Answer:
B. ⅕
Step-by-step explanation:
Fraction of families having more than 2 pets = families with pets of 3 and above ÷ total number of families in the apartment
From the dot plot above, 3 families have 3 pets, and 1 family has 4 pets.
Number of families with more than 2 pets = 3 + 1 = 4
Fraction of families with more than 3 pets = [tex] \frac{4}{20} = \frac{1}{5} [/tex]
The fraction of families that have more than two pets is B. [tex]\frac{1}{5}[/tex]
Calculations and ParametersGiven that:
Fraction of families having more than 2 pets = families with pets of 3 and above/total number of families in the apartment
From the dot plot above:
3 families have 3 pets, 1 family has 4 pets.Number of families with more than 2 pets
= 3 + 1
= 4
Fraction of families with more than 3 pets = [tex]\frac{4}{20} = \frac{1}{5}[/tex]
Read more about dot plots here:
https://brainly.com/question/25957672
#SPJ5
Stepwise regression is a variable screening method, not a model building method.
A. True
B. False
Answer:
A. True
Step-by-step explanation:
Stepwise regression is a variable-selection method for independent variables.
Stepwise regression helps us to recognize and choose the most handy descriptive variables from a list of several reasonable independent variables.
It entails a series of steps that is drafted to locate the most handy X-variable to incorporate in a regression model. During each step of the course of action or method, each X - variable is estimated by applying a set criterion to determine if it is meant to exist in the model.
The basis for selection can be choosing a variable which satisfies the stipulated criterion or removing a variable that least satisfies the criterion. A typical illustration of such criterion is the t value.
8/2(2+2)
What is the answer?
Answer:
16
Step-by-step explanation:
[tex]\frac{8}{2} x (2+2) = \frac{8}{2} x 4 = \frac{8 x 4}{2} = \frac{32}{2} = 16[/tex]
Answer: 16
PEMDAS
P: Parenthesis
E: Exponents
M: Multipcaction
D: Divison
A: Addition
S: Subtraction
PEMDAS can be also known as Please Excuse My Dear Aunt Sally
P: (2+2)
E: N/A (There are no exponents)
M: 4×4
D: 8÷2
A: 2+2
S: N/A (There is nothing to subtract)
How did we get 4×4? We divided 8÷2 which got us 4. Then we added 2+2 and we also got 4. Then we multiplied 4×4 which got us 16. That's how 16 is our answer.
find the equation of straight line passes through a point (0 ,- 3 )which makes an angle tan^-1(1/3) with the line 3x- 2Y + 13 =0
Answer:
Step-by-step explanation:
Edit:
y = (7/9)x = 3
9514 1404 393
Answer:
y = 11/3x -3
Step-by-step explanation:
The slope of a line is the tangent of the angle it makes with the x-axis. The slope of the given line is 3/2, so the angle it makes with the x-axis is arctan(3/2) ≈ 56.310°. We want a line that makes an angle of arctan(1/3) ≈ 18.435° with the given line, so its slope will be ...
tan(56.310° +18.435°) = tan(74.745°) = 11/3
The y-intercept of the desired line is given as (0, -3), so the equation of the line we want is ...
y = 11/3x -3
_____
Additional comment
The desired slope can be found using the formula for the tangent of the sum of angles. However, simply adding the angles on a calculator saves a lot of arithmetic. (Full precision values must be used.)
The line we have found is at the desired angle measured CCW from the point of intersection with the given line. If you allow the line to have that angle measured CW from the point of intersection, then the slope will be 7/9, and the equation will be ...
y = 7/9x -3
A right pyramid with a square base has
volume of 252 cubic centimeters. The
length of one of the sides of its base is 6
centimeters. Rounded to the nearest
centimeter, what is the vertical height of
the pyramid?
Hey there!
A right pyramid with a square base just means that it isn't slanted all funny. If you create a triangle with a point on one of the edges of the base, the center of the base, and the top of the pyramid, it would be a right triangle.
To find the volume of a right pyramid, you just take the base area, multiply it by the height, and then divide by three.
However, we are looking for the height. We have been given, so we will just go backwards.
252×3=756 (multiply instead of divide)
6×6=36 (base is a square, so you just square 6. This is our base area)
756/36=21
So, the vertical height of the pyramid is 21 cubic centimeters.
