The driver of a stationary car hears a siren of an approaching police car at a frequency of 280Hz. If the actual frequency of the siren is 240Hz, find the speed of the police car (speed of sound is 343m/s).

Answers

Answer 1

Answer:

The speed of the police car is 294 m/s

Explanation:

Given;

frequency of the siren in air, f = 280 Hz

speed of sound in air, v = 343 m/s

Determine the wavelength of the sound in air to the stationary car:

v = fλ

where;

λ is wavelength of the sound

λ = v/f

λ = 343 / 280

λ = 1.225 m

Now, determine the speed at which the police car is approaching the stationary car;

The actual frequency of the police car, F = 240 Hz

V = Fλ

Where;

V is speed of the police car

λ is the distance between the police car and the stationary car, (wavelength)

V = 240 x 1.225

V = 294 m/s

Therefore, the speed of the police car is 294 m/s


Related Questions

You would like to store 8.1 J of energy in the magnetic field of a solenoid. The solenoid has 620 circular turns of diameter 6.6 cm distributed uniformly along its 33 cm length.
A. How much current is needed?
_____________ A
B. What is the magnitude of the magnetic field inside the solenoid?
________________T
C. What is the energy density (energy/volume) inside the solenoid?
________________ kJ/m^3

Answers

Answer:

(a) The current needed is 56.92 A

(b) The magnitude of the magnetic field inside the solenoid is 0.134 T

(c) The energy density inside the solenoid is 7.144 kJ/m³

Explanation:

Given;

energy stored in the magnetic field of solenoid, E = 8.1 J

number of turns of the solenoid, N = 620 turns

diameter of the solenoid, D = 6.6 cm = 0.066 m

radius of the solenoid, r = D/2 = 0.033 m

length of the solenoid, L = 33 cm = 0.33 m

Inductance of the solenoid is given as;

[tex]L= \frac{\mu_o N^2 A}{l}[/tex]

where;

A is the area of the solenoid = πr² = π (0.033)² = 0.00342 m²

μ₀ is permeability of free space = 4π x 10⁻⁷ H/m

[tex]L= \frac{4\pi*10^{-7} *620^2 *0.00342}{0.33} \\\\L = 0.005 \ H[/tex]

(A). How much current needed

Energy stored in magnetic field of solenoid is given as;

[tex]E = \frac{1}{2} LI^2\\\\[/tex]

Where;

I is the current in the solenoid

[tex]E = \frac{1}{2} LI^2\\\\I^2 = \frac{2E}{L}\\\\I = \sqrt{\frac{2*8.1}{0.005}}\\\\ I = 56.92 \ A[/tex]

(B) The magnitude of the magnetic field inside the solenoid

B = μ₀nI

where;

n is number of turns per unit length

B = μ₀(N/L)I

B = (4π x 10⁻⁷)(620/0.33)(56.92)

B = 0.134 T

(C) The energy density (energy/volume) inside the solenoid

[tex]U_B = \frac{B^2}{2\mu_0} \\\\U_B = \frac{(0.134)^2}{2*4\pi*10^{-7}} \\\\U_B = 7143.54 \ J/m^3\\\\U_B = 7.144 \ kJ/m^3[/tex]

Diamagnetic materialsA) have small negative values of magnetic susceptibility.B) are those in which the magnetic moments of all electrons in each atom cancel.C) experience a small induced magnetic moment when placed in an external magnetic field.D) exhibit the property of diamagnetism independently of temperature.E)are described by all

Answers

Answer:

C) experience a small induced magnetic moment when placed in an external magnetic field.

Explanation:

Diamagnetics materials are those that experience a small induced magnetic moment when placed in an external magnetic field. These materials, such as bismuth, copper, silver and lead, have elementary magnets in their compositions. When they are exposed to an external magnetic cap, these elemental magnets tend to follow an orientation contrary to the external magnetic field. As a result, a magnetic field is created in the opposite direction to the external magnetic field.

An object on the end of a spring is set into oscillation by giving it an initial velocity while it is at its equilibrium position. In the first trial, the initial velocity is v0 and in the second it is 4v0. In the second trial, A : the amplitude is twice as great and the maximum acceleration is half as great. B : both the amplitude and the maximum acceleration are four times as great. C : the amplitude is half as great and the maximum acceleration is twice as great. D : both the amplitude and the maximum acceleration are twice as great. E : the amplitude is four times as great and the maximum acceleration is twice as great.

