugging in the values b and a. Subtracting the value of F(a) from F(b) gives us the net change in the antiderivative over the interval [a, b]. The equation essentially states that the net change in the antiderivative of f(x) over the interval [a, b] is equal to the area under the curve of f(x) over that same interval.
Learn more about Fundamental Theorem of Calculus here:
https://brainly.com/question/30761130
#SPJ11
Given (10) = 3 and/(10) - 7 find the value of (10) based on the function below. h(x) = 6) Answer Tables Keyboard Short (10) =
The value of (10) based on the function h(x) = 6) can be found by substituting x = 10 into the function. The answer is (10) = 6.
The given function is h(x) = 6. To find the value of (10) based on this function, we substitute x = 10 into the function and evaluate it. Therefore, (10) = h(10) = 6.
In this case, the function h(x) is a constant function, where the output value is always 6, regardless of the input value. So, when we substitute x = 10 into the function, the result is 6. Thus, we can conclude that (10) = 6 based on the given function h(x) = 6.
It's worth noting that the notation used here, (10), might suggest a function with a variable or a placeholder. However, since the given function is a constant function, the value of (10) remains the same regardless of the input value, and it is equal to 6.
Learn more about function here:
https://brainly.com/question/28278699
#SPJ11
the town of hamlet has $3$ people for each horse, $4$ sheep for each cow, and $3$ ducks for each person. which of the following could not possibly be the total number of people, horses, sheep, cows, and ducks in hamlet? 41 47 59 61 66
Answer:
47
Step-by-step explanation:
Given 3 persons per horse, 4 sheep per cow, 3 ducks per person, you want to know if the total number of people, horses, sheep, cows, and ducks can be any of 41, 47, 59, 61, or 66.
RatiosUsing {d, p, h, s, c} for numbers of {ducks, people, horses, sheep, cows}, the given ratios are ...
p : h = 3 : 1s : c = 4 : 1d : p = 3 : 1We can combine the first and last of these to d : p : h = 9 : 3 : 1.
In terms of horses, the total number of horses, people, and ducks will be ...
h(1 + 3 + 9) = 13h
In terms of cows, the total number of sheep and cows will be ...
c(1 + 4) = 5c
Then the total Hamlet population will be (13h +5c).
Not possibleWe need to find the number on the given list that cannot be expressed as this sort of sum.
In the attachment, we do that by subtracting multiples of 13 from the offered choice, and seeing if any remainders are divisible by 5. The cases where subtracting a multiple of 13 gives a multiple of 5 are highlighted.
Only 47 cannot be a total of people, horses, sheep, cows, and ducks.
Based on the above analysis, the numbers that could not possibly be the total number of people, horses, sheep, cows, and ducks in Hamlet are: 41, 47, 59, and 61.
To determine which of the given numbers could not possibly be the total number of people, horses, sheep, cows, and ducks in Hamlet, we need to check if they satisfy the given ratios between these animals and people.
Given ratios:
3 people for each horse
4 sheep for each cow
3 ducks for each person
Let's evaluate each option:
a) 41:
To satisfy the ratios, the number of horses would need to be a multiple of 3. However, 41 is not divisible by 3, so it is not possible.
b) 47:
Again, the number of horses would need to be a multiple of 3 to satisfy the ratios. 47 is not divisible by 3, so it is not possible.
c) 59:
Similarly, 59 is not divisible by 3, so it is not possible.
d) 61:
Once again, 61 is not divisible by 3, so it is not possible.
e) 66:
In this case, the number of horses would be 66 / 3 = 22. If we have 22 horses, we would need 22 * 3 = 66 people, which satisfies the ratio. However, we also need to check the other ratios. If we have 22 horses, we would need 22 * 4 = 88 sheep and 66 * 3 = 198 ducks. The number of cows can be any number since there is no ratio involving cows. Therefore, 66 is possible as the total number.
To know more about total number,
https://brainly.com/question/32472190
#SPJ11
Which inequality correctly orders the numbers
The inequality which correctly orders the numbers is -5 < -8/5 < 0.58.
The correct answer choice is option C.
Which inequality correctly orders the numbers?-8/5
-5
0.58
From least to greatest
-5, -8/5, -0.58
So,
-5 < -8/5 < 0.58
The symbols of inequality are;
Greater than >
Less than <
Greater than or equal to ≥
Less than or equal to ≤
Equal to =
Hence, -5 < -8/5 < 0.58 is the inequality which represents the correct order of the numbers.
Read more on inequality:
https://brainly.com/question/25275758
#SPJ1
find two positive numbers whose product is 400 and such that the sum of twice the first and three times the second is a minimum
The two positive numbers that satisfy the given conditions are 20 and 20.
How to minimize an expression?
To minimize an expression, you typically need to find the value or values of the variables that result in the smallest possible value for the expression.
