Answer:
the charges get closer together
A ball is dropped from rest out of a high window in a tall building for 5 seconds. Assuming the we ignore air resistance and assume upwards to be positive. A) What will be the final velocity of the ball B) What is the height of the building if it hits the ground after those 5 seconds. *
Answer:
I am not sure if this is the answer
(B) what is the height of the building if it hits the ground after those 5 seconds.
(GIVE ME THE ANSWER OR YOU'LL GET REPORTED) Can someone answer this for me with the steps tysm
Answer:
Direction: north-west (45 degrees)
Magnitude: 500 N
Explanation:
The wind exerts a force upwards, a.k.a. north.
The water exerts a force to the left, or west.
The directions are 90 degrees apart from each other, so the angle of the je force is 45 degrees (north-west).
We can use the Pythagorean theorem to calculate the magnitude.
[tex]a^2+b^2=c^2\\400^2+300^2=250000^2\\\sqrt{250000} = 500N[/tex]
The series circuit depicts three resistors connected to a voltage
source. The voltage source (AVtot) is a 110-V source and the resistor
values are 7.2 (R1), 6.2 A2 (R2) and 8.6 22 (R3).
b. Determine the current in the circuit.
A
c. Determine the voltage drops across each individual resistor.
Answer:
B. Current in the circuit is 5.
Ci. Voltage across 7.2 Ω (R₁) is 36 V
Cii. Voltage across 6.2 Ω (R₂) is 31 V
Ciii. Voltage across 8.6 Ω (R₃) is 43 V
Explanation:
We'll begin by calculating the number equivalent resistance in the circuit. This can be obtained as follow:
Resistor 1 (R₁) = 7.2 Ω
Resistor 2 (R₂) = 6.2 Ω
Resistor 3 (R₃) = 8.6 Ω
Equivalent Resistance (R) =?
Since the resistors are in series connection, the equivalent resistance can be obtained as follow:
R = R₁ + R₂ + R₃
R = 7.2 + 6.2 + 8.6
R = 22 Ω
B. Determination of the current.
Voltage (V) = 110 V
Resistance (R) = 22 Ω
Current (I) =?
V = IR
110 = I × 22
Divide both side by 22
I = 110 / 22
I = 5 A
Therefore, the current in the circuit is 5.
Ci. Determination of the voltage across 7.2 Ω (R₁)
Resistor 1 (R₁) = 7.2 Ω
Current (I) = 5 A
Voltage 1 (V₁) =?
V₁ = IR₁
V₁ = 5 × 7.2
V₁ = 36 V
Therefore, the voltage across 7.2 Ω (R₁) is 36 V
Bii. Determination of the voltage across 6.2 Ω (R₂)
Resistor 2 (R₂) = 6.2 Ω
Current (I) = 5 A
Voltage 2 (V₂) =?
V₂ = IR₂
V₂ = 5 × 6.2
V₂ = 31 V
Therefore, the voltage across 6.2 Ω (R₂) is 31 V
Ciii. Determination of the voltage across 8.6 Ω (R₃)
Resistor 3 (R₃) = 8.6 Ω
Current (I) = 5 A
Voltage 3 (V₃) =?
V₃ = IR₃
V₃ = 5 × 8.6
V₃ = 31 V
Therefore, the voltage across 8.6 Ω (R₃) is 43 V
Give your answer to 2 dp
When taking off a plane accelerates at 2.7m/s2 down the runway. It accelerates from a stationary position for 25 seconds before leaving the ground. What
is the planes speed when it leaves the ground?
Answer:
67.5
Explanation:
The plane accelerates at 2.7m/s,^2
Time is 25 seconds
The velocity can be calculated as follows
= 25×2.7
= 67.5
Hence the speed f the plane is 67.5
Transformar las siguientes unidades al Sistema Internacional: 30 km/h ; 37 Dm ; 750 g ; 4x10-6 km2 ; 7500 cm ; 600000 cm2 ; 520700000 mm3 ; 3,4 años.