Answers

Explanation:

It is given that, in the first trial, the initial velocity is [tex]v_o[/tex] and in the second it is [tex]4v_o[/tex].

The total energy of the system remains constant. So,

[tex]\dfrac{1}{2}mv^2+\dfrac{1}{2}kx^2=\text{constant}[/tex] ....(1)

x is amplitude

It means that the amplitude is directly proportional to velocity. If velcoity increases to four times, then the amplitude also becomes 4 times.

Differentiating equation (1) we get :

[tex]mv\dfrac{dv}{dt}+kx\dfrac{dx}{dt}=0[/tex]

Since,

[tex]\dfrac{dv}{dt}=a,\ \text{acceleration}[/tex] and [tex]\dfrac{dx}{dt}=v,\ \text{velocity}[/tex]

So,

[tex]mva+kxv=0[/tex]

It means that the acceleration is also proportional to the amplitude. So, acceleration also becomes 4 times.

Hence, the correct option is (B) "both the amplitude and the maximum acceleration are four times as great"

A 12 kg box is pulled across the floor with a 48 N horizontal force. If the force of friction is 12 N, what is the acceleration of the box?

Answers

Answer:

The acceleration of the box is 3 m/s²

Explanation:

Given;

mass of the box, m = 12 kg

horizontal force pulling the box forward, Fx = 48 N

frictional force acting against the box in opposite direction, Fk = 12 N

The net horizontal force on the box, F = 48 N - 12 N

The net horizontal force on the box, F = 36 N

Apply Newton's second law of motion to determine the acceleration of the box;

F = ma

where;

F is the net horizontal force on the box

a is the acceleration of the box

a = F / m

a = 36 / 12

a = 3 m/s²

Therefore, the acceleration of the box is 3 m/s²

A turntable A is built into a stage for use in a theatrical production. It is observed during a rehearsal that a trunk B starts to slide on the turntable 15 s after the turntable begins to rotate. Knowing that the trunk undergoes a constant tangential acceleration of 0.3 m/s^2 , determine the coefficient of static friction between the trunk and the turntable

Answers

Answer:

μ = 0.03

Explanation:

In order for the trunk not to slide the frictional force between the turntable and the trunk must be equal to the unbalanced force applied on the trunk by the motion of the turntable. Therefore,

Unbalanced Force = Frictional Force

but,

Unbalanced Force = ma (Newton's second law of motion)

Frictional Force = μN = μW = μmg

Therefore,

ma = μmg

a = μg

μ = a/g

where,

μ = coefficient of static friction between the trunk and the turntable = ?

a = tangential acceleration of trunk = 0.3 m/s²

g = 9.8 m/s²

Therefore,

μ = (0.3 m/s²)/(9.8 m/s²)

μ = 0.03

Balls A and B attract each other gravitationally with a force of magnitude F at distance R. If we triple the mass of ball B and triple the separation of the balls to 3R, what is the magnitude of their attractive force now

Answers

Answer:

F₂ = 1/3 F

Explanation:

Using the law of gravitation of force to solve this question. The law states that the Force of attraction between two masses is directly proportional to the product of their masses and inversely proportional to the square of the distances between them.

Mathematically, F = GMaMb/R² ... 1

G is the gravitational constant

Ma and Mb are the masses of the balls

R is the distance between the balls

If the mass of ball B is tripled and the magnitude of the separation of the balls is increased to 3R, the force between them will be;

F₂ = GMa(3Mb)/(3R)²

F₂ = 3GMaMb/9R² ... 2

Dividing equation 1 by 2 we will have;

F₂/F = (3GMaMb/9R²)/GMaMb/R²

F₂/F =  3GMaMb/9R² * GMaMb/R²

F₂/F = 3/9

F₂/F = 1/3

F₂ = 1/3 F

This shows that the magnitude of the new attractive force is one-third that of the initial attractive force

An inductor is connected to the terminals of a battery that has an emf of 12.0 V and negligible internal resistance. The current is 4.86 mA at 0.700 ms after the connection is completed. After a long time the current is 6.80 mA.
What are
(a) the resistance R of the inductor and
(b) the inductance L of the inductor?

