Answer:
It is a combustion reaction.
Convert 59800 kilograms to pounds
Answer:
131836.43 pounds
Explanation:
one kilogram is 2.20462 pounds. multiply 2.20462 by 59800
Answer: 131836.43
Formula: Multiply the mass value by 2.205
59800×2.205=131836.43
A student completed the experiment but found that the total amount of material recovered weighed more than the original sample. What is the most likely source of error and how may it be corrected?
Answer:
This is due to the water moisture present in the recovered sample.
Explanation:
The total amount of material recovered isn’t meant to weigh more than the original sample. However when this happens then it means there is the presence of water moisture in the recovered sample.
The recovered samples however needs to be heated to make it dry and eliminate the water moisture through evaporation.
Calculate the molar hydrogen ion concentration of each of the following biological solutions given the pH:
(a) gastric juice, pH= 1.80
(b) urine, pH 4.75 56.
Answer: A
Explanation: Calculate the molar hydrogen ion concentration of each of the following biological solutions given the pH, Urine pH= 4.90
A galvanic cell consists of a Cu(s)|Cu2+(aq) half-cell and a Cd(s)|Cd2+(aq) half-cell connected by a salt bridge. Oxidation occurs in the cadmium half-cell. The cell can be represented in standard notation as
Answer:
[tex]Cd(s)|Cd^{2+}(aq) || Cu^{2+}(aq)|Cu(s)[/tex]
Explanation:
A galvanic cell is composed of two electrodes immersed in a suitable electrolyte and connected via a salt bridge. One of the electrodes serves as a cathode where reduction or gain of electrons takes place. The other half cell functions as an anode where oxidation or loss of electrons occurs.
The representation is given by writing the anode on left hand side followed by its ion with its molar concentration. It is followed by a salt bridge. Then the cathodic ion with its molar concentration is written and then the cathode.
As it is given that cadmium acts as anode, it must be on the left hand side and copper must be on right hand side.
[tex]Cd(s)|Cd^{2+}(aq) || Cu^{2+}(aq)|Cu(s)[/tex]
Calculate the entropy change in the surroundings associated with this reaction occurring at 25∘C. Express the entropy change to three significant figures and include the appropriate units.
Answer:
That means that if you are calculating entropy change, you must multiply the enthalpy change value by 1000. So if, say, you have an enthalpy change of -92.2 kJ mol-1, the value you must put into the equation is -92200 J mol-1
The entropy change in the surroundings associated with this reaction occurring at 25 degree C is calculated as ΔS = -ΔH/T J/K.
What is entropy?Entropy is a quantity which gives idea about the randomness or arrangement of atoms or molecules present in any sample.
Entropy change will be calculated as:
ΔS = -ΔH/T, where
ΔH = chnage in enthalpy (J/mole)
T = temperature (K)
So to calculate the entropy change first we have to know about the value of enthalpy in joules and then divide it by the temperature.
Hence the unit of entropy is joule per kelvin.
To know more about entropy, visit the below link:
https://brainly.com/question/6364271
What happens to the electropositive character of elements on moving from left to right along a period in a periodic table?
Answer:
On moving from left to right in a period the electropositive character decreases as the tendency to lose electrons decreases.
Explanation:
We discussed the different types of intermolecular forces in this lesson, which can affect the boiling point of a substance.
1. Which of these has the highest boiling point?
A) Ar
B) Kr
C) Xe
D) Ne
2. Which substance has the highest boiling point?
A) CH4
B) He
C) HF
D) Cl2
Answer:
1, C, Xe 2, B,He
Explanation:
1, cause as u go down a group the boiling point increases.
2, boiling point of single element is greater than a compound
According to periodic trends in periodic table boiling point increases down the group and hence Xe has highest boiling point and more amount of heat is required to boil an element hence He has highest boiling point.
What is periodic table?
Periodic table is a tabular arrangement of elements in the form of a table. In the periodic table, elements are arranged according to the modern periodic law which states that the properties of elements are a periodic function of their atomic numbers.
It is called as periodic because properties repeat after regular intervals of atomic numbers . It is a tabular arrangement consisting of seven horizontal rows called periods and eighteen vertical columns called groups.