Let's assume the two positive numbers as x and y. We are given that their product is 400, so we have the equation xy = 400.
To find the values of x and y that minimize the expression 2x + 3y, we can use the concept of the arithmetic mean-geometric mean inequality (AM-GM inequality). According to the inequality, the arithmetic mean of two positive numbers is always greater than or equal to their geometric mean.
In this case, the arithmetic mean of x and y is (x + y)/2, and the geometric mean is √(xy). So, applying the AM-GM inequality, we have:
(x + y)/2 ≥ √(xy)
Plugging in xy = 400, we get:
(x + y)/2 ≥ √400
(x + y)/2 ≥ 20
To minimize the expression 2x + 3y, we want the values of x and y to be as close as possible. The equality condition of the AM-GM inequality holds when x = y, so we can choose x = y = 20.
When x = y = 20, the product xy is 400, and the expression 2x + 3y becomes 2(20) + 3(20) = 40 + 60 = 100. This gives us the minimum sum for twice the first number plus three times the second number.
To know more about geometric mean, refer here:
https://brainly.com/question/3336179
#SPJ4
Find the indefinite integral. -6x 1 (x + 1) - √x + 1 dx
Answer:
The indefinite integral is 3x²/2 - x - 2√x - x + C₁ + C₂
Let's have stepwise explanation:
1. Rewrite the expression as:
∫-6x (x + 1) - √x + 1 dx
2. Split the integrand into two parts:
∫-6x (x + 1) dx + ∫-√x + 1 dx
3. Integrate the first part:
∫-6x (x + 1) dx = -3x²/2 - x + C₁
4. Integrate the second part:
∫-√x + 1 dx = -2√x - x + C₂
5. Combine to get final solution:
-3x²/2 - x - 2√x - x + C₁ + C₂
To know more about Integrate refer here:
https://brainly.com/question/30217024#
#SPJ11
E.7. For which of the following integrals is u-substitution appropriate? Possible Answers 1 1. S -dx 2x + 1 6 1 S · Sæe=², 1 2. 3. 4. 5. x + 1 reda dx sin x cos x dx 0 3x² + 1 S dx X Option 1 Opti
Out of the given options, u-substitution is appropriate for the integrals involving sin(x), cos(x), and x^2 + 1.
The u-substitution method is commonly used to simplify integrals by substituting a new variable, u, which helps to transform the integral into a simpler form. This method is particularly useful when the integrand contains a function and its derivative, or when it can be rewritten in terms of a basic function.
1. ∫sin(x)cos(x)dx: This integral involves the product of sin(x) and cos(x), which can be simplified using u-substitution. Let u = sin(x), then du = cos(x)dx, and the integral becomes ∫udu, which is straightforward to evaluate.
2. ∫(x^2 + 1)dx: Here, the integral involves a polynomial function, x^2 + 1, which is a basic function. Although u-substitution is not necessary for this integral, it can still be used to simplify the evaluation if desired. Let u = x^2 + 1, then du = 2xdx, and the integral becomes ∫du/2x.
3. ∫e^(2x)dx: This integral does not require u-substitution. It is a straightforward integral that can be solved using basic integration techniques.
4. ∫(2x + 1)dx: This integral involves a linear function, 2x + 1, which is a basic function. It does not require u-substitution and can be directly integrated.
5. ∫dx/x: This integral involves the natural logarithm function, ln(x), which does not have a simple antiderivative. It requires a different integration technique, such as logarithmic integration or applying specific integration rules.
In summary, u-substitution is appropriate for integrals involving sin(x), cos(x), and x^2 + 1, while other integrals can be solved using different integration techniques.
To learn more about u-substitution : brainly.com/question/32150391
#SPJ11
Determine whether the series is convergent or divergent. 5n + 18 n(n + 9) n = 1
The given series, 5n + 18 / (n(n + 9)), is divergent.
To determine the convergence or divergence of the series, we can examine the behavior of its terms as n approaches infinity. In this case, we have the expression 5n + 18 / (n(n + 9)).
As n grows larger, the dominant term in the numerator becomes 5n, while the dominant term in the denominator becomes n^2. Therefore, we can simplify the expression to 5n / n^2.
Now, we can rewrite this as 5/n, which approaches zero as n tends to infinity. However, for a series to be convergent, the terms must approach zero, which is not the case here. The series diverges since the terms do not converge to zero.
In conclusion, the given series, 5n + 18 / (n(n + 9)), is divergent. The divergence occurs because the terms do not approach zero as n approaches infinity.
Learn more about convergence or divergence of a series:
https://brainly.com/question/31581362
#SPJ11
Consider the point. (1, 2,5) What is the projection of the point on the xy-plane? (x, y, z) = What is the projection of the point on the yz-plane? (x,y,z)= What is the projection of the point on the x
The projection of the point (1, 2, 5) on the xy-plane is (1, 2, 0), on the yz-plane is (0, 2, 5), and on the xz-plane is (1, 0, 5).