Answers

Answer:

a) 1764.71 ohms

b) 1.73 H

Explanation:

From the question, we can identify the following parameters;

Vo =12 V , i = 4.86 mA, t =0.700 ms, io =6.80 mA

(a) Indcued emf V = L di/dt =0

From ohms law Vo = ioR

R = 12/6.80*0.001

R=1764.71 ohms

(b) For LR circuit

i =io (1-e^-t/T)

Time constant T = L/R

4.86 = 6.80 (1-e^-0.7*10^-3/T)

divide both side by 6.8

0.715 = 0.0007/T

L/R = 0.0007/0.715

L/R = 0.000979020979

Substitute R from above

L = 0.000979020979 * 1764.71

L =1.73 H

The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass p=7.95 kg and radius p=0.89 m. The hanging masses are L=32.0 kg and R=17.8 kg. Calculate the magnitude of the masses' acceleration and the tension in the left and right ends of the rope, L and R , respectively.

Answers

Answer:

Acceleration(a) = 2.588 m/s²

TL = 230.784 N

TR = 220.5 N

Explanation:

Given:

M = 7.95 kg

mL = 32 kg

mR = 17.8 kg

g = 9.8 m/s²

Find:

Acceleration(a)

TL

TR

Computation:

Acceleration(a) = [(mL - mR)g] / [mL + mR + M/2]

Acceleration(a) = [(32 - 17.8)9.8] / [32 + 17.8 + 7.95/2]

Acceleration(a) = [139.16] / [53.775]

Acceleration(a) = 2.588 m/s²

TL = mL(g-a)

TL = 32(9.8-2.588)

TL = 230.784 N

TR = mR(g+a)

TR = 17.8(9.8+2.588)

TR = 220.5 N

A 269-turn solenoid is 102 cm long and has a radius of 2.3 cm. It carries a current of 3.9 A. What is the magnetic field inside the solenoid near its center?

Answers

Answer:

Magnitude of the magnetic field inside the solenoid near its centre is 1.293 x 10⁻³ T

Explanation:

Given;

number of turns of solenoid, N = 269 turn

length of the solenoid, L = 102 cm = 1.02 m

radius of the solenoid, r = 2.3 cm = 0.023 m

current in the solenoid, I = 3.9 A

Magnitude of the magnetic field inside the solenoid near its centre is calculated as;

[tex]B = \frac{\mu_o NI}{l} \\\\[/tex]

Where;

μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

[tex]B = \frac{4\pi*10^{-7} *269*3.9}{1.02} \\\\B = 1.293 *10^{-3} \ T[/tex]

Therefore, magnitude of the magnetic field inside the solenoid near its centre is 1.293 x 10⁻³ T

A car starts from rest and accelerates at a constant rate after the car has gone 50 m it has a speed of 21 m/s what is the acceleration of the car

Answers

Answer:

4.41 m/s^2

Explanation:

(v_f)^2 - (v_i)^2 = 2a * change in distance

(21)^2 - (0)^2 = 2a * 50

a = (21^2)/(2*50)

a = 4.41 m/s^2

Chameleons catch insects with their tongues, which they can rapidly extend to great lengths. In a typical strike, the chameleon's tongue accelerates at a remarkable 210 m/s^2 for 20 ms, then travels at constant speed for another 30 ms.
During this total time of 50 ms, 1/20 of a second, how far does the tongue reach?
Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

  x_total = 0.17m

Explanation:

We can treat this exercise with the kinematics equations, where in the first part it is accelerated and in the second it is a uniform movement.

Let's analyze accelerated motion

The time that lasts is t = 20 10⁻³ s, the initial speed is zero (v₀ = 0), let's find the length that advances

            x₁ = v₀ t + ½ a t²

            x₁ = ½ a t²

            x₁ = ½ 210 (20 10⁻³)²

            x₁ = 4.2 10⁻² m

 

let's find the speed for the end of this movement

            v = v₀ + a t

            v = 0 + 210   20 10⁻³

            v = 4.2 m / s

with this speed we can find the distance that the uniform movement

           x₂ = v t2

           x₂ = 4.2   30 10⁻³

           x₂ = 1.26 10⁻¹ m

           x₂ = 0.126m

the total distance traveled is

          x_total = x₁ + x₂

          x_total = 0.0420 +0.126

          x_total = 0.168m

           

     Let's reduce the significant figures to two

          x_total = 0.17m

Rank the electromagnetic radiation from lowest to highest in the simulation in terms of energy, wavelength, and frequency.
a. Energy
b. Wavelength
c. Frequency

Answers

Answer:

A.ENERGY: Radio<microwaves<infrared<visible light<ultraviolet<xrays<gammarays

B. WAVELENGTH: Radio>microwaves> infrared>visible light>ultraviolet>xray> gammarays

C. FREQUENCY: Radio<microwaves<infrared<visible light<ultraviolet<xray< gammarays

Explanation:

THIS IS BECAUSE OF THE FOLLOWING EQUATIONS

1.ENERGY (E)= hX freqency

So as energy of radiation increases frequency also increases

2. Velocity (v) = wavelength x frequency

So as wavelength increases frequency decreases and vice versa

A car travels at 100 km / h, collides head-on against a pole. Assuming the vehicle stopped at 2.2 seconds after impact, calculate the magnitude of the deceleration suffered by the driver.

Answers

Answer:

12.6 m/s²

Explanation:

First, convert to m/s.

100 km/h × (1000 m/km) × (1 hr / 3600 s) = 27.8 m/s

a = Δv / Δt

a = (0 m/s − 27.8 m/s) / 2.2 s

a = -12.6 m/s²

A string of mass 60.0 g and length 2.0 m is fixed at both ends and with 500 N in tension. a. If a wave is sent along this string, what will be the wave's speed? A second wave is sent in the string, what is the new speed of each of the two waves?

Answers

Answer:

a

The  speed of  wave is   [tex]v_1 = 129.1 \ m/s[/tex]

b

The new speed of the two waves is [tex]v = 129.1 \ m/s[/tex]

Explanation:

From the question we are told that

    The mass of the string is  [tex]m = 60 \ g = 60 *10^{-3} \ kg[/tex]

    The length is  [tex]l = 2.0 \ m[/tex]

    The tension is  [tex]T = 500 \ N[/tex]

Now the velocity of the first wave is mathematically represented as

     [tex]v_1 = \sqrt{ \frac{T}{\mu} }[/tex]

Where  [tex]\mu[/tex] is the linear density which is mathematically represented as

      [tex]\mu = \frac{m}{l}[/tex]

substituting values    

     [tex]\mu = \frac{ 60 *10^{-3}}{2.0 }[/tex]

     [tex]\mu = 0.03\ kg/m[/tex]

So

   [tex]v_1 = \sqrt{ \frac{500}{0.03} }[/tex]

   [tex]v_1 = 129.1 \ m/s[/tex]

Now given that the Tension, mass and length are constant the velocity of the second wave will same as that of first wave (reference PHYS 1100 )

     

As more energy from fossil fuels and other fuels is released on Earth, the overall temperature of Earth tends to rise. Discuss how temperature equilibrium explains why Earth’s temperature cannot rise indefinitely.

Answers

Answer:

processes are competitive and reach a thermal equilibrium where the absorbed energy is equal to the energy emitted, this is the equilibrium temperature of the planet.

Explanation:

The temperature of planet Earth is due to two main types of process, internal and external.

Internal processes are all chemical processes that occur that release heat into the environment or due to gases that trap heat on the planet, greenhouse effect

External processes is heating due to energy coming from the Sun. This includes direct heating of the surface by the absorption of energy and reflects of energy in different atmospheric layers.

These are the two terms that heat the Earth

In addition there are several processes so the planet loses energy,

* energy radiation to outer space that is a few degrees kelvin, for which there is a permanent emission

* endothermic processes that need to absorb heat to perform, this lowers the temperature of the system

* liquid (water) system that absorbs large amounts of heat to change state and temperature.

These processes are competitive and reach a thermal equilibrium where the absorbed energy is equal to the energy emitted, this is the equilibrium temperature of the planet.

Therefore it is impossible for the temperature to increase indefinitely since the emission would increase by decreasing the value

In general, how do highland climates compare with nearby areas at lower elevations? They are cooler and drier. They are cooler and wetter. They are warmer and drier. They are warmer and wetter.

Answers

Answer:

They are cooler and wetter

Explanation:

Highland areas have lower temperatures compared to low lying areas. The climate is more wetter because of more rainfalls compared to low lying areas and the wind carries moist air over the highlands.

On a certain planet a body is thrown vertically upwards with an initial speed of 40 m / s. If the maximum height was 100 m, the acceleration due to gravity is

a) 15 m / s 2
b) 12.5 m / s 2
c) 8 m / s 2
d) 10 m / s 2

Answers

Answer:

C) 8 m/s²

Explanation:

Given:

v₀ = 40 m/s

v = 0 m/s

Δy = 100 m

Find: a

v² = v₀² + 2aΔy

(0 m/s)² = (40 m/s)² + 2a (100 m)

a = -8 m/s²

If you have completely polarized light of intensity 125 W/m2, what will its intensity be after passing through a polarizing filter with its axis at an 89.5° angle to the light's polarization direction?