Elements present in the same group have same number of valence electrons and hence have similar properties while elements present in the same period show gradual variation in properties due to addition of one electron for each successive element in a period.
Learn more about periodic table,here:
https://brainly.com/question/11155928
#SPJ2
What's the mass in grams of 0.442 moles of calcium bromide, CaBr2? The atomic
weight of Ca is 40.1 and the atomic weight of Br is 79.9.
A) 452.3 g
B) 53.04 g
C) 44.2 g
D) 88.4 g
Answer:
Below
Explanation:
Let n be the quantity of matter in the Calcium Bromide
● n = m/ M
M is the atomic weight and m is the mass
M of CaBr2 is the sum of the atomic wieght of its components (2 Bromes atoms and 1 calcium atom)
M = 40.1 + 2×79.9
● 0.422 = m/ (40.1+2×79.9)
●0.422 = m/ 199.9
● m = 0.422 × 199.9
● m = 84.35 g wich is 88.4 g approximatively
88.4 g approximatively is the mass in grams of 0.442 moles of calcium bromide, CaBr2 ,therefore option (d) is correct.
What do you mean by mass ?Mass is the amount of matter that a body possesses. Mass is usually measured in grams (g) or kilograms (kg) .
To calculate mass in grams of 0.442 moles of calcium bromide, CaBr2,
Let n be the quantity of matter in the Calcium Bromide
M is the atomic weight and m is the mass
n = m/ MM of CaBr2 is the sum of the atomic weight of its components
Mass of Ca = 40.1 , Mass of Br = 79.9
M = 40.1 + 2×79.9
0.422 = m/ (40.1+2×79.9)
0.422 = m/ 199.9
m = 0.422 × 199.9
m = 84.35 g which is 88.4 g approximatively .
Thus ,88.4 g approximatively is the mass in grams of 0.442 moles of calcium bromide, CaBr2 , hence option (d) is correct .
Learn more about mass ,here:
https://brainly.com/question/6240825
#SPJ2
Which of the following sets of quantum numbers (n, l, ml, ms) refers to a 3d orbital? Question 5 options: 2 0 0 – g 5 4 1 – 4 2 –2 + 4 3 1 – 3 2 1 –
3 2 1 is the set of quantum numbers.
What are Quantum Numbers?The set of numbers used to describe the position and energy of the electron in an atom is called quantum numbers. There are four quantum numbers, namely, principal, azimuthal, magnetic, and spin quantum numbers.
What is the rule of quantum numbers?The rules for quantum numbers are: (n) can be any positive, nonzero integral value. (l) can be zero or any positive integer but not larger than (n-1). l = 0, 1, 2, 3, 4, …. (n-1) (ml) values follow the equation.
Learn more about quantum numbers here: https://brainly.com/question/24095340
#SPJ2
2NH3 → N2 + 3H2 If 2.22 moles of ammonia (NH3) decomposes according to the reaction shown, how many moles of hydrogen (H2) are formed? A) 2.22 moles of H2 B) 1.11 moles of H2 C) 3.33 moles of H2 D) 6.66 moles of H2
Answer:
C
Explanation:
According to the mole ratio, using 2NH3 will give you 3H2. Which means in order to find the moles of H2 you would only need to divide 2 and multiply 3 to get the amount of moles of H2 produced.
Answer:
I think it's C
Explanation:
Please, tell me if I'm incorrect.
Which one of these four atoms has the most neutrons?
O A.
79
Se
34
B.
80
Br
35
OC.
73
Ge
32
84
Kr
36
O D.