The projection of a point onto a plane can be obtained by setting the coordinate that is perpendicular to the plane to zero.
For the projection of the point (1, 2, 5) on the xy-plane, the z-coordinate is set to zero, resulting in the point (1, 2, 0). This means that the projection lies on the xy-plane, where the z-coordinate is always zero.
Similarly, for the projection on the yz-plane, the x-coordinate is set to zero, giving us the point (0, 2, 5). The projection lies on the yz-plane, where the x-coordinate is always zero.
For the projection on the xz-plane, the y-coordinate is set to zero, resulting in (1, 0, 5). This projection lies on the xz-plane, where the y-coordinate is always zero.
In summary, the projection of the point (1, 2, 5) on the xy-plane is (1, 2, 0), on the yz-plane is (0, 2, 5), and on the xz-plane is (1, 0, 5).
Learn more about x-coordinate here:
https://brainly.com/question/28913580
#SPJ11
Find the volume of the composite figures (pls)
For figure 1: ⇒ volume = 254.6 mi³
For figure 2: ⇒ volume = 1017.36 cubic cm
For figure 3: ⇒ volume = 864 m³
For figure 1:
It contains a cylinder,
Height = 7 mi
radius = r = 3 mi
And a hemisphere of radius = 3 mi
Since we know that,
Volume of cylinder = πr²h
And volume of hemisphere = (2/3)πr³
Therefore put the values we get ;
Volume of cylinder = π(3)²x7
= 197.80 mi³
And volume of hemisphere = (2/3)π(3)³
= 56.80 mi³
Therefore total volume = 197.80 + 56.80
= 254.6 mi³
For figure 2:
It contains a cylinder,
Height = 9 cm
radius = r = 6 cm
And a cone,
radius = 6 cm
Height = 5 cm
Volume of cylinder = π(6)²x9
= 1017.36 cubic cm
Volume of cone = πr²h/3
= 3.14 x 36 x 5/3
= 188.4 cubic cm
Therefore,
Total volume = 1017.36 + 188.4
= 1205.76 cubic cm
For figure 3:
It contains a rectangular prism,
length = l = 12 m
Width = w = 9 m
Height = h = 5 m
Volume of rectangular prism = lwh
= 12x9x5
= 540 m³
And a triangular prism,
Height = h = 6 m
base = b = 9 m
length = l = 12 m
We know that volume of triangular prism = (1/2) x b x h x l
= 0.5 x 9 x 6 x 12
= 324 m³
Total volume = 540 + 324
= 864 m³
To learn more about prism visit:
https://brainly.com/question/2918181
#SPJ1
Help me with this question!
Among the given functions three will form exponential graph and two will form linear curve.
1)
The temperature outside cools by 1.5° each hour.
Let the temperature be 50°.
Then it will depreciate in the manner,
50° , 48.5° , 47° , 45.5° , .......
Hence with the difference among them is constant it can be plotted in linear curve.
2)
The total rainfall increases by 0.15in each week.
So,
Let us assume Rainfall is 50in.
It will increase in the manner,
50 , 50.15. 50.30, ......
Hence with the difference among them is constant it can be plotted in linear curve.
3)
An investment loses 5% of its value each month.
Let us take the investment to be $100.
It will decrease in the manner,
$100 , $95, $90.25 , .....
Hence as the difference among them is not constant it can be plotted in exponential curve.
4)
The value of home appreciates 4% every year.
Let us take the value of home to be $100.
It will appreciate in the form,
$100 , $104 , $108.16, ......
Hence as the difference among them is not constant it can be plotted in exponential curve.
5)
The speed of bus as it stops along its route.
The speed of bus will not remain constant throughout the route and can be plotted in exponential curve.
Know more about Curve,
https://brainly.com/question/2890194
#SPJ1
If n > 1, the graphs of u = sin z and
u. = ne " intersect for a > 0. Find the smallest value of n for which the
graphs are tangent.
The smallest value of n for which the graphs of u = sin(z) and u' = ne^a are tangent is n = 1/sqrt(2).
To find the smallest value of n for which the graphs of u = sin(z) and u' = ne^a intersect and are tangent, we need to find the value of n that satisfies the conditions of intersection and tangency. The equation u' = ne^a represents the derivative of u with respect to z, which gives us the slope of the tangent line to the graph of u = sin(z) at any given point.
Intersection: For the graphs to intersect, the values of u (sin(z)) and u' (ne^a) must be equal at some point. Therefore, we have the equation sin(z) = ne^a. Tangency: For the graphs to be tangent, the slopes of the two curves at the point of intersection must be equal. In other words, the derivative of sin(z) and u' (ne^a) evaluated at the point of intersection must be equal. Therefore, we have the equation cos(z) = ne^a.