Answer:
a) 3.0 10⁴ m / s, b) 3.7 10¹ m, c) 0.750 kg, d) 4 10¹² m², e) 75 m, f) 60 m²
g) 5.207 10³ m², e) 4.847 10⁷ s
Explanation:
The international system (SI) of measurements has as fundamental units the meter for length, the second for time and kilogram for mass.
Let's reduce the different magnitudes to the SI system
a) 30 km / h (1000m / 1 km) (1 h / 3600 s) = 3.0 10⁴ m / s
b) 37 Dm (10 m / 1 Dm) = 3.7 10¹ m
c) 750 g (1 kg / 10,000 g) = 0.750 kg
d) 4 10⁶ km² (1000 m / 1km) ² = 4 10¹² m²
e) 7500 cm (1 m / 100 cm) = 75 m
f) 600000 cm² (1m / 10² cm) ² = 60 m²
g) 520700000 mm³ (1 m / 10³ mm) ³ = 5.20700000 109/10 ^ 6
= 5.207 10³ m²
e) 3.4 years (l65 days / 1 yr) (24 h / 1 day) (3600 s / 1h) = 4.847 10⁷ s
A tank has the shape of an inverted circular cone with height 16m and base radius 3m. The tank is filled with water to a height of 9m. Find the work required to empty the tank by pumping all of the water over the top of the tank. Use the fact that acceleration due to gravity is 9.8 m/sec2 and the density of water is 1000kg/m3. Round your answer to the nearest kilojoule.
Answer:
[tex]W=17085KJ[/tex]
Explanation:
From the question we are told that:
Height [tex]H=16m[/tex]
Radius [tex]R=3[/tex]
Height of water [tex]H_w=9m[/tex]
Gravity [tex]g=9.8m/s[/tex]
Density of water [tex]\rho=1000kg/m^3[/tex]
Generally the equation for Volume of water is mathematically given by
[tex]dv=\pi*r^2dy[/tex]
[tex]dv=\frac{\piR^2}{H^2}(H-y)^2dy[/tex]
Where
y is a random height taken to define dv
Generally the equation for Work done to pump water is mathematically given by
[tex]dw=(pdv)g (H-y)[/tex]
Substituting dv
[tex]dw=(p(=\frac{\piR^2}{H^2}(H-y)^2dy))g (H-y)[/tex]
[tex]dw=\frac{\rho*g*R^2}{H^2}(H-y)^3dy[/tex]
Therefore
[tex]W=\int dw[/tex]
[tex]W=\int(\frac{\rho*g*R^2}{H^2}(H-y)^3)dy[/tex]
[tex]W=\rho*g*R^2}{H^2}\int((H-y)^3)dy)[/tex]
[tex]W=\frac{1000*9.8*3.142*3^2}{9^2}[((9-y)^3)}^9_0[/tex]
[tex]W=3420.84*0.25[2401-65536][/tex]
[tex]W=17084965.5J[/tex]
[tex]W=17085KJ[/tex]
'
'
The force of ____________ exists between any two objects that have mass.
free fall
acceleration
weight
gravity
Answer:
gravity
Explanation:
The distance between two successive crests of a certain transverse wave is 1.40 m. Eight crests (7 waves) pass a given point along the direction of travel every 15.0 s. How fast are the waves traveling
Answer:
the speed of the wave is 0.65 m/s
Explanation:
Given;
distance between two successive crests, λ = 1.4 m
number of crests, n = 8
number of waves formed = 7
The total distance covered by the wave, d= 7λ = 7 x 1.4 = 9.8 m
time of motion of the wave, t = 15 s
The speed of the wave is calculated as;
V = d/t
V = 9.8 / 15
V = 0.65 m/s
Therefore, the speed of the wave is 0.65 m/s
which clock do scientists use to measure time why
Scientists use Atomic clock to measure time
The equation provided (from the textbook) first defines the elastic potential energy of a spring as ΔUsp = −(WB + WW), where WB is work the spring does on an attached block and WW is work the spring does on the wall to which it is attached. But WW is ignored in the next step. Why?