Answers

Answer:

When we have completely polarized light with intensity I0, and it passes through a polarizing filter with its axis at an angle θ with respect to the light's polarization direction, the new intensity of the light will be:

I = I0*cos^2(θ)

This is called the "Malus' law".

in this case, we have:

I0 =  125 W/m^2

θ = 89.5°

then:

I = (125 W/m^2)*cos^2(89.9°) = 0.00038 W/m^2

Each of the boxes starts at rest and is then pulled for 2.0 m across a level, frictionless floor by a rope with the noted force. Which box has the highest final speed

Answers

Answer:

Explanation:

d

Four equal masses m are located at the corners of a square of side L, connected by essentially massless rods. Find the rotational inertia of this system about an axis (a) that coincides with one side and (b) that bisects two opposite sides.

Answers

Answer:

Explanation:

a )

Moment of inertial of four masses about axis that coincides with one side :

Out of four masses . location of two masses will lie on the axis so their moment of inertia will be zero .

Moment of inertia of the two remaining masses

= m L² + m L²

= 2 mL²

b )

Axis that bisects two opposite sides

Each of the four masses will lie at a distance of L / 2 from this axis so moment of inertia of the four masses

= 4 x m x ( L/2 )²

= 4 x  mL² / 4

= m L² .

In a fluorescent tube of diameter 3 cm, 3 1018 electrons and 0.75 1018 positive ions (with a charge of e) flow through a cross-sectional area each second. What is the current in the tube

Answers

Answer:

The  current in the tube is 0.601 A

Explanation:

Given;

diameter of the fluorescent, d = 3 cm

negative charge flowing in the fluorescent tube, -e = 3 x 10¹⁸ electrons/second

positive charge flowing in the fluorescent tube, +e = 0.75 x 10¹⁸ electrons/ second

The current in the fluorescent tube is due to presence of positive and negative charges to create neutrality in the conductor (fluorescent tube).

Q = It

I = Q/t

where;

I is current in Ampere (A)

Q is charge in Coulombs (C)

t is time is seconds (s)

1 e = 1.602 x 10⁻¹⁹ C

3 x 10¹⁸ e/ s = ?

= (3 x 10¹⁸ e/s  x 1.602 x 10⁻¹⁹ C) / 1e

= 0.4806 C/s

negative charge per second (Q/t) = 0.4806 C/s

positive charge per second (Q/t) =  (0.75 x 10¹⁸ e/s  x 1.602 x 10⁻¹⁹ C) / 1e

positive charge per second (Q/t) = 0.12015 C/s

Total charge per second in the tube, Q / t = (0.4806 C/s + 0.12015 C/s)

                                                                I = 0.601 A

Therefore, the  current in the tube is 0.601 A

What is the relationship between the surface area of a parachute and the amount of air resistance it builds up when it is deployed by a sky diver?

Answers

Answer:

An open parachute increases the cross-sectional area of the falling skydiver and thus increases the amount of air resistance which he encounters. Once the parachute is opened, the air resistance overwhelms the downward force of gravity.

Explanation:

The larger a parachute, the greater the force.

Hope it helps you in a little way.

An air-filled capacitor is formed from two long conducting cylindrical shells that are coaxial and have radii of 42 mm and 74 mm. The electric potential of the inner conductor with respect to the outer conductor is -308 V ( = 1/4πε0 = 8.99 × 10^9 N · m^2/C^2).

The maximum energy density of the capacitor is closest to:_______

Answers

Correct answer is 2.7 x 10^-3 J/m3

I hope that helps ! <33

The maximum energy density of the capacitor is closest to: 2.7 x 10^-3 J/m3.

What is meant by the energy density of a capacitor?

Energy density is defined as the total energy per unit volume of the capacitor. Since, Now, for a parallel plate capacitor, A × d = Volume of space between plates to which electric field E = V / d is confined. Therefore, Energy is stored per unit volume.

How do you calculate energy density?

All Answers (14) Energy density is equal to 1/2*C*V2/weight, where C is the capacitance you computed and V should be your nominal voltage (i.e 2.7 V). Power Density is V2/4/ESR/weight, where ESR is the equivalent series resistance.