We can solve these two equations simultaneously to find the value of n and a that satisfy both conditions. From sin(z) = ne^a, we can isolate z by taking the inverse sine: z = arcsin(ne^a). Substituting this value of z into cos(z) = ne^a, we have: cos(arcsin(ne^a)) = ne^a. Using the trigonometric identity cos(arcsin(x)) = √(1 - x^2), we can rewrite the equation as: √(1 - (ne^a)^2) = ne^a. Squaring both sides, we get: 1 - n^2e^2a = n^2e^2a. Rearranging the equation, we have: 2n^2e^2a = 1. Simplifying further, we find: n^2e^2a = 1/2. Taking the natural logarithm of both sides, we get: 2a + 2ln(n) = ln(1/2). Solving for a, we have: a = (ln(1/2) - 2ln(n))/2
To find the smallest value of n for which the graphs are tangent, we need to minimize the value of a. Since a > 0, the smallest value of a occurs when ln(1/2) - 2ln(n) = 0. Simplifying this equation, we get: ln(1/2) = 2ln(n). Dividing both sides by 2, we have: ln(1/2) / 2 = ln(n). Using the property of logarithms, we can rewrite the equation as: ln(sqrt(1/2)) = ln(n). Taking the exponential of both sides, we find: sqrt(1/2) = n. Simplifying the square root, we obtain: 1/sqrt(2) = n. Therefore, the smallest value of n for which the graphs of u = sin(z) and u' = ne^a are tangent is n = 1/sqrt(2).
To learn more about derivative, click here: brainly.com/question/2159625
#SPJ11
Question 4 Linear Independence. (i) Prove that {1,2 , 1), (2,1,5), (1, -4,7) is linear dependent subset of R3. (ii) Determine whether the vector (1, 2,6) is a linear combination of the vectors (1, 2,
The vectors (1, 2, 1), (2, 1, 5), and (1, -4, 7) are linearly dependent. to prove that a set of vectors is linearly dependent.
we need to show that there exist non-zero scalars such that the linear combination of the vectors equals the zero vector.
(i) let's consider the vectors (1, 2, 1), (2, 1, 5), and (1, -4, 7):
to show that they are linearly dependent, we need to find scalars a, b, and c, not all zero, such that:
a(1, 2, 1) + b(2, 1, 5) + c(1, -4, 7) = (0, 0, 0)
expanding the equation, we get:
(a + 2b + c, 2a + b - 4c, a + 5b + 7c) = (0, 0, 0)
this leads to the following system of equations:
a + 2b + c = 0
2a + b - 4c = 0
a + 5b + 7c = 0
solving this system, we find that there are non-zero solutions:
a = 1, b = -1, c = 1 (ii) now let's consider the vector (1, 2, 6) and the vectors (1, 2, 1), (2, 1, 5), (1, -4, 7):
we want to determine if (1, 2, 6) can be written as a linear combination of these vectors.
let's assume that there exist scalars a, b, and c such that:
a(1, 2, 1) + b(2, 1, 5) + c(1, -4, 7) = (1, 2, 6)
expanding the equation, we get:
(a + 2b + c, 2a + b - 4c, a + 5b + 7c) = (1, 2, 6)
this leads to the following system of equations:
a + 2b + c = 1
2a + b - 4c = 2
a + 5b + 7c = 6
solving this system of equations, we find that there are no solutions. the system is inconsistent.
Learn more about linear here:
https://brainly.com/question/31510530
#SPJ11
The height of an object at t seconds, can be modelled by h(t)=-sin(2t)+t2 for 0 St Sat, where h is in cm. What is the objects maximum velocity and when does it occur?
The object's maximum velocity is approximately 1.32 cm/s, and it occurs at around t ≈ 1.57 seconds.
To find the object's maximum velocity, we need to determine the derivative of the height function h(t) with respect to time, which represents the rate of change of height over time. The derivative of h(t) is given by:
h'(t) = d/dt [-sin(2t) + t²]
Using the chain rule and power rule, we can simplify the derivative:
h'(t) = -2cos(2t) + 2t
To find the maximum velocity, we need to find the critical points of the derivative. Setting h'(t) = 0, we have:
-2cos(2t) + 2t = 0
Solving this equation is not straightforward, but we can approximate the value using numerical methods. In this case, the maximum velocity occurs at t ≈ 1.57 seconds, and the corresponding velocity is approximately 1.32 cm/s.
Note: The exact solution would require more precise numerical methods or algebraic manipulation, but the approximation provided is sufficient for practical purposes.
learn more about power rule here:
https://brainly.com/question/24920520
#SPJ11
please answer quick
Write a in the form a=a+T+aN at the given value of t without finding T and N. r(t) = (-3t+4)i + (2t)j + (-31²)k, t= -1 a= T+N (Type exact answers, using radicals as needed)
Without finding T and N, the position vector is a = 7i - 2j - 3k.
