The following table represents a probability distribution for a random variable, X. What must P(5) be?

The Following Table Represents A Probability Distribution For A Random Variable, X. What Must P(5) Be?

Answers

Answer 1

Answer:

c) 0.1

P(5) = 0.1

Step-by-step explanation:

Given data

x  :              0      1      2       3       4      5

p(x):          0.2    0.1  0.3   0.1     0.2    ?

Given data is discrete distribution

if the numbers [tex]P(x_{i} )[/tex]  i = 1,2,3.....  satisfies the two conditions

i) [tex]P(x_{i} )\geq 0[/tex]   for all values of 'i'

ii) ∑P(x) = 1

Given data

i) [tex]P(x_{i} )\geq 0[/tex]   for all values of 'i'

ii)            ∑P(x) = 1

        P(x=1) + P(x=2) +P(x=3) +P(x=4)+P(x=5) =1

⇒      0.2 + 0.1 + 0.3 +0.1 +0.2 + p(X=5) = 1

⇒     0.9 +p(5) =1

⇒             p(5) = 1 -0.9

⇒              P(5) = 0.1


Related Questions

If ∠1 and ∠2 are complementary and m∠1 = 17º, what is m∠2

Answers

Answer:

m<2 = 73

Step-by-step explanation:

Since <1 and <2 are complementary (which means that they equal 90), all you have to do is subtract 17 from 90 to find your answer:

90 - 17 = 73

thus, m<2 = 73

Answer:

73

Step-by-step explanation:

-12
Natural
Whole
Integers
Rationals
Irrationals
Real

Answers

Answer:

the answer is integers if helpful please give 5 star

vertex form of x^2+6x+3

Answers

Answer:

y = (x + 3)^2 - 6.

Step-by-step explanation:

The vertex formula is Y = a(x - h)^2 + k.

To find the vertex formula, we need to find h and k, by finding the vertex of x^2 + 6x + 3.

h = -b/2a

a = 1, b = 6.

h = -6 / 2 * 1 = -6 / 2 = -3

k = (-3)^2 + 6(-3) + 3 = 9 - 18 + 3 = -9 + 3 = -6

So far, we have Y = a(x - (-3))^2 + -6, so y = a(x + 3)^2 - 6.

In this case, the coefficient of x^2 of the given formula is 1, which means that a will be 1.

The vertex form of x^2 + 6x + 3 is y = (x + 3)^2 - 6.

To check our work...

y = (x + 3)^2 - 6

= x^2 + 3x + 3x + 9 - 6

= x^2 + 6x + 3

Hope this helps!

Juan y maria mezclan cafe de colombia, cafe de brazil, cafe de guinea y cafe de venezuela en paquetes de un kilo. Observa la fraccion de kilo que utilizan de cada tipo de cafe y calcula la fraccion de kilo que representa el cafe de colombia

Answers

Answer:

Step-by-step explanation:

Ya que mezclan café colombiano, brasileño, guineano y venezolano en un paquete de un kilo. Igualmente deben agregar los cafés juntos.

Para encontrar la cantidad igual para cada café en 1 kilo, divida 1 kilo y los 4 cafés. Entonces la cantidad sería 1/4 (o 0.25) de café por kilo. La respuesta significa que cada uno de los cuatro cafés pesa 1/4 kilo.

Como cada café representa 1/4 kilo, el café colombiano representa 1/4 kilo.

Si necesita ayuda adicional, comente a continuación.

One positive number is
6 more than twice another. If their product is
1736, find the numbers.

Answers

Answer:

[tex]\Large \boxed{\sf \ \ 28 \ \text{ and } \ 62 \ \ }[/tex]

Step-by-step explanation:

Hello, let's note a and b the two numbers.

