The dimensionless number that related the inertia forces with the viscous forces is the ________ number.
a. Reynolds
b. Prandtl
c. Grashoff
d. Nusselt
The accepted critical Reynolds number to determine that the transition from laminar to turbulent has started in a pipe is:
a. 2.3 x 103
b. 4 x 103
c. 5 x 104
d. 5 x 105

Answers

Answer 1

The dimensionless number that relates the inertia forces with the viscous forces is called the Reynolds number. This number is named after Osborne Reynolds, who was a physicist and engineer.

The formula to calculate the Reynolds number is as follows, Re = ρvd/µwhere;ρ is the density of the fluidv is the velocity of the fluidd is the characteristic length of the objectµ is the dynamic viscosity of the fluid The accepted critical Reynolds number to determine that the transition from laminar to turbulent has started in a pipe is 2.3 × 103. This is known as the critical Reynolds number for a pipe.  

This number varies depending on the shape of the object and the type of fluid used.In summary, the Reynolds number is a dimensionless number that relates the inertia forces with the viscous forces, while the critical Reynolds number is used to determine the transition from laminar to turbulent in a pipe and it is 2.3 × 103.

To know more about dimensionless  visit:

https://brainly.com/question/30413946

#SPJ11


Related Questions

This code segment read the elements for the array M(10) using input box, then calculate the product (the result of multiplying) of elements greater than the number 5. Then print the final result of the multiplication. 1-............ For I 1 To 10 M(I) = InputBox("M") 2-.......... 3-...... 4-....... 5-......... 6-...... O 1-P = 12-lf M(I) > 5 Then 3-P = P * M(I) 4-End If 5-Next 6-Print P O 1-P = 1 2-lf M(1) > 5 Then 3-P = P * M(1) 4-End If 5-Print P 6-Next O 1-P = 0 2-lf M(1) > 5 Then 3-P = P * M(1) 4-End If 5-Next 6-Print P O 1-P = 1 2-1f M(1) > 5 Then 3-P = P * M(1) 4-Next 5- End If 6-Print P O 1-P = 1 2-lf M(I) <=5 Then 3-P = P * M(I) 4-End If 5-Next 6-Print P

Answers

The product (the result of multiplying) of elements greater than the number 5 in the code is given below.

Given the code segment read the elements for the array M(10) using input box, then compute the product (the result of multiplying) of elements greater than the number 5.

Then the code could be written:

```

Dim M(10), P

P = 1

For i = 1 To 10

M(i) = InputBox("Enter a number:")

If M(i) > 5 Then

P = P * M(i)

End If

Next

Print "Product of elements greater than 5: " & P

```

LEarn more about array here;

https://brainly.com/question/33364957

#SPJ4

8.7 Reheat in a vapor power cycle is the performance improvement
strategy that increases ________________ .
sponding isentropic expansion is 8.7 Reheat in a vapor power cycle is the performance improvement strategy that increases 8.8 A direct-contact-type heat exchanger found in regenerative vapor

Answers

The missing word in the sentence is "efficiency". The performance improvement strategy that increases efficiency in a vapor power cycle is reheat. In a reheat cycle, steam is extracted from the turbine and sent back to the boiler to be reheated.

This increases the average temperature of heat addition to the cycle, which in turn increases the cycle's efficiency. The steam is then sent back to the turbine, where it goes through another set of expansion and condensation processes before being extracted again for reheat. This cycle is repeated until the steam reaches the desired temperature and pressure levels.

The regenerative vapor cycle makes use of a direct-contact-type heat exchanger. In this type of heat exchanger, hot steam coming from the turbine is brought into contact with cooler water, which absorbs the steam's heat and turns it into liquid. The liquid water is then sent back to the boiler, where it is reheated and reused in the cycle. This type of heat exchanger increases the cycle's efficiency by reducing the amount of heat lost in the condenser and increasing the amount of heat added to the cycle.Overall, the reheat and regenerative vapor power cycle strategies are effective ways to increase the efficiency of vapor power cycles. By increasing the average temperature of heat addition and reducing heat losses, these strategies can improve the cycle's performance and reduce fuel consumption.Answer: The missing word in the sentence is "efficiency".

To know more about cycle visit:

https://brainly.com/question/31391800

#SPJ11

Voltage source V = 20Z0° volts is connected in series with the
two impedances = 8/30°.!? and Z^ = 6Z80°!?. Calculate the voltage
across each impedance.

Answers

Given that Voltage source V = 20∠0° volts is connected in series with the t w = 8/30° and Z^ = 6∠80°. The voltage across each impedance needs to be calculated.

Obtaining impedance Z₁As we know, Impedance = 8/∠30°= 8(cos 30° + j sin 30°)Let us convert the rectangular form to polar form. |Z₁| = √(8²+0²) = 8∠0°Now, the impedance of Z₁ is 8∠30°Impedance of Z₂Z₂ = 6∠80°The total impedance, Z T can be calculated as follows.