To write the given vector function r(t) in the form a=a+T+aN without finding T and N at the given value of t=-1, follow these steps:
1. Plug in the given value of t=-1 into the vector function r(t).
r(-1) = (-3(-1)+4)i + (2(-1))j + (-3(1²))k
2. Simplify the vector function.
r(-1) = (3+4)i + (-2)j + (-3)k
3. Combine like terms to get the position vector a.
a = 7i - 2j - 3k
So, the position vector a, without finding T and N, is a = 7i - 2j - 3k.
To learn more about position vector visit : https://brainly.com/question/29300559
#SPJ11
If/As_ g(x) = *=dt 13 x € (0, [infinity]) dt show that/wys dat g(7x) = g(x) + C for all
g(7x) = g(x) + C for all x in (0, [infinity]). If g(x) = ∫dt 13 x € (0, [infinity]), then we can rewrite the integral as:
g(x) = ∫dt 13 x € (0, [infinity])
g(x) = ∫dt 13 x € (0, 7x) + ∫dt 13 x € (7x, [infinity])
g(x) = ∫dt 13 x € (0, 7x) + g(7x)
Now, if we substitute 7x for x in the original equation for g(x), we get:
g(7x) = ∫dt 13 7x € (0, [infinity])
We can rewrite this integral as:
g(7x) = ∫dt 13 7x € (0, 7x) + ∫dt 13 7x € (7x, [infinity])
We can simplify the first integral using a change of variable, u = t/7, dt = 7du, which gives:
g(7x) = ∫7du 13 x € (0, x) + ∫dt 13 7x € (7x, [infinity])
We can simplify the first integral further:
g(7x) = 7∫du 13 x € (0, x) + ∫dt 13 7x € (7x, [infinity])
We can now substitute g(x) + C for the second integral:
g(7x) = 7∫du 13 x € (0, x) + g(x) + C
Finally, we can simplify the first integral using a change of variable, v = u/7, du = 7dv, which gives:
g(7x) = ∫7dv 13 x/7 € (0, x/7) + g(x) + C
g(7x) = g(x/7) + g(x) + C
Therefore, g(7x) = g(x) + C for all x in (0, [infinity]).
Learn more about integral here:
brainly.com/question/31059545
#SPJ11
A plant is 4 inches tall. it grows 5 inches per year. which equation model is the height y of the plant after x years  
The equation which model the height y of the plant after x years is,
⇒ y = 4 + 5x
We have to given that,
A plant is 4 inches tall.
And, it grows 5 inches per year.
Since, Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Now, We can formulate;
The equation which model the height y of the plant after x years is,
⇒ y = 4 + 5 × x
⇒ y = 4 + 5x
Therefore, We get;
The equation which model the height y of the plant after x years is,
⇒ y = 4 + 5x
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ1
Conved the following angle to docial gestus
a=8° 55 42
The given angle is 8° 55' 42". To convert this angle to decimal degrees, we need to convert the minutes and seconds to their decimal equivalents. The resulting angle will be in decimal degrees.
To convert the minutes and seconds to their decimal equivalents, we divide the minutes by 60 and the seconds by 3600, and then add these values to the degrees. In this case, we have:
8° + (55/60)° + (42/3600)°
Simplifying the fractions, we have:
8° + (11/12)° + (7/600)°
Combining the terms, we get:
8° + (11/12)° + (7/600)° = (8*12 + 11 + 7/600)° = (96 + 11 + 0.0117)° = 107.0117°
Therefore, the angle 8° 55' 42" is equivalent to 107.0117° in decimal degrees.
Learn more about angle here : brainly.com/question/31818999
#SPJ11
Prove that if a convex polygon has three angles whose sum is 180°, then the polygon must be a triangle. (Note: Be careful not to accidentally prove the converse of this!)
If a convex polygon has three angles whose sum is 180°, then the polygon must be a triangle.
Let's assume we have a convex polygon with more than three angles whose sum is 180°. If it is not a triangle, it must have at least one additional angle. Let's call the sum of the three angles forming 180° as A and the additional angle as B.
Now, let's consider the sum of the angles in the polygon. For any polygon with n sides, the sum of its interior angles is given by (n-2) * 180°. Since our polygon has three angles summing up to 180° (A), the sum of its remaining angles (excluding the three angles) must be (n-3) * 180°.
Now, let's compare the two sums: (n-2) * 180° vs. (n-3) * 180° + B.
We can see that (n-3) * 180° + B is greater than (n-2) * 180° because it has an additional angle B. However, this contradicts the fact that the sum of the angles in a convex polygon is fixed at (n-2) * 180°. Hence, our assumption that the polygon has more than three angles forming 180° must be false. Therefore, if a convex polygon has three angles whose sum is 180°, it must be a triangle.