Answer:
kr
Explanation:
it is radioactive so it loss electron due to which it jas most neutons
Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements: 2NaN3 (s) → 2Na (s) + 3N2 (g) How many grams of sodium azide are required to produce 30.5 g of nitroge
Answer:
NaN3 = 47.2 g
Explanation:
Given:
2 NaN3 ⇒ 2 Na + 3 N2
Find:
Amount of NaN3
Computation:
N2 moles = Product of N2 / molar mass of N2
N2 moles =30.5/28
N2 moles = 1.0893
2NaN3 makes 3(N2 )
So,
NaN3 moles = (2/3) moles of N2
NaN3 moles = ( 2/3) × 1.0893
NaN3 moles = = 0.7262
NaN3 mass = 0.7262 x 65
NaN3 = 47.2 g
Answer:
NaN3 = 47.2 g
Explanation:
Given:
2 NaN3 ⇒ 2 Na + 3 N2
Find:
Amount of NaN3
Computation:
N2 moles = Product of N2 / molar mass of N2
N2 moles =30.5/28
N2 moles = 1.0893
2NaN3 makes 3(N2 )
So,
NaN3 moles = (2/3) moles of N2
NaN3 moles = ( 2/3) × 1.0893
NaN3 moles = = 0.7262
NaN3 mass = 0.7262 x 65
NaN3 = 47.2 g
Explanation:
A simplified version of photosynthesis can be represented as carbon dioxide combining with water to form glucose and oxygen: 6CO2+6H20 C6H12O6+6O2 In this reaction, ________ is oxidized. 1.Carbon dioxide 2.Hydrogen 3.Carbon 4.Oxygen
Answer:
2, hydrogen
Explanation:
i think
Answer:
Answer is not hydrogen
Explanation:
did the test and got it wrong
name two device that are using spinning
→ Takli
Takli is a small support style spindle. Takli is a perfect tool for spinning cotton, and this are used too to spin fibers, cotton, cashmere, and silk etc. Takli is known as handspindle. And it is the simplest device for spinning.→ Charkha
Charkha is a device for spinning thread or yarn from fibers etc. This are known as spinning wheel.HAVE A NICE DAY!If 37.5 mL of 0.100 M calcium chloride reacts completely with aqueous silver nitrate, what is the mass of AgCl (MM
Answer:
OPTION C is correct
C) 1.07 g
Explanation:
CaCl2(aq) + 2 AgNO3(aq) → 2 AgCl(s) + Ca(NO3)3(aq)
But we know molarity molarity= number of moles of solute/ volume of the solution
M= n/V
From the equation above
number of moles of Cacl2 = (37.5 ×0 .100 × 10^-3) = 0.00375 moles.
Then
1 mole of Cacl2 yields 2 moles of Agcl2
0.00375 moles of Cacl2 will produce let say Y.
Y= (0.00375 ×2)/1
= 0.0075 moles.
Number of moles of Agcl2 = mass /molar mass of Agcl
Molar mass of Agcl = 178
Then mass = 178 ×0.0075 = 1.047
Therefore, the mass of agcl precipitate is
1.07 g
What did J. J. Thomson's cathode ray experiment show about atoms?
Answer:
atoms contain tiny negatively charged subatomic particles or electrons
How many grams of sodium chloride are required to make 2.00 L of a solution with a concentration of 0.100 M?
Answer:
Mass = 11.688g
Explanation:
Volume = 2.00L
Molar concentration = 0.100M
Mass = ?
These quantities are relatted by the following equation;
Conc = Number of moles / volume
Number of moles = Conc * Volume = 2 * 0.100 = 0.2 mol
Number of moles = Mass / Molar mass
Mass = Number of moles * Molar mass
Mass = 0.2mol * 58.44g/mol
Mass = 11.688g
An atom of 108Te has a mass of 107.929550 amu. Calculate the binding energy per MOLE in kJ. Use the values: mass of 1H atom
Answer:
The binding energy = 8.64972649×10¹⁰ kJ/mole
Explanation:
Given that:
An atom of 108Te has a mass of 107.929550 amu.
In a 108 Te atom, there are 52 protons and 56 neutrons
where;
mass of proton= 1.007825 amu
mass of neutron= 1.008665 amu
Similarly; The atomic number of Te = 52
the mass of 52 protons = 52 × 1.007825 amu
the mass of 52 protons = 52.4069 amu
the mass of 56 neutrons = 56 × 1.008665 amu
the mass of 56 neutrons = 56.48524 amu
The total mass can now be = the mass of 52 protons + the mass of 56 neutrons
The total mass = 52.4069 amu + 56.48524 amu
The total mass = 108.89214 amu
Recall : it is given that An atom of 108Te has a mass of 107.929550 amu.