Have a wonderful day! :D
On a coordinate plane, a line goes through (negative 3, 3) and (negative 2, 1). A point is at (4, 1). What is the equation, in point-slope form, of the line that is parallel to the given line and passes through the point (4, 1)? y − 1 = −2(x − 4) y – 1 = Negative one-half(x – 4) y – 1 = One-half(x – 4) y − 1 = 2(x − 4)
Answer:
y - 1 = -2(x - 4).
Step-by-step explanation:
First, we need to find the slope. Two sets of coordinates are (-3, 3), and (-2, 1).
(3 - 1) / (-3 - -2) = 2 / (-3 + 2) = 2 / (-1) = -2.
The line will be parallel to the given line, so the slope is the same.
Now that we have a point and the slope, we can construct an equation in point-slope form.
y1 = 1, x1 = 4, and m = -2.
y - 1 = -2(x - 4).
Hope this helps!
The slope of the line passing parallel to the given line and passes through the point (4, 1) is y = -2x + 9
The equation of a straight line is given by:
y = mx + b
where y, x are variables, m is the slope of the line and b is the y intercept.
The slope of the line passing through the points (-3,3) and (-2,1) is:
[tex]m=\frac{y_2-y_1}{x_2-x_1} \\\\m=\frac{1-3}{-2-(-3)} \\\\m=-2[/tex]
Since both lines are parallel, hence they have the same slope (-2). The line passes through (4,1). The equation is:
[tex]y-y_1=m(x-x_1)\\\\y-1=-2(x-4)\\\\y=-2x+9[/tex]
Find out more at: https://brainly.com/question/18880408
Please help. Question #12
Answer:
Step-by-step explanation:
The HCF of two numbers is 175. The LCM of these two numbers is 12600. Both numbers are greater than their HCF. Find the two numbers
Answer:
Hello,
Answer : 1400 and 1575
Step-by-step explanation:
Let's say a and b the ywo numbers
[tex]HCF(a,b)=a\vee b=175=5^2*7\\LCM(a,b)=a\wedge b=12600\\\\a*b=(a\vee b)*(a\wedge b)=(2^3*3^2*5^2*7)*(5^2*7)=2^3*3^2*(5^2*7^2)^2\\\\Both\ numbers\ are\ greater\ than\ their HCF\\a=175*k_1\\b=175*k_2\\\\k_1=2^3\ and\ k_2=3^2\\\\a=175*2^3=1400\\b=175*3^2=1575\\\\[/tex]
The sum of the interior angles of a regular nonagon (9-gon) is equal to
The sum of the interior angles is 1260°
Kevin baked 44 cookies. His family ate d of them. Using d, write an expression for the number of cookies that remained
Answer:
44-d
Step-by-step explanation:
Take the total number of cookies and subtract the number eaten. That is the number remaining
44-d
For a free lunch giveaway, a restaurant draws 1 card from a bowl of business cards. Val puts in 5 cards. The bowl has 50 cards. What is the probability that Val will win?
Answer:The probability Val will win is 1/5 or 10/50 or 2/10
Step-by-step explanation:
write the equation of a horizontal ellipse with a major axis of 30, a minor axis of 14, and a center at (-9,-7).
Answer: [tex]\dfrac{(x+9)^2}{225}-\dfrac{(y+7)^2}{49}=1[/tex]
Step-by-step explanation:
The equation for a horizontal ellipse is: [tex]\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1[/tex] where
(h, k) is the centera is x-radiusb is the y-radiusGiven: major axis (diameter on x) is 30 --> x-radius (a) = 15 --> a² = 225
minor axis (diameter on y) is 14 --> y-radius (b) = 7 --> b² = 49
center (h, k) is (-9, -7)
Input those values into the equation for a horizontal ellipse and simplify:
[tex]\dfrac{(x-(-9))^2}{15^2}-\dfrac{(y-(-7))^2}{7^2}=1\\\\\\\large\boxed{\dfrac{(x+9)^2}{225}-\dfrac{(y+7)^2}{49}=1}[/tex]
What is the domain of the function in the graph?