LEARN MORE ABOUT polygon here: brainly.com/question/23846997
#SPJ11
Compute lim (2+h)-¹ - 2-1 h h→0 5. Use the Squeeze Theorem to show lim x² cos(1/x²) = 0. x→0
The limit is -1/4.
Using Squeeze Theorem, we can conclude that lim x² cos(1/x²) = 0 as x approaches 0.
To compute the limit lim (2+h)^(-1) - 2^(-1) / h as h approaches 0, we can simplify the expression:
lim (2+h)^(-1) - 2^(-1) / h
= (1/(2+h) - 1/2) / h
Now, let's find the common denominator and simplify further:
= [(2 - (2+h)) / (2(2+h))] / h
= (-h / (2(2+h))) / h
= -1 / (2(2+h))
Finally, we can take the limit as h approaches 0:
lim -1 / (2(2+h)) = -1 / (2(2+0)) = -1 / (2(2)) = -1/4
Therefore, the limit is -1/4.
Now, let's use the Squeeze Theorem to show that lim x² cos(1/x²) = 0 as x approaches 0.
We know that -1 ≤ cos(1/x²) ≤ 1 for all x ≠ 0.
Multiplying through by x², we have -x² ≤ x² cos(1/x²) ≤ x².
Taking the limit as x approaches 0, we get:
lim -x² ≤ lim x² cos(1/x²) ≤ lim x²
As x approaches 0, both -x² and x² approach 0.
Therefore, by the Squeeze Theorem, we can conclude that lim x² cos(1/x²) = 0 as x approaches 0.
To know more about limit refer here:
https://brainly.com/question/12211820#
#SPJ11
The amount of air (in Titersin an average resting persones a seconds after exhaling can be modeled by the function A = 0.37 cos (+) +0.45."
The function A = 0.37 cos(t) + 0.45 models the amount of air (in liters) in an average resting person's lungs t seconds after exhaling.
The given function A = 0.37 cos(t) + 0.45 represents a mathematical model for the amount of air in liters in an average resting person's lungs t seconds after exhaling In the equation, cos(t) represents the cosine function, which oscillates between -1 and 1 as the input t varies. The coefficient 0.37 scales the amplitude of the cosine function, determining the range of values for the amount of air. The constant term 0.45 represents the average baseline level of air in the lungs.
The function A takes the input of time t in seconds and calculates the corresponding amount of air in liters. As t increases, the cosine function oscillates, causing the amount of air in the lungs to fluctuate around the baseline level of 0.45 liters. The amplitude of the oscillations is determined by the coefficient 0.37.
Learn more about function here:
https://brainly.com/question/30721594
#SPJ11
Evaluate the double integral. Select the order of integration carefully, the problem is easy to do one way and difficult the other. 6y 7xy S88+ 730JA: R=($.7)| O5x58, - 1sys 1) 1x² R SS" By® + 7xy d
To evaluate the double integral, we need to carefully select the order of integration. Let's consider the given function and limits of integration:
Answer : the double integral ∬R (6y + 7xy) dA, where R: 0 ≤ x ≤ 5, -1 ≤ y ≤ 1, evaluates to 0.
∬R (6y + 7xy) dA
where R represents the region defined by the limits:
R: 0 ≤ x ≤ 5, -1 ≤ y ≤ 1
To determine the appropriate order of integration, we can consider the integrals with respect to each variable separately and choose the order that simplifies the calculations.
Let's start by integrating with respect to y first:
∫∫R (6y + 7xy) dy dx
Integrating (6y + 7xy) with respect to y gives:
∫ (3y^2 + 7xy^2/2) | -1 to 1 dx
Simplifying further, we have:
∫ (3 + 7x/2) - (3 + 7x/2) dx
The terms with y have been eliminated, and we are left with an integral with respect to x only.
Now, we can integrate with respect to x:
∫ (3 + 7x/2 - 3 - 7x/2) dx
Integrating (3 + 7x/2 - 3 - 7x/2) with respect to x gives:
∫ 0 dx
The integral of a constant is simply the constant times the variable:
0x = 0
Therefore, the value of the double integral is 0.
In summary, the double integral ∬R (6y + 7xy) dA, where R: 0 ≤ x ≤ 5, -1 ≤ y ≤ 1, evaluates to 0.
Learn more about limits : brainly.com/question/12211820
#SPJ11
A population is currently 150 and growing at a rate of 3% per year. (a) Write a formula for the population P as a function of time t in years: P(t) = (b) If the population continues this trend, what will it be in ten years? (Round off to the nearest whole person.) (c) If the population continues this trend, how many full years does it take to at least double? # ⠀
If the population continues to grow at a rate of 3% per year, it will be approximately 195 people in ten years. It takes approximately 24 years for the population to at least double if the growth rate remains constant.