Learn more about energy density at

https://brainly.com/question/13035557

#SPJ2

A 22g bullet traveling 210 m/s penetrates a 2.0kg block of wood and emerges going 150m/s. If the block were stationary on a frictionless plane before the collision, what is the velocity of the block after the bullet passes through

Answers

Answer:

The final velocity of the block after the bullet passes through is 0.66 meters per second.

Explanation:

The interaction between the bullet and the block of woods is a clear example of a perfectly inelastic collision, which can be modelled after the Principle of Momentum Conservation. There are no external forces exerted on the bullet-block system. The equation describing the collision is described below:

[tex]m_{B}\cdot v_{B,o} + m_{W}\cdot v_{W,o} = m_{B}\cdot v_{B,f} + m_{W}\cdot v_{W,f}[/tex]

Where:

[tex]m_{B}[/tex], [tex]m_{W}[/tex]- Masses of the bullet and the block of wood, measured in kilograms.

[tex]v_{B,o}[/tex], [tex]v_{W,o}[/tex] - Initial speeds of the bullet and the block of wood, measured in meters per second.

[tex]v_{B,f}[/tex], [tex]v_{W,f}[/tex]- Final speeds of the bullet and the block of wood, measured in meters per second.

The final speed of the block is cleared:

[tex]v_{W,f} = \frac{m_{B}\cdot (v_{B,o}-v_{B,f})+m_{W}\cdot v_{W,o}}{m_{W}}[/tex]

[tex]v_{W,f} = v_{W,o} + \frac{m_{B}}{m_{W}} \cdot (v_{B,o}-v_{B,f})[/tex]

If [tex]v_{W,o} = 0\,\frac{m}{s}[/tex], [tex]m_{B} = 0.022\,kg[/tex], [tex]m_{W} = 2\,kg[/tex], [tex]v_{B,o} = 210\,\frac{m}{s}[/tex] and [tex]v_{B,f} = 150\,\frac{m}{s}[/tex], then the final velocity of the block after the bullet passes through is:

[tex]v_{W,f} = 0\,\frac{m}{s}+\left(\frac{0.022\,kg}{2\,kg}\right)\cdot \left(210\,\frac{m}{s}-150\,\frac{m}{s} \right)[/tex]

[tex]v_{W,f} = 0.66\,\frac{m}{s}[/tex]

The final velocity of the block after the bullet passes through is 0.66 meters per second.

The principles of magnetism apply everywhere on earth. What does this tell us about God and His character?

Answers

Answer:

God is omnipresent.

Explanation:

This means God is everywhere and He works where ever we are in the world

Question 8 of 10
On which parts of the heating curve for water does adding thermal energy
mainly cause the particles to move faster?
200
150 -
B
To
100
Temperature ('C)
A
50
С
0
-50
10
40
50
60
70
Time (min)
O A. C and D
B. A and B
O O O O
O C. Band C
OD. B and D

Answers

Answer:

The correct answer is A    

Explanation:

In this exercise we are given a graph of temperature versus time.

In calorimeter processes there are two types

* one that when giving thermal energy to the system its temperature increases, this fundamentally due to the greater kinetic energy of the molecular ones, this process observes in the graphs as a straight line of constant slope

* A process donates all the thermal energy that is introduced is cracked in breaking the molecular bonds, taking matter from one thermodynamic state to another, for example: liquid to gas.

This process in curves as a horizontal line, that is, there is no temperature change,

When analyzing the graph shown, parts C and D are the one that show a change in temperature with thermal energy. The correct answer is A

Answer:

C and D

Explanation:

Just took the quiz

A block and tackle having a velocity ratio of 5 is used to raise a load of 400N through a distance of 10m. If the work done against friction is 100J. Calculate 1. Efficiency of the machine 2. The effort applied

Answers

Answer:

Explanation:

Load will be moved by 4L when effort moves by distance L .

4L = 10 m ( given )

L = 2.5 m

work output = work input = 400 x 10 = 4000 J

work by friction = 100 J

net work output = 3900 J .

efficiency = net output of work / work input

= (3900 / 4000) x 100

= 97.5 %

2 )

work input = 4000 J

distance moved by effort = 2.5 m

If effort be F

F X 2.5  = 4000

F = 1600 N .