Answer:
C
Step-by-step explanation:
You are looking at the domain which is on the K axis. It starts at 6 and ends at 11. The range J is 80 to 120
x + y + z = -6 -2x – 2y – 2z = 12 5x + 5y + 5z = -30 find x y and z please
Answer:
x = s, y = t, z = -6 -s -t
Step-by-step explanation:
These are dependent equations. For some values s and t, the solution is ...
x = s, y = t, z = -6 -s -t
EXAMPLE 5 If F(x, y, z) = 4y2i + (8xy + 4e4z)j + 16ye4zk, find a function f such that ∇f = F. SOLUTION If there is such a function f, then
If there is such a scalar function f, then
[tex]\dfrac{\partial f}{\partial x}=4y^2[/tex]
[tex]\dfrac{\partial f}{\partial y}=8xy+4e^{4z}[/tex]
[tex]\dfrac{\partial f}{\partial z}=16ye^{4z}[/tex]
Integrate both sides of the first equation with respect to x :
[tex]f(x,y,z)=4xy^2+g(y,z)[/tex]
Differentiate both sides with respect to y :
[tex]\dfrac{\partial f}{\partial y}=8xy+4e^{4z}=8xy+\dfrac{\partial g}{\partial y}[/tex]
[tex]\implies\dfrac{\partial g}{\partial y}=4e^{4z}[/tex]
Integrate both sides with respect to y :
[tex]g(y,z)=4ye^{4z}+h(z)[/tex]
Plug this into the equation above with f , then differentiate both sides with respect to z :
[tex]f(x,y,z)=4xy^2+4ye^{4z}+h(z)[/tex]
[tex]\dfrac{\partial f}{\partial z}=16ye^{4z}=16ye^{4z}+\dfrac{\mathrm dh}{\mathrm dz}[/tex]
[tex]\implies\dfrac{\mathrm dh}{\mathrm dz}=0[/tex]
Integrate both sides with respect to z :
[tex]h(z)=C[/tex]
So we end up with
[tex]\boxed{f(x,y,z)=4xy^2+4ye^{4z}+C}[/tex]
The image of (-2, 7) reflected across the x-axis is
2
(-2,-7)
b)
(2,7)
(2, -7)
d)
(-2, 7)
Answer:
(-2,-7)
Step-by-step explanation:
because it's reflected across the x-axis, only the y-intercept will change
Answer:
(-2,-7)
Step-by-step explanation:
All you have to do is draw a graph and draw the point across the x axis in the same row and same distance from the x axis.The distance is 7 so you just change it to -7.
A waiter earns $11.00 an hour and approximately 10% of what he serves in a shift. If he works a 6 hour shift and takes $425 in orders, his total earnings for the six hours would be:
Answer:
108.50
Step-by-step explanation:
First find the wages
11* 6 = 66 dollars
Then figure the commission
10% of 425
.10 * 425
42.5
Add the two amounts together
42.5+66
108.50
If 2^x =30 find 2^(x+3) A)8 B)5 C)240 D)200 E)250 (Good Luck! Plz solve fast!)
Answer:
C
Step-by-step explanation:
So we already know that:
[tex]2^x=30[/tex]
And we want to find the value of:
[tex]2^{x+3}[/tex]
So, what you want to do here is to separate the exponents. Recall the properties of exponents, where:
[tex]x^2\cdot x^3=x^{2+3}=x^5[/tex]
We can do the reverse of this. In other words:
[tex]2^{x+3}=2^x\cdot 2^3[/tex]
If we multiply it back together, we can check that this statement is true.
Thus, go back to the original equation and multiply both sides by 2^3:
[tex]2^x(2^3)=30(2^3)\\[/tex]
Combine the left and multiply out the right. 2^3 is 8:
[tex]2^{x+3}=30(8)\\2^{x+3}=240[/tex]
The answer is C.
Answer:
the answer is c
Step-by-step explanation:
A stone is dropped of a 1296-ft-cliff. The height of the stone above the ground is given by the equation h= - 16t^2+1296, where h is the stone’s height in feet, and t is the time in seconds after the stone is dropped. Find the time required for the stone to hit the ground.
When stone hits the ground, it's height will be zero, and since we're finding the time that's required for the stone to hit the ground, we can set h = 0 and solve for t.
The time required for the stone to hit the ground[tex]v(9)=-288,a(9)=-32[/tex].
What is the equation?
The definition of an equation is a mathematical statement that shows that two mathematical expressions are equal.