We can write that

a = 6 + 2b

ab = 1736

So

[tex](6+2b)b=1736\\\\ \text{***Subtract 1736*** } <=> 2b^2+6b-1736=0\\\\ \text{***Divide by 2 } <=> b^2+3b-868=0 \\ \\ \text{***factorize*** } <=> b^2 +31b-28b-868=0 \\ \\ <=> b(b+31) -28(b+31)=0 \\ \\ <=> (b+31)(b-28) =0 \\ \\ <=> b = 28 \ \ or \ \ b = -31[/tex]

We are looking for positive numbers so the solution is b = 28

and then a = 6 +2*28 = 62

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

If two events are mutually​ exclusive, why is ​? Choose the correct answer below. A. because A and B each have the same probability. B. because A and B cannot occur at the same time. C. because A and B are independent. D. because A and B are complements of each other.

Answers

Answer:

B. because A and B cannot occur at the same time.

Step-by-step explanation:

If two events are mutually​ exclusive, why is ​? Choose the correct answer below.

A. because A and B each have the same probability.

B. because A and B cannot occur at the same time.

C. because A and B are independent.

D. because A and B are complements of each other.

If 3x + 9y = 21 , find the value of 4(x + 3y)

Answers

Answer:

25

Step-by-step explanation:

The method that should be used is substitution:

Do this by taking 3x+9y=21 and transforming it to be [tex]y=-\frac{1}{2} x+\frac{7}{3}[/tex]

Once you have this, substitute the value of y that we just found into 3x+9y=21 to find the value of x: [tex]3x+9(-\frac{1}{2} +\frac{7}{3} ) =21[/tex]

Solve for x. You should get 1.5

Once you have this, Plug in 1.5 for the value of x into the y= equation that we found in the beginning: [tex]y=-\frac{1}{2} (1.5)+\frac{7}{3}[/tex]

Solve for y. You should get 1.583 (19/12)

Plug in the values of x and y that we found into the last equation to find its value: 4(1.5+3(1.583))

Which of the following statements are true? I. The sampling distribution of ¯ x x¯ has standard deviation σ √ n σn even if the population is not normally distributed. II. The sampling distribution of ¯ x x¯ is normal if the population has a normal distribution. III. When n n is large, the sampling distribution of ¯ x x¯ is approximately normal even if the the population is not normally distributed. I and II I and III II and III I, II, and III None of the above gives the complete set of true responses.

Answers

Complete Question

Which of the following statements are true?

I. The sampling distribution of [tex]\= x[/tex] has standard deviation [tex]\frac{\sigma}{\sqrt{n} }[/tex] even if the population is not normally distributed.

II. The sampling distribution of [tex]\= x[/tex]   is normal if the population has a normal distribution.

III. When  n is large, the sampling distribution of [tex]\= x[/tex]  is approximately normal even if the the population is not normally distributed.

A  I and II

B  I and III

C II and III

D I, II, and III

None of the above gives the complete set of true responses.

Answer:

The correct option is  D

Step-by-step explanation:

Generally the mathematically equation for evaluating the standard deviation of the mean([tex]\= x[/tex]) of samples is  [tex]\frac{\sigma}{\sqrt{n} }[/tex]  hence the the first statement is correct

   Generally the second statement is true, that is the sampling distribution of the mean ([tex]\= x[/tex]) is  normal given that the population distribution is  normal

 Now  according to central limiting theorem given that the sample size is  large the distribution of the mean ([tex]\= x[/tex]) is approximately  normal notwithstanding the distribution of the population

can I get some help please?​

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

2,013 cartons

▹ Step-by-Step Explanation

72,468 ÷ 36 = 2,013 cartons

Hope this helps!

CloutAnswers ❁

Brainliest is greatly appreciated!

━━━━━━━☆☆━━━━━━━

Answer:

72,468 eggs divided by 36 eggs per carton=2,013 cartons

Step-by-step explanation:

Solve: -1/2+ c =31/4 c=8 c=7 c=33/4 c=29/4

Answers

Answer:

c = 29/4

Step-by-step explanation:

[tex] - \frac{1}{2} + c = \frac{31 }{4} \\ \\ c = \frac{31}{4} + \frac{1}{2} = \frac{31 - 2}{4} \\ \\ c = \frac{29}{4} [/tex]