Therefore, the mass defect will be = 108.89214 amu - 107.929550 amu
the mass defect = 0.96259amu
where 1 amu = 1.66× 10⁻²⁷ kg
Therefore, 0.96259amu = (0.96259 × 1.66× 10⁻²⁷) kg
= 1.5978994 × 10⁻²⁷kg
The binding energy = mass defect × (speed of light)²
where;
speed of light c = 2.99792 × 10⁸ m/s
The binding energy = 1.5978994 × 10⁻²⁷kg × 2.99792 × 10⁸ m/s
The binding energy = 1.43611597 × 10⁻¹⁰ J
The binding energy = 1.43611597 × 10⁻¹³ kJ/atom
since 1 mole = 6.023 × 10²³ atom (avogadro's constant)
Then;
The binding energy = ( 1.43611597 × 10⁻¹³ )× (6.023 × 10²³) kJ/mole
The binding energy = 8.64972649×10¹⁰ kJ/mole
A quantity of liquid methanol, CH 3OH, is introduced into a rigid 3.00-L vessel, the vessel is sealed, and the temperature is raised to 500K. At this temperature, the methanol vaporizes and decomposes according to the reaction CH 3OH(g) CO(g) + 2 H 2(g), K c= 6.90×10 –2. If the concentration of H 2 in the equilibrium mixture is 0.426M, what mass of methanol was initially introduced into the vessel?
Answer:
74.3g of methanol were introduced into the vessel
Explanation:
In the equilibrium:
CH₃OH(g) ⇄ CO(g) + 2H₂(g)
Kc is defined as the ratio between concentrations in equilibrium of :
Kc = 6.90x10⁻² = [CO] [H₂]² / [CH₃OH]
Some methanol added to the vessel will react producing H₂ and CO. And equilibrium concentrations must be:
[CH₃OH] = ? - X
[CO] = X
[H₂] = 2X
Where ? is the initial concentration of methanol
As [H₂] = 2X = 0.426M; X = 0.213M
[CH₃OH] = ? - 0.213M
[CO] = 0.213M
[H₂] = 0.426M
Replacing in Kc to solve equilibrium concentration of methanol:
6.90x10⁻² = [0.213] [0.426]² / [CH₃OH]
[CH₃OH] = 0.560
As:
[CH₃OH] = ? - 0.213M = 0.560M
? = 0.773M
0.7733M was the initial concentration of methanol. As volume of vessel is 3.00L, moles of methanol are:
3.00L * (0.773 mol / L) = 2.319 moles methanol.
Using molar mass of methanol (32.04g/mol), initial mass of methanol added was:
2.319 moles * (32.04g / mol) =
74.3g of methanol were introduced into the vesselHow are Math, Physics, Chemistry, and Biology all related?
Answer:
- you have to do maths in all 3
- atoms make up everything even parts of a cel and theyre studied in chem and physics
- chemistry is used in biology by finding out what different substances are eg cytoplasm in a cell
Which ONE of these cations has the same number of unpaired electrons as Fe2+ ? A) Ni2+ B) Fe3+ C) Cr2+ D) Mn2+ E) Co2+
Answer:
Explanation:
Fe2+ Has 4 unpaired electrons.
By method of elimination;
Option A: Ni2+ has two unpaired electrons. so this option is wrong.
Option B: There are 5 unpaired electrons in the Fe3+ ion. so this option is wrong.
Option C: There are 4 unpaired electrons in the Cr2+ ion. so this option is correct.
Option D: There are 5 unpaired electrons in the Mn2+ ion. so this option is wrong.
Option E: There are 3 unpaired electrons in the Co2+ ion. so this option is wrong.
How many liters of CH₃OH gas are formed when 3.20 L of H₂ gas are completely reacted at STP according to the following chemical reaction? Remember 1 mol of an ideal gas has a volume of 22.4 L at STP.CO(g)+ H2(g) → CH3OH
Answer:
The correct answer is 1.60 Liters.