Here given that,
A stone is dropped of a [tex]1296[/tex]-ft-cliff. The height of the stone above the ground is given by the equation [tex]h=-16t^2+1296[/tex], where [tex]h[/tex] is the stone’s height in feet, and [tex]t[/tex] is the time in seconds after the stone is dropped.
So,
[tex]h=-16t^2+1296\\\\v(t)=\frac{ds}{dt}=-32t+0\\\\=-32t\\\\\\a(t)=\frac{dv}{dt}=-32[/tex]
When [tex]s(t)=0[/tex] now solve it for [tex]t[/tex] so,
[tex]-16t^2+1296=0\\\\t^2=\frac{1296}{16}\\\\t^2=81\\\\t=\sqrt{81}\\\\t=9seconds[/tex]
When [tex]t=9[/tex] so,
[tex]v(9)=-32(9)\\\\v(9)=-288[/tex]
nd
[tex]a(9)=-32[/tex]
Hence, the time required for the stone to hit the ground[tex]v(9)=-288,a(9)=-32[/tex].
To know more about the equation
https://brainly.com/question/12788590
#SPJ2
Choose Yes or No to tell if each statement is true.
3
.
072
>
3
.
2
Choose...
728
.
307
>
729
.
07
Choose...
12
.
040
=
12
.
04
Choose...
531
.
135
<
531
.
315
Choose...
Answer:
1. No 2. No 3. Yes 4. Yes
Step-by-step explanation:
Compare the value of each digit from the leftmost digit.
what is the slope for the line y= -2?
Answer:
[tex]\boxed{Slope = 0}[/tex]
Step-by-step explanation:
Hey there!
We’ll y = -2 creates a horizontal line,
and horizontal lines have a slope of zero.
Slope = 0
Hope this helps :)
Answer:
The slope of a linear equation is always the coefficient of the x value when the equation is solved for y. Since we don't have an x value on this expresion, the coefficient of x is 0. Hence, the slope of the line is 0.
I NEED HELP ASAP
FUND THE VALUE OF X
Answer:
2 sqrt(41) = x
Step-by-step explanation:
This is a right triangle so we can use the Pythagorean theorem
a^2 + b^2 = c^2
8^2 + 10 ^2 = x^2
64+ 100 = x^2
164 = x^2
Take the square root of each side
sqrt(164) = sqrt(x^2)
sqrt(4) sqrt(41) = x
2 sqrt(41) = x
Find the remainder in the Taylor series centered at the point a for the following function. Then show that limn→[infinity]Rn(x)=0 for all x in the interval of convergence.
f(x)=cos x, a= π/2
Answer:
[tex]|R_n (x)| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]
Step-by-step explanation:
From the given question; the objective is to show that :
[tex]\lim_{n \to \infty} R_n (x) = 0[/tex] for all x in the interval of convergence f(x)=cos x, a= π/2
Assuming for the convergence f the taylor's series , f happens to be the derivative on an open interval I with a . Then the Taylor series for the convergence of f , for all x in I , if and only if [tex]\lim_{n \to \infty} R_n (x) = 0[/tex]
where;
[tex]\mathtt{R_n (x) = \dfrac{f^{(n+1)} (c)}{n+1!}(x-a)^{n+1}}[/tex]
is a remainder at x and c happens to be between x and a.
Given that:
a= π/2
Then; the above equation can be written as:
[tex]\mathtt{R_n (x) = \dfrac{f^{(n+1)} (c)}{n+1!}(x-\dfrac{\pi}{2})^{n+1}}[/tex]
so c now happens to be the points between π/2 and x
If we recall; we know that:
[tex]f^{(n+1)}(c) = \pm \ sin \ c \ or \ cos \ c[/tex] (as a result of the value of n)
However, it is true that for all cases that [tex]|f ^{(n+1)} \ (c) | \leq 1[/tex]
Hence, the remainder terms is :
[tex]|R_n (x)| = | \dfrac{f^{(n+1)}(c)}{(n+1!)}(x-\dfrac{\pi}{2})^{n+1}| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]
If [tex]\lim_{n \to \infty} R_n (x) = 0[/tex] for all x and x is fixed, Then
[tex]|R_n (x)| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]
What’s the answer to this?