Hope this helps you

Given the parametric equations below, eliminate the parameter t to obtain an equation for y as a function of x { x ( t ) = 5 √ t y ( t ) = 7 t + 4

Answers

Answer:

y(x) = (7/25)x^2 + 4

Step-by-step explanation:

Given:

x = 5*sqrt(t) .............(1)

y = 7*t+4 ..................(2)

solution:

square (1) on both sides

x^2 = 25t

solve for t

t = x^2 / 25  .........(3)

substitute (3) in (2)

y = 7*(x^2/25) +4

y= (7/25)x^2 + 4

Making handcrafted pottery generally takes two major steps: wheel throwing and firing. The time of wheel throwing and the time of firing are normally distributed random variables with means of 40 minutes and 60 minutes and standard deviations of 2 minutes and 3 minutes, respectively. Assume the time of wheel throwing and time of firing are independent random variables. (d) What is the probability that a piece of pottery will be finished within 95 minutes

Answers

Answer:

The probability that a piece of pottery will be finished within 95 minutes is 0.0823.

Step-by-step explanation:

We are given that the time of wheel throwing and the time of firing are normally distributed variables with means of 40 minutes and 60 minutes and standard deviations of 2 minutes and 3 minutes, respectively.

Let X = time of wheel throwing

So, X ~ Normal([tex]\mu_x=40 \text{ min}, \sigma^{2}_x = 2^{2} \text{ min}[/tex])

where, [tex]\mu_x[/tex] = mean time of wheel throwing

            [tex]\sigma_x[/tex] = standard deviation of wheel throwing

Similarly, let Y = time of firing

So, Y ~ Normal([tex]\mu_y=60 \text{ min}, \sigma^{2}_y = 3^{2} \text{ min}[/tex])

where, [tex]\mu_y[/tex] = mean time of firing

            [tex]\sigma_y[/tex] = standard deviation of firing

Now, let P = a random variable that involves both the steps of throwing and firing of wheel

SO, P = X + Y

Mean of P, E(P) = E(X) + E(Y)

                   [tex]\mu_p=\mu_x+\mu_y[/tex]

                        = 40 + 60 = 100 minutes

Variance of P, V(P) = V(X + Y)

                               = V(X) + V(Y) - Cov(X,Y)

                               = [tex]2^{2} +3^{2}-0[/tex]  

{Here Cov(X,Y) = 0 because the time of wheel throwing and time of firing are independent random variables}

SO, V(P) = 4 + 9 = 13

which means Standard deviation(P), [tex]\sigma_p[/tex] = [tex]\sqrt{13}[/tex]

Hence, P ~ Normal([tex]\mu_p=100, \sigma_p^{2} = (\sqrt{13})^{2}[/tex])

The z-score probability distribution of the normal distribution is given by;

                           Z  =  [tex]\frac{P- \mu_p}{\sigma_p}[/tex]  ~ N(0,1)

where, [tex]\mu_p[/tex] = mean time in making pottery = 100 minutes

           [tex]\sigma_p[/tex] = standard deviation = [tex]\sqrt{13}[/tex] minutes

Now, the probability that a piece of pottery will be finished within 95 minutes is given by = P(P [tex]\leq[/tex] 95 min)

     P(P [tex]\leq[/tex] 95 min) = P( [tex]\frac{P- \mu_p}{\sigma_p}[/tex] [tex]\leq[/tex] [tex]\frac{95-100}{\sqrt{13} }[/tex] ) = P(Z [tex]\leq[/tex] -1.39) = 1 - P(Z < 1.39)

                                                            = 1 - 0.9177 = 0.0823

The above probability is calculated by looking at the value of x = 1.39 in the z table which has an area of 0.9177.                                        

What is the value of the angle marked with xxx?

Answers

Answer:

Here you go!! :)

Step-by-step explanation:

Given that the sides of the quadrilateral are 3.3

The measure of one angle is 116°

We need to determine the value of x.

Value of x:

Since, the given quadrilateral is a rhombus because it has all four sides equal.

We know the property that the opposite sides of the rhombus are equal.