Explanation:
The given reaction:
CO (g) + H₂(g) ⇔ CH₃OH (g)
Based on the given reaction, two moles of H₂ reacts with one mole of CO and produce one mole of CH₃OH.
It is mentioned that 3.20 L of H₂ is reacted, therefore, there is a need to convert it into moles.
As 22.4 L at standard temperature and pressure is equivalent to 1 mole.
Therefore, 1 L at STP will be, 1/22.4 mole
Now 3.20 L at STP will be,
= 1/22.4 × 3.20
= 0.1428 mole
And as mentioned in the reaction that 2 moles of H₂ gives 1 mole of CH₃OH, therefore, 1 mole of H₂ will give 1/2 mole of CH₃OH
Now, 0.1428 mole of H₂ will give,
= 0.1428/2 = 0.071 mole of CH₃OH
= 0.071 × 22.4 = 1.60 L
The volume, in liters, of CH₃OH gas formed is 1.60 L
From the question,
We are to determine the volume of CH₃OH formed
The given chemical equation for the reaction is
CO(g)+ H₂(g) → CH₃OH
The balanced chemical equation for the reaction is
CO(g)+ 2H₂(g) → CH₃OH
This means
1 mole of CO reacts with 2 moles of H₂ to produce 1 mole of CH₃OH
Now, we will determine the number of moles of H₂ present in the 3.20 L H₂ at STP
1 mol of an ideal gas has a volume of 22.4 L at STP
Then,
x mole of the H₂ gas will have a volume of 3.20 L at STP
x = [tex]\frac{3.20 \times 1}{22.4}[/tex]
x = 0.142857 mole
∴ The number of mole of H₂ present is 0.142857 mole
Since
2 moles of H₂ reacts to produce 1 mole of CH₃OH
Then,
0.142857 mole of H₂ will react to produce [tex]\frac{0.142857}{2}[/tex] mole of CH₃OH
[tex]\frac{0.142857}{2} = 0.0714285[/tex]
∴ The number of moles of CH₃OH produced = 0.0714285 mole
Now, for the volume of CH₃OH formed
Since
1 mol of an ideal gas has a volume of 22.4 L at STP
Then,
0.0714285 mol of CH₃OH will have a volume of 22.4 × 0.0714285 at STP
22.4 × 0.0714285 = 1.5999984 L ≅ 1.60 L
Hence, the volume of CH₃OH gas formed is 1.60 L
Learn more here: https://brainly.com/question/13899989
Calculate the number of hydrogen atoms in a 110.0 sample of tetraborane(B4H10) . Be sure your answer has a unit symbol if necessary, and round it to 4 significant digits.
Answer:
[tex]1.242 \times 10^{25}\text{ atoms H}[/tex]
Explanation:
You must convert the mass of B₄H₁₀ to moles of B₄H₁₀, then to molecules of B₄H₁₀, and finally to atoms of H.
1. Moles of B₄H₁₀
[tex]\text{Moles of B$_{4}$H}_{10} = \text{110.0 g B$_{4}$H}_{10} \times \dfrac{\text{1 mol B$_{4}$H}_{10}}{\text{53.32 g B$_{4}$H}_{10}} = \text{2.063 mol B$_{4}$H}_{10}[/tex]
2. Molecules of B₄H₁₀
[tex]\text{No. of molecules} = \text{2.063 mol B$_{4}$H}_{10} \times \dfrac{6.022 \times 10^{23}\text{ molecules B$_{4}$H}_{10}}{\text{1 mol B$_{4}$H}_{10}}\\\\=1.242 \times 10^{24}\text{ molecules B$_{4}$H}_{10}[/tex]
3. Atoms of H
[tex]\text{Atoms of H} = 1.242 \times 10^{24}\text{ molecules B$_{4}$H}_{10} \times \dfrac{\text{10 atoms H}}{\text{1 molecule B$_{4}$H}_{10}}\\\\= \mathbf{1.242 \times 10^{25}}\textbf{ atoms H}[/tex]
What happens during the fourth stage of technological design that is not necessary during the sixth or seventh stages of scientific investigation?