Answer:
[tex]f(3x)=9x^2-3[/tex]
Step-by-step explanation:
One is given the following function:
[tex]f(x)=x^2-3[/tex]
One is asked to evaluate the function for ([tex]f(3x)[/tex]). Substitute ([tex]3x[/tex]) in place of ([tex]x[/tex]) then simplify. Remember that a number raised to an exponent is the same as that number times itself the number of times that the exponent indicates. One can apply this logic here while simplifying,
[tex]f(x)=x^2-3[/tex]
[tex]f(3x)=(3x)^2-3[/tex]
[tex]f(3x)=(3x*3x)-3[/tex]
[tex]f(3x)=(9x^2)-3[/tex]
[tex]f(3x)=9x^2-3[/tex]
A sample of 255 observations is selected from a normal population with a population standard deviation of 27. The sample mean is 20. Determine the standard error of the mean.
Answer:
1.691
Step-by-step explanation:
Standard error of the mean is expressed as SEM = S/√n
S is the population standard deviation
n is the sample size (number of observation)
Given S = 27 and n = 255
SEM = 27/√255
SEM = 27/15.97
SEM = 1.691
Hence the standard error of the mean is 1.691
which rigid transformation would map triangle AQR to triangle AKP
Step-by-step explanation:
A rotation about point A a reflection across the line containing AR a reflection across the line containing AQ a rotation about point R
Answer:
A rotation about point A
Step-by-step explanation:
I am taking the test if it is wrong I will add a comment
pls helpppp find the total area of the prism
Answer:
Total area = [tex](54+\frac{9\sqrt{3} }{2})[/tex] square inch
Step-by-step explanation:
Total area of the prism = Area of the rectangular sides (lateral sides) + area of the triangular bases
Area of the rectangular sides = 3 × (length × width)
= 3 × (3 × 6)
= 54 square inch
Area of the triangular bases = 2 × (Area of an equilateral triangle)
= 2 × [tex]\frac{\sqrt{3}}{4}(\text{Side})^2[/tex]
= [tex]\frac{\sqrt{3}}{2}(\text{Side})^2[/tex]
= [tex]\frac{\sqrt{3}}{2}(3)^2[/tex]
= [tex]9(\frac{\sqrt{3} }{2})[/tex]
= [tex]\frac{9\sqrt{3}}{2}[/tex] square inch
Total surface area = (54 + [tex]\frac{9\sqrt{3}}{2}[/tex]) square inch
Write the following as an inequality: y is no greater than 4 but more than –2.
Answer:
Step-by-step explanation:
First lets focus on, y is no greater than 4,
y < 4
Now we focus on, more than –2,
y > -2
Combining these inequalities get us,
-2 < y < 4
Answer:
-2<y≤4
Step-by-step explanation:
The numbers of words defined on randomly selected pages from a dictionary are shown below. Find the mean, median, mode of the listed numbers. 72 58 62 38 44 66 42 49 76 52 What is the mean? Select the correct choice below and ,if necessary ,fill in the answer box within your choice.(around to one decimal place as needed)
Answer:
72 58 62 38 44 66 42 49 76 52 ( arrange it!)
38 42 44 49 52 58 62 66 72 76 (done!)
Median: Find the number in the middle after we arranged, so the answer is (52+58)/2= 110/2 = 55
Mode : None (there is no number appear more than other number)
Mean = (38+42+44+49+52+58+62+66+72+76)/10
=559/100
=5,5
Hope it helps ^°^
Ben and Cam are scuba diving. Ben is 15.8 meters below the
surface of the water. Cam is 4.2 meters above Ben. What is Cam's
position relative to the surface of the water?
=======================================================
Explanation:
Check out the diagram below.
Draw a vertical number line with 0 at the center. The positive values are above it, while the negative values are below it.
Between -15 and -16, closer to -16, plot the value -15.8 to indicate Ben's position. I have done so as the point B.
We move 4.2 units up to arrive at Cam's position
-15.8 + 4.2 = -11.6
So Cam is 11.6 meters below the surface of the water.
10. (01.02)
Given the function f(x)
3x - 4
5
which of the below expressions is correct? (1 point)
5x+4
f-1(x) =
3
f-1(x)
5x - 4
3
O f-'(x)
-344
-3x – 4
5
4–3x
f-1(x) =
5
Answer:
5x+4f-1(x)=3 this is short answer