The measure of the opposite angle is 116°

x = measure of opposite angle

x = 116°

Then, the value of x is 116°

Therefore, the value of x is 116°

Answer:

In the diagram, the measurement of x is 87°

Step-by-step explanation:

In this diagram, this shape is a quadrilateral. This quadrilateral in this picture is known as rhombus. In a rhombus, the consecutive angles are supplementary meaning they have a sum of 180°. Consecutive means the angles are beside each other. So, we will subtract 93 from 180 to find the value of x.

180 - 93 = 87

The measurement of x is 87°

The time X(mins) for Ayesha to prepare breakfast for her family is believed to have a uniform
distribution with A=25 and B=35.
a) Determine the pdf of X and draw its density curve.
b) What is the probability that time taken by Ayesha to prepare breakfast exceeds 33 mins?
c) What is the probability that cooking or preparation time is within 2 mins of the mean time?
(Hint: Identify mean from the graph of f(x))

Answers

Answer:

(c) [tex]f_{X}(x)=\left \{ {{\frac{1}{35-25}=\frac{1}{10};\ 25<X<35} \atop {0;\ Otherwise}} \right.[/tex]

(b) The probability that time taken by Ayesha to prepare breakfast exceeds 33 minutes is 0.20.

(c) The probability that cooking or preparation time is within 2 mins of the mean time is 0.40.

Step-by-step explanation:

The random variable X follows a Uniform (25, 35).

(a)

The probability density function of an Uniform distribution is:

[tex]f_{X}(x)=\left \{ {{\frac{1}{B-A};\ A<X<B} \atop {0;\ Otherwise}} \right.[/tex]

Then the probability density function of the random variable X is:

[tex]f_{X}(x)=\left \{ {{\frac{1}{35-25}=\frac{1}{10};\ 25<X<35} \atop {0;\ Otherwise}} \right.[/tex]

(b)

Compute the value of P (X > 33) as follows:

[tex]P(X>33)=\int\limits^{35}_{33} {\frac{1}{10}} \, dx \\\\=\frac{1}{10}\cdot\int\limits^{35}_{33} {1} \, dx \\\\=\frac{1}{10}\times [x]^{35}_{33}\\\\=\frac{35-33}{10}\\\\=\frac{2}{10}\\\\=0.20[/tex]

Thus, the probability that time taken by Ayesha to prepare breakfast exceeds 33 minutes is 0.20.

(c)

Compute the mean of X as follows:

[tex]\mu=\frac{A+B}{2}=\frac{25+35}{2}=30[/tex]

Compute the probability that cooking or preparation time is within 2 mins of the mean time as follows:

[tex]P(30-2<X<30+2)=P(28<X<32)[/tex]

                                      [tex]=\int\limits^{32}_{28} {\frac{1}{10}} \, dx \\\\=\frac{1}{10}\cdot\int\limits^{32}_{28}{1} \, dx \\\\=\frac{1}{10}\times [x]^{32}_{28}\\\\=\frac{32-28}{10}\\\\=\frac{4}{10}\\\\=0.40[/tex]

Thus, the probability that cooking or preparation time is within 2 mins of the mean time is 0.40.

What does 0 = 0 indicate about the solutions of the system?

Answers

Answer:

it indicates that it is infinitely many solutions

Find the magnitudes of sides x and y.

Answers

Answer:

x ≈ 13.8 units

y ≈ 22.0 units

Step-by-step explanation:

We must use trigonometry to address this problem.

First, we know that y is the side opposite to the labelled angle, and x is the side adjacent to the labelled angle. 26 is the length of the hypotenuse.

We use cosine to find x (because cosine = adjacent / hypotenuse) and sine to find y (because sine = opposite / hypotenuse).

cos(58) = x/26

x = 26 * cos(58) ≈ 13.8

sin(58) = y/26

y = 26 * sin(58) ≈ 22.0

Thus, x ≈ 13.8 units and y ≈ 22.0 units.