The simplest form of a traveling electromagnetic wave is a plane wave. For a wave traveling in the x direction whose electric field is in the y direction, the electric and magnetic fields are given below. This wave is linearly polarized in the y direction.

E= EoSin(kx - ωt)y
B= Bosin(kx- ωt)z

In these formulas, it is useful to understand which variables are parameters that specify the nature of the wave. The variables E0 and B0 are the________ of the electric and magnetic fields.

a. maximas
b. wavelenghts
c. amplitudes.
d. velocities

Answers

Answer:

amplitudes

Explanation:

In everyday physics we define the amplitude of a wave as the maximum (this can also be called the highest)displacement or distance moved by a point on a given vibrating body or wave as measured from its equilibrium position. The key idea in defining the amplitude of a wave motion is the idea of a 'maximum displacement from the position of equilibrium'.

Given the equations;

E= EoSin(kx - ωt)y

B= Bosin(kx- ωt)z

Both Eo and Bo refer to the maximum displacement of the electric and magnetic field components of the electromagnetic wave. This maximum displacement is known as the amplitude of the electric and magnetic components of the electromagnetic wave.

If a 20kg mass hangs from a spring, whose elastic constant is 1800 N / m, the value of the spring elongation is

Answers

Explanation:

F = kx

mg = kx

(20 kg) (10 m/s²) = (1800 N/m) x

x = 0.11 m

which of the following statements is not true Negatively charged objects attract other negatively charged objects. Positively charged objects attract negatively charged objects. Positively charged objects attract neutral objects. Negatively chargers objects attract neutral objects.

Answers

Answer:

negatively charged object attract other negatively objects

Explanation:

opposites attract

Answer:

negativelycharged objects attract other negatively charged objects

Explanation:

unlike charges attract like charges repel

Other Questions
In a polar coordinate system, the velocity vector can be written as . The term theta with dot on top is called _______________________ angular velocity transverse velocity radial velocity angular acceleration PLEASE HELP!!! Find the area of the shaded polygon: What is the empirical formula for the compound: C8H8S2? A gas of unknown identity diffuses at a rate of 155 mL/s in a diffusion apparatus in which carbon dioxide diffuses at the rate of 102 mL/s. Calculate the molecular mass of the unknown gas. umm i dont know why i am getting a different answer from the ones that are listed plz help Jacob had a six-sided number cube. Each side was labeled with one number, from 1through 6. What is the probability that Jacob rolls a prime number?Round to the nearest tenth. Help ASAP its Math I need this rightnow 31 points If x = 2, y = 8, find (i) x+y (ii) y (Please help!) Find the horizontal asymptote of f(x)=-2x^2+3x+6/x^2+1 why earth's surface is not a consistent state? Read the "Sources from the Past: Declaration of the Rights of Man and the Citizen" section in your textbook. Answer the question at the end of the section.How did Olympe de Gouges promote equality for women in France during the late eighteenth century?How did the Enlightenment differ from ideas of the Catholic Church?What are the factors that lead to the start of the Revolutionary War? write an article on grow more trees to reduce pollution From 1991 to 2000, the U.S. economy had an annual inflation rate of around 2.76%. The historical annual nominal risk-free rate for this same period was around 5.71%. Using the approximate nominal interest rate equation and the true nominal interest rate equation, compute the real interest rate for that decade. What is the estimated real interest rate using the approximate nominal interest rate equation for that decade? The surface area of a solid is 10 square feet. The dimensions of a similar solid arethree times as great as the first. The surface area of the new solid in square feetis...PLEASE urgent QUESTION 4 (10 MARKS)A retired couple requires an annual return of $2,000 from investment of $20,000. There are 3options available:(A) Treasury Bills yielding 9%;(B) Corporate bonds 11%;Junk Bonds. 130%How much should be invested in each to achieve their goal? Give 3 sets of options that canachieve their goal.[10 Marks] Check whether these statements are wff or not:(a) (pq) r 59. A poultry rancher discovered that when she increased the price of organic eggs from $0.75 to $1.00 per dozen, the sales of her eggs fell from 300 dozen per week to 200 dozen per week. Her price elasticity of demand (using the midpoint method) would be: If approximately 10% of people are left-handed, how many lefties would you expect in a high school graduating class of 424 Help ASAP! Will name brainliest! A rectangle has a width of 3/4 inches and a length of 9/10 inches. Another rectangleis larger but still proportional to the first rectangle. It has a width of 30 inches and a length of 36 what proportion could model this situation