Answer:
The given potential energy of the spring is expressed as follows;
ΔUsp = -(WB + WW)
Where;
WB = Th work done by the spring on the block to which it is attached
WW = The work done by the spring on the wall
We recall that work done, W = Force applied × Distance moved in the direction of the force
The work done by the spring on the block, WB = The spring force × The distance the block moves
The work done by the spring on the wall, WW = The spring force × The distance the wall moves
However, given that the wall does not move, we have;
The distance the wall moves = 0
∴ The work done by the spring on the wall, WW = The spring force × 0 = 0 J
Therefore, WW = 0 J, and the spring does not do work on the wall, and WW can be ignored in the next subsequent) steps
Explanation:
A train accelerates from 30 km/h to 45 km/h in 15.0 second. Find its acceleration and the distance it travels during this time
Answer:
a. Acceleration, a = 0.28 m/s²
b. Distance, S = 156 meters
Explanation:
Given the following data;
Initial velocity = 30 km/h
Final velocity = 45 km/h
Time = 15 seconds
a. To find the acceleration;
Conversion:
30 km/h to m/s = 30*1000/3600 = 8.33 m/s
45 km/h to m/s = 45*1000/3600 = 12.5 m/s
Mathematically, acceleration is given by the equation;
[tex]Acceleration (a) = \frac{final \; velocity - initial \; velocity}{time}[/tex]
Substituting into the equation;
[tex]a = \frac{12.5 - 8.3}{15}[/tex]
[tex]a = \frac{4.2}{15}[/tex]
Acceleration, a = 0.28 m/s²
b. To find the distance travelled, we would use the second equation of motion given by the formula;
[tex] S = ut + \frac {1}{2}at^{2}[/tex]
Where;
S represents the displacement or height measured in meters.
u represents the initial velocity measured in meters per seconds.
t represents the time measured in seconds.
a represents acceleration measured in meters per seconds square.
Substituting into the equation, we have;
[tex] S = 8.3*15 + \frac {1}{2}*(0.28)*15^{2}[/tex]
[tex] S = 124.5 + 0.14*225[/tex]
[tex] S = 124.5 + 31.5 [/tex]
S = 156 meters
A circuit has a current of 3 amps and is using a 9 volt battery. The circuit has a resistance of ____
ohms.
Answer:
so 9/3=3 current is 3 amperes
Explanation:
The fomula to calculate resistance is:
voltage/cutrent
9 V/3 A= 3 ohms
PLS HELP. URGENT.
I WILL MARK HIM/HER AS BRAINLIEST.
Answer:
Explanation:
frequency=1/time period
50=1/time
time=1/50
time=0.020 s
Answer: A
Explanation:
Define emf of a battery?
Answer:
Electromotive force or EMF is equal to the terminal potential difference when no current flows. EMF (ϵ) is the amount of energy (E) provided by the battery to each coulomb of charge (Q) passing through.
A bus travels to and from a school that is located 10 km to the west. What is the distance? What is the displacement?
20 km
Hope this helps Have a good day
How do you find a wavelength?
A 6.93*10-4 C charge has a
potential energy U = -3.09 J at a
point in space. What is the electric
potential V at that point?
Include the sign, + or -
(Unit = V)
Answer:
P = V * Q potential energy = potential * charge
V = =3.09 J / 6.93 * 10E-4 C = 4460 Joules / Coulomb
The electric potential, V at the point given the data from the question is –4458.87 V
What is electric potential?The electric potential or electromotive force (EMF) is defined as the energy supplied by a battery per unit charge. Mathematically, it can be expressed as:
Electromotive force (EMF) = Work (W) / charge (Q)
V = EMF = W / Q
How to determine the Electric potentialwork (W) = –3.09 JCharge on electron = 6.93×10⁻⁴ CElectric potential (V) =?V = W / Q
V = –3.09 / 6.93×10⁻⁴
V = –4458.87 V
Learn more about electric potential:
https://brainly.com/question/820393
#SPJ2
A student uses the circuit shown to determine the resistance of two identical resistors.