~ an aesthetics lover

Several terms of a sequence StartSet a Subscript n EndSet Subscript n equals 1 Superscript infinity are given below. ​{1​, negative 5​, 25​, negative 125​, 625​, ​...} a. Find the next two terms of the sequence. b. Find a recurrence relation that generates the sequence​ (supply the initial value of the index and the first term of the​ sequence). c. Find an explicit formula for the general nth term of the sequence.

Answers

Answer:

(a) -3125, 15625

(b)

[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]

(c)[tex]a_n=(-5)^{n-1}[/tex]

Step-by-step explanation:

The sequence [tex]a_n$ _{n=1}^\infty[/tex] is given as:

[tex]\{1,-5,25,-125,625,\cdots\}[/tex]

(a)The next two terms of the sequence are:

625 X -5 = - 3125

-3125 X -5 =15625

(b)Recurrence Relation

The recurrence relation that generates the sequence is:

[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]

(c)Explicit Formula

The sequence is an alternating geometric sequence where:

Common Ratio, r=-5First Term, a=1

Therefore, an explicit formula for the sequence is:

[tex]a_n=1\times (-5)^{n-1}\\a_n=(-5)^{n-1}[/tex]

replace each star with a digit to make the problem true.Is there only one answer to each problem? ****-***=2

Answers

Answer: We have two solutions:

1000 - 998 = 2

1001 - 999 = 2

Step-by-step explanation:

So we have the problem:

****-*** = 2

where each star is a different digit, so in this case, we have a 4 digit number minus a 3 digit number, and the difference is 2.

we know that if we have a number like 99*, we can add a number between 1 and 9 and we will have a 4-digit as a result:

So we could write this as:

1000 - 998 = 2

now, if we add one to each number, the difference will be the same, and the number of digits in each number will remain equal:

1000 - 998 + 1 - 1 = 2

(1000 + 1) - (998 + 1) = 2

1001 - 999 = 2

now, there is a trivial case where we can find other solutions where the digits can be zero, like:

0004 - 0002 = 2

But this is trivial, so we can ignore this case.

Then we have two different solutions.

Write the recursive sequence for: 64, 16, 4, 1, ...

Answers

Answer:

Use the formula

a

n

=

a

1

r

n

1

to identify the geometric sequence.

Step-by-step explanation:

a

n

=

64

4

n

1 hope this helps you :)

Answer: The answer is in the steps.

Step-by-step explanation:

f(1)= 64  

f(n)=1/4(n-1)      n in this case is the nth term.

Which algebraic expression represents the phrase below? five times the sum of a number and eleven, divided by three times the sum of the number and eight 5(x + 11) + 3(x + 8) 5 x + 11 Over 3 x + 8 Start Fraction 5 (x + 11) Over 3 (x + 8) 5x + 11 + 3x + 8

Answers

Answer:

85

Step-by-step explanation:

im new↑∵∴∵∴∞

Please answer this correctly

Answers

Answer:

[tex] \frac{1}{6} [/tex]

Step-by-step explanation:

the ways of choosing 2 cards out of 4, is calculator by

[tex] \binom{4}{2} = 6[/tex]

so, 6 ways to select 2 cards.

but in only one way we can have 2 even cards. thus, the answer is

[tex] \frac{1}{6} [/tex]

Which of the following is the
graph of
(x - 3)2 + (y - 1)2 = 9 ?

Answers

Answer:

Answer is A

Step-by-step explanation:

The equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.

What does the equation of a circle represent?

The general equation of a circle is of the form (x - h)² + (y - k)² = r², where (h, k) is the point where the center of the given circle lies, and r is the radius of this given circle.

How to solve the question?

In the question, we are asked to find the graph from the given options which represents the equation (x - 3)² + (y - 1)² = 9.

Comparing the given equation, (x - 3)² + (y - 1)² = 9, to the general equation, (x - h)² + (y - k)² = r², we can say that h = 3, k = 1, and r = 3.

Thus the center of the given circle lies at the point (3, 1) and its radius is 3 units.