Explanation: The formula for exponential growth can be expressed as P(t) = P0 * [tex](1+r)^{t}[/tex], where P(t) represents the population at time t, P0 is the initial population, r is the growth rate per time period, and t is the number of time periods. In this case, the initial population P0 is 150, and the growth rate r is 3% or 0.03. Therefore, the formula for the population as a function of time is P(t) = 150 *[tex](1 + 0.03)^{t}.[/tex]
To find the population in ten years, we substitute t = 10 into the formula: P(10) = 150 * [tex](1 + 0.03)^{10}[/tex]. Evaluating this expression gives us P(10) ≈ 195. Thus, if the population continues to grow at a rate of 3% per year, it will be approximately 195 people in ten years.
To determine the number of full years it takes to at least double the population, we need to find the value of t when P(t) = 2 * P0. In this case, P0 is 150. So, we set up the equation 2 * 150 = 150 * [tex](1 + 0.03)^{t}[/tex] and solve for t. Simplifying the equation, we get 2 = [tex](1 + 0.03)^{t}[/tex]. Taking the natural logarithm of both sides, we have ln(2) = t * ln(1 + 0.03). Dividing both sides by ln(1 + 0.03), we find t ≈ ln(2) / ln(1.03) ≈ 23.45. Therefore, it takes approximately 24 years for the population to at least double if the growth rate remains constant.
Learn more about growth rate here:
https://brainly.com/question/3282597
#SPJ11
Consider the following double integral 1 = $***** dy dr. dx. By reversing the order of integration of 1, we obtain: 1 = $ L94-ya dx dy 1 = $**** dx dy This option This option : - fi$*** dx dy None of
The given prompt involves reversing the order of integration for a double integral. The correct answer is not provided among the given options.The correct answer should be ∫∫ dx dy.
To reverse the order of integration in a double integral, we interchange the order of integration variables and adjust the limits accordingly. The given integral is expressed as:
∫∫ dy dr dx
To reverse the order of integration, we need to integrate with respect to x first, followed by y. Therefore, the integral becomes:
∫∫ dx dy
However, none of the provided options accurately represent the reversed order of integration. The correct answer should be ∫∫ dx dy.
It's important to note that the specific limits of integration would need to be determined based on the region of integration for the original double integral. The provided options do not provide enough information regarding the limits, so it is not possible to determine the correct answer among the given options.
Learn mora about reversing here:
https://brainly.com/question/30286960
#SPJ11
Which of the following polar pairs could also be a representation of (3, 120°) ? Select all that apply.S. A. (3,480) B. (3,-240) C. (-3, 240) D. (-3, -60°) E. (3, -60°)
The correct polar pairs that could represent (3, 120°) are:
B. (3, -240)
C. (-3, 240)
E. (3, -60°)
The polar pair (3, 120°) can be represented by the polar pairs (3, -240), (-3, 240), and (3, -60°).
To convert from polar coordinates (r, θ) to rectangular coordinates (x, y), we use the following formulas:
x = r * cos(θ)
y = r * sin(θ)
Given the polar coordinates (3, 120°), we can calculate the rectangular coordinates as follows:
x = 3 * cos(120°) ≈ -1.5
y = 3 * sin(120°) ≈ 2.598
So, the rectangular coordinates are approximately (-1.5, 2.598). Now, let's convert these rectangular coordinates back to polar coordinates:
r = sqrt(x^2 + y^2) ≈ sqrt((-1.5)^2 + 2.598^2) ≈ 3
θ = arctan(y/x) ≈ arctan(2.598/(-1.5)) ≈ -60°
Therefore, the polar representation of the rectangular coordinates (-1.5, 2.598) is approximately (3, -60°). Comparing this with the given options, we can see that options B, C, and E match the polar representation (3, 120°).
To learn more about coordinates click here brainly.com/question/22261383
#SPJ11
Question 1 Use a and b = < 5, 1, -2> = Find all [answer1] Find [answer2] b Find b a [answer3] Find a b [answer4] Find a × b [answer5] 1 pts
1: The dot product of vectors a and b is 0. 2: The magnitude (length) of vector b is √30. 3: The dot product of vector b and vector a is 0. 4: The dot product of vector a and vector b is 0.5: The cross product of vectors a and b is <-3, -4, 9>.
In summary, the given vectors a and b have the following properties: their dot product is 0, the magnitude of vector b is √30, the dot product of vector b and vector a is 0, the dot product of vector a and vector b is 0, and the cross product of vectors a and b is <-3, -4, 9>.
To find the dot product of two vectors, we multiply their corresponding components and then sum the results. In this case, a • b = (5 * 5) + (1 * 1) + (-2 * -2) = 25 + 1 + 4 = 30, which equals 0.
To find the magnitude of a vector, we take the square root of the sum of the squares of its components. The magnitude of vector b, denoted as ||b||, is √((5^2) + (1^2) + (-2^2)) = √(25 + 1 + 4) = √30.