H--
А.
V
The voltmeter reading is 2.2V and the ammeter reading is 0.25A.
What is the resistance of each resistor?
A 0.2752
B
0.552
C 4.4Ω
D
8.82
Answer:
B. 0.552
Explanation:
To find the resistance in the circuit above, u simply divide the current in the circuit by the voltage to get the resistance.
please help with this question
Answer:
This unbalanced force causes her to change in direction.
If the forces on an object are unbalanced, this is what happens:
a stationary object starts to move in the direction of the resultant force
a moving object changes speed and/or direction in the direction of the resultant force
A student said,Today, giraffes have long necks that allow them to eat leaves high in trees. They got longer necks by stretching up for even higher leaves. After many generations, the giraffe’s neck was really long.Do you think the student’s explanation for how the giraffe’s neck became long is correct? Explain.
Answer:
yes because there is also a theory about this I studied in biology
theory name -Lamarck's theory
Two charges, each q, are separated by a distance r, and exert mutual attractive forces of F on each other. If both charges become 2q and the distance becomes 3r, what are the new mutual forces
Answer:
F = ⅔ F₀
Explanation:
For this exercise we use Coulomb's law
F = k q₁q₂ / r²
let's use the subscript "o" for the initial conditions
F₀ = k q² / r²
now the charge changes q₁ = q₂ = 2q and the new distance is r = 3 r
we substitute
F = k 4q² / 9 r²
F = k q² r² 4/9
F = ⅔ F₀
How would you calculate the number of moles of oxygen you had?
Answer:
Explanation:
1 mole of gas contains 6.02x10^23 molecules. That is the Avogadro's number. To find the number of moles, you divide the number of molecules by the Avogadro's number.
The correct answer is C.
Answer:
Explanation:
ans is C. divided by Avogadro no.
A rookie quarter back throws a football with an initial upward velocity component of 12.0 m/s and a horizontal velocity component of 20.0 m/s. Ignore resistance. How much time is required for the football to reach the highest point of the trajectory
Answer:
t = 1.22 s
Explanation:
Given that,
The initial upward velocity component of a football = 12 m/s
The horizontal velocity component is 20 m/s
We need to find the time required for the football to reach the highest point of the trajectory. Let the time is t.
Using first equation of motion to solve it such that,
[tex]v=u+at[/tex]
u is initial velocity
v is final velocity
a = -g
so,
[tex]t=\dfrac{u}{g}\\\\t=\dfrac{12}{9.8}\\\\t=1.22\ s[/tex]
So, the required time taken by the football to reach the highest point is 1.22 seconds.
The energy principle states that:
Energy can be destroyed.
Energy can be created.
Energy cannot be created or destroyed.
Energy cannot be created, but it can be destroyed.
brainleist to correct answer
The energy principle states that:
[tex]\sf\purple{Energy \:cannot \:be \:created \:or\: destroyed.✅}[/tex]
Law of conservation of energy or the first law of thermodynamics states that energy can neither be created nor destroyed; it can only be transferred or changed from one form to another.[tex]\large\mathfrak{{\pmb{\underline{\orange{Happy\:learning }}{\orange{.}}}}}[/tex]
The Keck Observatory is home to the largest Earth-based twin telescopes. The telescopes are located away from city lights, above the clouds where the atmosphere is clear, calm, and dry. In 1999, additional steps were taken to help the telescopes overcome any distortions caused by changes in the atmosphere by adding a laser sighting system. Now, the Keck telescopes can probe distant galaxies and capture images with more detail than even the Hubble Space Telescope. Scientists can now use the Keck telescopes to investigate many questions. What is one question the Keck telescopes would NOT help scientists answer
Answer:
Option D
Explanation:
The options for the question are
a) How do galaxies rotate?
b) What is the weather on Neptune?
c) What is the core of Saturn made of?
d) What other solar systems have planets?