Now we check the options to find the matching circle:

Option A: The center is at the point (3, -1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.Option B: The center is at the point (3, 1), and the radius is 3 units, which is similar to the equation (x - 3)² + (y - 1)² = 9. Thus, this is the right choice.Option C: The center is at the point (-3, 1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.

Therefore, the equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.

Learn more about circles at

https://brainly.com/question/1559324

#SPJ2

the depth D, in inches, od wsnow in my yard t hours after it started snowing this morning is given by D=1.5t + 4. if the depth of the snow is 7 inches now, what will be the depth one hour from now?

Answers

Answer:

8.5 inches

Step-by-step explanation:

First let's find the time t when the depth of the snow is 7 inches.

To do this, we just need to use the value of D = 7 then find the value of t:

[tex]7 = 1.5t + 4[/tex]

[tex]1.5t = 3[/tex]

[tex]t = 2\ hours[/tex]

We want to find the depth of snow one hour from now, so we just need to use the value of t = 3 to calculate D:

[tex]D = 1.5*3 + 4[/tex]

[tex]D = 4.5 + 4 = 8.5\ inches[/tex]

The depth of snow one hour from now will be 8.5 inches.

The depth of the snow one hour from now is 8.5 inches.

Let D represent the depth of snow in inches at time t. It is given by the relationship:

D=1.5t + 4

Since  the depth of the snow is 7 inches now, hence, the time now is:

7 = 1.5t + 4

1.5t = 3

t = 2 hours

One hour from now, the time would be t = 2 + 1 = 3 hours. Hence the depth at this time is:

D = 1.5(3) + 4 = 8.5 inches

Therefore the depth of the snow one hour from now is 8.5 inches.

Find out more at: https://brainly.com/question/13911928

A sample of 80 Valencia oranges showed a mean weight of 5.5 ounces with a standard deviation of 0.2 ounces. Obtain a 95% confidence interval for the weight of Valencia oranges. [5.495, 5.505 ] [0.195, 0.205] [ 5.456,5.544] [0.156, 0.244 )

Answers

Answer:

[ 5.456, 5.544]

Step-by-step explanation:

Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.

The confidence interval of a statistical data can be written as.

x+/-zr/√n

Given that;

Mean x = 5.5 ounces

Standard deviation r = 0.2 ounces

Number of samples n = 80

Confidence interval = 95%

z value (at 95% confidence) = 1.96

Substituting the values we have;

5.5+/-1.96(0.2/√80)

5.5+/-1.96(0.022360679774)

5.5+/-0.043826932358

5.5+/-0.044

= ( 5.456, 5.544) ounces

Therefore the 95% confidence interval (a,b) = ( 5.456, 5.544) ounces

Suppose heights of seasonal pine saplings are normally distributed and have a known population standard deviation of 17 millimeters and an unknown population mean. A random sample of 15 saplings is taken and gives a sample mean of 308 millimeters. Find the confidence interval for the population mean with a 99%z0.10 z0.05 z0.025 z0.01 z0.0051.282 1.645 1.960 2.326 2.576

Answers

Answer:

[tex]296.693\leq x\leq 319.307[/tex]

Step-by-step explanation:

The confidence interval for the population mean x can be calculated as:

[tex]x'-z_{\alpha /2}\frac{s}{\sqrt{n} } \leq x\leq x'+z_{\alpha /2}\frac{s}{\sqrt{n} }[/tex]

Where x' is the sample mean, s is the population standard deviation, n is the sample size and [tex]z_{\alpha /2}[/tex] is the z-score that let a proportion of [tex]\alpha /2[/tex] on the right tail.