A design is remodeled after analysis and tested again.
An initial design is implemented and analyzed to gather data.
Conclusions are made and communicated to others.
Criteria are stated to help judge the success of the process.
Answer:
a design is remodeled after analysis and tested again
Explanation:
How to prepared sodium chloride solution in the laboratory.
hope it will help you
.
.
.
hope it will helps
If 2.9g of water is heated from 23.9C to 98.9C, how much heat (in calories) was added to the water?
Answer:
Explanation:
we know that
ΔH=m C ΔT
where ΔH is the change in enthalpy (j)
m is the mass of the given substance which is water in this case
ΔT IS the change in temperature and c is the specific heat constant
we know that given mass=2.9 g
ΔT=T2-T1 =98.9 °C-23.9°C=75°C
specific heat constant for water is 4.18 j/g°C
therefore ΔH=2.9 g*4.18 j/g°C*75°C
ΔH=909.15 j
Determine the relative formula mass of dihydrogen monoxide using the periodic table below.
A. 18 g/mol
B. 17 g/mol
C. 16 g/mol
D. 2 g/mol
The relative atomic mass of dihydrogen monoxide is 18g/mol
Dihydrogen monoxide is a molecule containing two atoms of hydrogen and one atom of oxygen i.e. H2O. It is widely regarded as WATERTo calculate the relative atomic mass of dihydrogen monoxide (H2O), we make use of the atomic mass of each element.According to the periodic table:
Where; H = 1g/mol and O = 16g/mol
H2O = 1(2) + 16
= 2 + 16
= 18g/mol
Learn more at: https://brainly.com/question/17275626
A chemical reaction that has the general formula of nA → (A)n is best classified as a ____ reaction. A. synthesis B. polymerization C. decomposition D. oxidation E. replacement
Answer:
B.
Explanation:
A chemical reaction that has the general formula of nA → (A)n is best classified as a polymerization reaction.
Answer:
B. Polymerization
Explanation:
I'm just smart
What is the oxidizing agent in the redox reaction represented by the following cell notation? Ni(s) | Ni2+(aq) || Ag+(aq) | Ag(s)
Answer:
Silver.
Explanation:
Hello,
In this case, for the redox reaction:
[tex]Ni^0(s)+Ag^+(aq)\rightarrow Ni^{2+}+Ag^0(s)[/tex]
We can see the nickel is being oxidized as its oxidation state increases from 0 to 2+ whereas the oxidation state of silver decreases from +1 to 0, it means that the oxidizing agent is silver and the reducing agent is nickel.
Best regards.
The oxidizing agent in the redox reaction represented by the following cell notation is Silver.
Calculation of the oxidizing agent:The redox reaction is
Ni(s) | Ni2+(aq) || Ag+(aq) | Ag(s)
here the nickel is being oxidized since its oxidation state rises from 0 to 2+ while on the other hand, the oxidation state of silver is reduced from +1 to 0, it means that the oxidizing agent is silver and the reducing agent is nickel.
Learn more about reaction here: https://brainly.com/question/4241156
Describe how you would prepare 500ml of 40% (w/v) aqueous iodine solution.
[Atomic mass of iodine =127g/mol].
Answer:
- Weight 333.3 grams of iodine.
- Measure 500 mL of water.
- Vigorously mix the resulting solution.
Explanation:
Hello,
In this case, since 500 mL of a 40% (w/v) aqueous solution iodine is required, we can compute the required mass of iodine by defining the given mass-volume percent:
[tex]\% w/v=\frac{m_{iodine}}{m_{solution}} *100%=\frac{m_{iodine}}{m_{water}+m_{iodine}} *100%[/tex]
In such a way, we need to find mass of iodine, which is computed as:
[tex]m_{iodine}=\frac{\%w/v*m_{water}}{100w/v-\%} \\\\m_{iodine}=\frac{40*500}{100-40}\\ \\m_{iodine}=333.3g\\[/tex]
Thereby, the procedure will be:
- Weight 333.3 grams of iodine.
- Measure 500 mL of water.
- Vigorously mix the resulting solution.
Best regards.