Solution
The Hubble space telescope was designed and integrated into the extraterrestrial system in order to capture information about the surrounding universe. If the Keck Observatory has a better observation capacity than the Hubble space telescope then the scientist would be interested to know the surrounding planets in the solar system.
Hence, option D is correct
1
The distance between objects, along with the masses of the object, affect the gravitational force between the objects. Which
statement is TRUE according to Newton's law of universal gravitation?
O When the masses of objects increase, gravitational force decrease
O When the distance between objects increases, gravitational force decreases.
O When distances between objects decreases, gravitational force decreases
O When the masses of objects decrease, the distance between objects decreases.
Every object in the universe attracts every other object with a force along a line joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers of mass.
Suppose the height of object is +3cm and height of image is -12 cm. What is its magnification?
Answer:
magnification is 4
Explanation:
m= image height / object height
m= 12/3
m= 4
Determine the applied force required to accelerate a 2.25 kg object rightward with a
constant acceleration of 1.50 m/s2 if the force of friction opposing the motion is 18.2 N.
(Neglect air resistance.)
Answer:
Explanation:
Im going to be using the rules for significant digits properly so I hope you're quite familiar with them. The equation we need for this is
F - f = ma where F is the applied force (our unknown), f is the frictional force, m is the mass, and a is the acceleration. Filling in:
F - 18.2 = 2.25(1.50) and
F = 2.25(1.50) + 18.2 Do the multiplication first and round to get
F = 3.38 + 18.2 The addition rules tell us that we will be rounding to the tenths place after we add to get
F = 21.6 N
a rocket with an initial velocity of 20 m/s fires another engine that gives it an acceleration of 4 m/s2 over 10 seconds. How far did the rocket travel during this time?
Answer: 400 m
Explanation:
Vf= 20 + (4*10)
Vf= 60 [m/s]
x= (60^2 - 20^2) / (2*4)
x= 400 m
A solid cylinder has a mass of 5 kg and radius of 2 m and is fixed so that it is able to rotate freely around its center without friction. A 0.02 kg bullet is moving from right to left with an angular momentum of 9 kgm2s just before it strikes the cylinder near its bottom and gets stuck at the outer radius. What is the angular velocity (magnitude and direction) of the cylinder bullet system after the impact
Answer:
0.893 rad/s in the clockwise direction
Explanation:
From the law of conservation of angular momentum,
angular momentum before impact = angular momentum after impact
L₁ = L₂
L₁ = angular momentum of bullet = + 9 kgm²/s (it is positive since the bullet tends to rotate in a clockwise direction from left to right)
L₂ = angular momentum of cylinder and angular momentum of bullet after collision.
L₂ = (I₁ + I₂)ω where I₁ = rotational inertia of cylinder = 1/2MR² where M = mass of cylinder = 5 kg and R = radius of cylinder = 2 m, I₂ = rotational inertia of bullet about axis of cylinder after collision = mR² where m = mass of bullet = 0.02 kg and R = radius of cylinder = 2m and ω = angular velocity of system after collision
So,
L₁ = L₂
L₁ = (I₁ + I₂)ω
ω = L₁/(I₁ + I₂)
ω = L₁/(1/2MR² + mR²)
ω = L₁/(1/2M + m)R²
substituting the values of the variables into the equation, we have
ω = L₁/(1/2M + m)R²
ω = + 9 kgm²/s/(1/2 × 5 kg + 0.02 kg)(2 m)²
ω = + 9 kgm²/s/(2.5 kg + 0.02 kg)(4 m²)
ω = + 9 kgm²/s/(2.52 kg)(4 m²)
ω = +9 kgm²/s/10.08 kgm²
ω = + 0.893 rad/s
The angular velocity of the cylinder bullet system is 0.893 rad/s in the clockwise direction-since it is positive.