[tex]\alpha[/tex] is calculated as: 100%-99%=1%

So, [tex]z_{\alpha/2}=z_{0.005}=2.576[/tex]

Finally, replacing the values of x' by 308, s by 17, n by 15 and [tex]z_{\alpha /2}[/tex] by 2.576, we get that the confidence interval is:

[tex]308-2.576\frac{17}{\sqrt{15} } \leq x\leq 308+2.576\frac{17}{\sqrt{15} }\\308-11.307 \leq x\leq 308+11.307\\296.693\leq x\leq 319.307[/tex]

what is 3(C - 5) = 48

Answers

Answer:

c=21

Step-by-step explanation:

[tex]3(c-5)=48\\3c-15=48\\3c=48+15\\3c=63\\c=63/3\\c=21[/tex]

Hope this helps,

plx give brainliest

Answer:

c=21

Step-by-step explanation:

3(c−5)=48

Divide both sides by 3.

c-5=48/3

Divide 48 by 3 to get 16.

c−5=16

Add 5 to both sides.

c=16+5

Add 16 and 5 to get 21.

c=21

Gwen has $20, $10, and $5 bills in her purse worth a total of $220. She has 15 bills in all. There are 3 more $20 bills than there are $10 bills. How many of each does she have?

Answers

Answer:

x  =  8   ( 20$ bills)

y  = 5    ( 10 $ bills)

z = 2     ( 5  $  bills)

Step-by-step explanation:

Let call x, y, and z the number of bill of 20, 10, and 5 $ respectively

then according to problem statement, we can write

20*x + 10*y + 5*z = 220         (1)

We also know the total number of bills (15), then

x + y + z = 15     (2)

And that quantity of 20 $ bill is equal to

x = 3 + y     (3)

Now we got a three equation system we have to solve for x, y, and z for which we can use any valid procedure.

As    x = 3 + y    by substitution in equation (2)   and (1)

( 3 + y ) + y + z  = 15       ⇒   3 + 2*y + z = 15  ⇒  2*y + z = 12

20* ( 3 + y ) + 10*y + 5*z  = 220  ⇒ 60 + 20*y + 10*y + 5*z = 220

30*y + 5*z  = 160      (a)

Now we have only 2 equations

2*y + z = 12   ⇒    z = 12 - 2*y

30*y + 5*z  = 160     30*y  + 5* ( 12 - 2*y) = 160

30*y  + 60 - 10*y = 160

20*y = 100

y = 100/20       y = 5      Then by substitution in (a)

30*y + 5*z = 160

30*5  + 5*z = 160

150 + 5*z  = 160    ⇒     5*z = 10     z = 10/5      z = 2

And x

x + y + z = 15

x + 5 + 2 = 15

x = 8

Answer:

x=8 y=5 x=2

Step-by-step explanation:

Reed made a lasagna for dinner. That night, he ate1/4
% of the lasagna. His brother and sister ate 2/3 of
the lasagna. How much of the lasagna did they eat
in all?

Answers

Answer: 11/12

Step-by-step explanation:

First find the LCM of 4 and 3(12).  Then make the denominator of both fractions 12(3/12 and 8/12).  Then add the fractions to get that they ate 11/2 of the lasagna.

Hope it helps <3

On a Cartesian coordinate plane, points $(2,1)$ and $(3, 4)$ are adjacent points on a square. What is the area of the square?

Answers

Hey there! :)

Answer:

A = 10 units².

Step-by-step explanation:

To solve this, we need to find the distance between the two points to derive the side-lengths of the square. Use the distance formula:

[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}[/tex]

Plug in points into the formula to find the distance:

[tex]d = \sqrt{(3 - 2)^2 + (4-1)^2}[/tex]

Simplify:

[tex]d = \sqrt{(1)^2 + (3)^2}[/tex]

[tex]d = \sqrt{(1) + (9)}[/tex]

[tex]d = \sqrt{10}[/tex]

Find the area of the square using the formula A = s² where s = √10:

A = (√10)²

A = 10 units².

Answer:

10

Step-by-step explanation:

We use the distance formula to find the distance between the two points, which is the side length of the square.. Therefore, the area of the square is 10.

Select the correct answer from each drop-down menu.
The given equation has been solved in the table.