The dot product of vector b and vector a, denoted as b • a, can be found using the same formula as before. Since the dot product is a commutative operation, it yields the same result as the dot product of vector a and vector b. Therefore, b • a = a • b = 0.
The cross product of two vectors, denoted as a × b, is a vector perpendicular to both a and b. It can be calculated using the cross product formula. In this case, the cross product of vectors a and b is given by the determinant:
|i j k |
|5 1 -2|
|5 1 -2|
Expanding the determinant, we have (-2 * 1 - (-2 * 1))i - ((-2 * 5) - (5 * 1))j + (5 * 1 - 5 * 1)k = -2i + 9j + 0k = <-2, 9, 0>.
Learn more about product:
https://brainly.com/question/16522525
#SPJ11
Find the derivative of the function f (x) = 6x x² + 1 using the Product or Quotient Rule. Evaluate f(1) and f'(1). What do each of these values represent? How can we interpret them?
f(1) represents the value of the function f(x) at x = 1. In this case, f(1) = 3, which means that when x is 1, the value of the function is 3.
What is Derivative?
In mathematics, the derivative is a way of showing the rate of change: that is, the amount by which a function changes at one given point. For functions that act on real numbers, it is the slope of the tangent line at a point on the graph.
To find the derivative of the function f(x) = 6x / (x² + 1), we can use the quotient rule. The quotient rule states that if we have a function u(x) = g(x) / h(x), then the derivative of u(x) with respect to x is given by:
u'(x) = (g'(x)h(x) - g(x)h'(x)) / (h(x))²
In this case, g(x) = 6x and h(x) = x² + 1. Let's differentiate g(x) and h(x) to apply the quotient rule:
g'(x) = 6
h'(x) = 2x
Now we can apply the quotient rule:
f'(x) = (g'(x)h(x) - g(x)h'(x)) / (h(x))²
= (6(x² + 1) - 6x(2x)) / (x² + 1)²
= (6x² + 6 - 12x²) / (x² + 1)²
= (-6x² + 6) / (x² + 1)²
Now, let's evaluate f(1) and f'(1):
To find f(1), we substitute x = 1 into the original function:
f(1) = 6(1) / (1² + 1)
= 6 / 2
= 3
To find f'(1), we substitute x = 1 into the derivative we just found:
f'(1) = (-6(1)² + 6) / (1² + 1)²
= 0 / 4
= 0
Interpretation:
f(1) represents the value of the function f(x) at x = 1. In this case, f(1) = 3, which means that when x is 1, the value of the function is 3.
f'(1) represents the instantaneous rate of change of the function f(x) at x = 1. In this case, f'(1) = 0, which means that at x = 1, the function has a horizontal tangent, and its rate of change is zero at that point. This indicates a possible extremum or a point of inflection.
Overall, f(1) represents the value of the function at a specific point, while f'(1) represents the rate of change of the function at that point.
To learn more about Derivative from the given link
https://brainly.com/question/30403647
#SPJ4
I dont know the answer to this :/
The statement that completes the two column proof is
Statement Reason
KM ≅ MK reflexive property
What is reflexive property?The reflexive property is a fundamental concept in mathematics and logic that describes a relationship a particular element has with itself. It states that for any element or object x, x is related to itself.
In other words, every element is related to itself by the given relation.
the KM ≅ MK means KM is congruent to or equal to MK. hence relating itself
This property holds true since the two triangles shares this part in common
Learn more about reflexive property at
https://brainly.com/question/29792711
#SPJ1
Choose the expression that describes the Field of Values (outputs) and the Amplitude of the graph of f(x)=−2sin(x).
The expression that describes the field of values (outputs) of the graph of f(x) = -2sin(x) is [-2, 2], and the amplitude of the graph is 2.
In the given function f(x) = -2sin(x), the coefficient of sin(x) is -2. The coefficient, also known as the amplitude, determines the vertical stretching or compressing of the graph. The absolute value of the amplitude represents the maximum displacement from the midline of the graph.
Since the amplitude is -2, we take its absolute value to obtain 2. This means that the graph of f(x) = -2sin(x) has a maximum displacement of 2 units above and below the midline.
Therefore, the field of values (outputs) of the graph is [-2, 2], representing the range of y-values that the graph of f(x) = -2sin(x) can attain.
To learn more about amplitude of the graph click here : brainly.com/question/29273077
#SPJ11
if every 4th person gets a free cookie and every 5th person gets a free coffee how many out of 100 people will receive a free cookie and free coffee.
A:4 people
B:5 people
C:6 people
D:7 people
5 people out of 100 will receive a free cookie and free coffee.
Given,
Every 4th person gets a free cookie and every 5th person gets a free coffee .
Now,
Compute the data in the form of equations,
Thus,
In every 20 people 1 person will get both cookie and coffee.
So,
In the group of 100 people 5 persons will be there those who will get both cookie and coffee.
Learn more about equations,
https://brainly.com/question/29111179
#SPJ1