Answers

Answer: a) additive inverse (addition)

              b) multiplicative inverse (division)

Step-by-step explanation:

Step 2: 6 is being added to both sides

Step 4: (3/4) is being divided from both sides

It is difficult to know what options are provided in the drop-down menu without seeing them. If I was to complete a proof and justify each step, then the following justifications would be used:

Step 2: Addition Property of Equality

Step 4: Division Property of Equality

Other Questions
Which correctly lists three characteristics of minerals?solid, crystal structure, definite chemical compositionorganic, crystal structure, definite chemical compositionhuman-made, solid, organiccrystal structure, definite chemical composition, human-made Juniper Company uses a perpetual inventory system and the gross method of accounting for purchases. The company purchases $9,750 of merchandise on August 7 with terms 1/10, n/30. On August 11, it returned $1,500 worth of merchandise. On August 16, it paid the full amount due. The correct journal entry to record the payment on August 16 is: Which set of symptoms describes the short-term effects of marijuana?anxiety, irritability, and sleep disturbancesfast heart rate with extreme alertness and high energya serious disconnection from reality, also known as a tripaltered senses with difficulty in thinking and impaired memory How did westward expansion divide Democrats and Whigs? A) Democrats favored expansion in order to make an alliance with Mexico; Whigs opposed expansion and a Mexican alliance because they believed they were too different culturally. B) Whigs favored expansion in order to reach California and trade in the Pacific; Democrats opposed expansion because they only wanted to sell cotton on the Atlantic. C) Democrats favored expansion in order to increase their power in Congress and expand slavery; Whigs opposed expansion because they feared losing power in Congress. D) Whigs favored expansion because they wanted to build a railroad from the East to the West; Democrats opposed expansion because they believed sea trade was most beneficial. The "land of the twilight night" means Chileans leave their lights on all night. True or False Which of these are characteristics of successful entrepreneurs?(select four answers)Confidence,discipline, optimism,& passion What is the main difference between an antagonist and a foil? Crane Company reports the following for the month of June.DateExplanationUnitsUnit CostTotal CostJune 1Inventory150$4$60012Purchase45052,25023Purchase40062,40030Inventory80Assume a sale of 500 units occurred on June 15 for a selling price of $7 and a sale of 420 units on June 27 for $8.Calculate cost of goods available for sale.Calculate Moving-Average unit cost for June 1, 12, 15, 23 & 27. (Round answers to 3 decimal places, e.g. 2.525.) The amount of soda a dispensing machine pours into a 12-ounce can of soda follows a normal distribution with a mean of 12.45 ounces and a standard deviation of 0.30 ounce. Each can holds a maximum of 12.75 ounces of soda. Every can that has more than 12.75 ounces of soda poured into it causes a spill and the can must go through a special cleaning process before it can be sold. What is the probability that a randomly selected can will need to go through this process? Solve the system of equations. x+y=2 and y=-1/4x+3 On what concept did the two first commandments focus help plz. I will give brainliest (: Una importadora planea sus gastos para realizar la importacin de 12 000 hasta 60 000 piezas de auriculares con aranceles y sin ellos. El precio de los auriculares antes del primero de septiembre de 2019 es de 96$ contemplando gastos de importacin; el arancel de impuesto a ese producto es de 10%. Determina la expresin algebraica para modelar la compra de auriculares, indica si es una proporcin directa o inversa. What is the slope of the line that goes through the points (1, -5) and (4, 1) Pls help me with trig! i would rlly appreciate Create a bucket by rotating around the y axis the curve y=5 ln(x-2) from y=0 to y=4. If this bucket contains a liquid with density 760 kg/m3 filled to a height of 3 meters, find the work required to pump the liquid out of this bucket (over the top edge). Use 9.8 m/s2 for gravity. 23. A 340 million square mile forest is how many hectares? A customer owns 400 shares of ABC stock. ABC is having a rights offering where 20 rights are needed to subscribe to 1 new share. How many new shares can the customer purchase through this rights offering helllllllllllllllllpppppp meeeeeeeeeeee please i really need this Sabastian wanted to compare how much time his neighbors spend on the Internet to how much mail they receive in a week. He gathered data by surveying his neighbors. [ NOTE: He gathered data, so He Has it Already, do not go back in time...] Explain the steps Sabastian should take in order to analyze the data. he price of a computer was decreased by 20% to 136. What was the price before the decrease?