The voltage across Z₁ is given byV₁ = (Z₁/Z T) × VV₁ = (8∠30°/15.766∠60.31°) × 20∠0°V₁ = 10.138∠-30.31°V₁ = 8.8∠329.69°The voltage across Z₂ is given byV₂ = (Z₂/Z T) × VV₂ = (6∠80°/15.766∠60.31°) × 20∠0°V₂ = 4.962∠19.69°V₂ = 4.9∠19.69 the voltage across Z₁ is 8.8∠329.69° volts and the voltage across Z₂ is 4.9∠19.69° volts.

To know more about connected visit:

https://brainly.com/question/32592046

#SPJ11

The force acting on a beam was measured 5 times under the same operating conditions. This process was repeated by 3 observersing of data. The means of these data sets were Mean 1-8, Mean 2- 9. Mean 3-2 The corresponding standard deviations were: 3.2, 2.1, and 2.5, respectively, Compute the Pooled Mean of the 3 data sets (Provide your answer using two decimal places).

Answers

Pooled Mean = [Sum of (Mean * Degrees of Freedom)] / [Total Degrees of Freedom]Now, let's find the degrees of freedom for each data set.

Degrees of Freedom = n - 1, where n is the number of observations for each data set. For our problem, n = 5 for each data set, so: Degrees of Freedom for Mean 1 = 5 - 1 = 4Degrees of Freedom for Mean 2 = 5 - 1 = 4Degrees of Freedom for Mean 3 = 5 - 1 = 4Total Degrees of Freedom = (Degrees of Freedom for Mean 1) + (Degrees of Freedom for Mean 2) + (Degrees of Freedom for Mean 3)= 4 + 4 + 4 = 12Next, we can substitute the given means and degrees of freedom in the formula:

Pooled Mean = [(8 * 4) + (9 * 4) + (2 * 4)] / 12= (32 + 36 + 8) / 12= 76 / 12= 6.33 (rounded to two decimal places)Therefore, the main answer is: Pooled Mean = 6.33.  We have calculated the degrees of freedom for each data set and the total degrees of freedom, which are used in the formula to calculate the Pooled Mean.

To know more about Degrees of Freedom visit:-

https://brainly.com/question/16639731

#SPJ11

A V8 engine with 7.5-cm bores is redesigned from two valves per cylinder to four valves per cylinder. The old design had one inlet valve of 34 mm diameter and one exhaust valve of 29 mm diameter per cylinder. This is replaced with two inlet valves of 27 mm diameter and two exhaust valves of 23 mm diameter. Maximum valve lift equals 22% of the valve diameter for all valves. Calculate: a. Increase of inlet flow area per cylinder when the valves are fully open. b. Give advantages and disadvantages of the new system.

Answers

A V8 engine with 7.5 cm bores was redesigned from two valves per cylinder to four valves per cylinder. The old design had one inlet valve of 34 mm diameter and one exhaust valve of 29 mm diameter per cylinder.

This was replaced with two inlet valves of 27 mm diameter and two exhaust valves of 23 mm diameter. Maximum valve lift equals 22% of the valve diameter for all valves. The cross-sectional area of flow for the inlet valve is given by: Area of flow = 0.22 x (diameter of the valve)²For the old design, Area of flow = 0.22 x (34 mm)² = 310.88 mm²For the new design, Area of flow = 0.22 x (27 mm)² x 2 = 306.36 mm²Increase in inlet flow area per cylinder = (306.36 - 310.88) mm² = -4.52 mm²When the valves are fully open, the inlet flow area per cylinder reduces by 4.52 mm².

In general, a four-valve engine provides a higher ratio of valve area to bore area than a two-valve engine of the same size. Advantages of the new system are:Improved breathing efficiency due to better gas flow through the engine. The greater number of smaller valves results in a more compact combustion chamber, which leads to an increased compression ratio.Disadvantages of the new system are:An increased number of valves increases the complexity of the valve-train, adding weight and complexity to the engine. This means that a four-valve engine will be more expensive to manufacture and maintain than a two-valve engine of the same size.

To know more about   diameter per cylinder visit:

brainly.com/question/20895732

#SPJ11

A TM wave propagating in a rectangular waveguide with μ=4μ0 and ε=81ε0.
It has a magnetic filled component given by
Hy=6coscos 2πx sinsin 5πy *sin⁡(1.5π*1010t-109πz). If the guide dimensions are a=2b=4cm, determine:
The cutoff frequency
The phase constant, β
The propagation constant, γ
The attenuation constant, α
The intrinsic wave impedance, ƞTM

Answers

The cutoff frequency is 23.87 GHz, the phase constant is 163.44 rad/m, the propagation constant is (71.52 + j163.44) Np/m, the attenuation constant is 3.34 Np/m, and the intrinsic wave impedance is (0.048 + j0.109) Ω.

Given data:

μ = 4μ₀

ε = 81ε₀

H_y = 6cos(cos2πx sin5πy) sin(1.5π*10¹⁰t - 109πz)

a = 2b = 4 cm

The cutoff frequency is given by ;

f_c = (c/2π) √(m²/a² + n²/b²)

Here,

m = 1, n = 0

Substituting the values,

f= (c/2π) √(1²/2² + 0²/4²) = (3×10⁸/2π) × √(1/4) = 23.87 GHz

The phase constant, β is g

β = 2πf√(με - (f/f_c)²)

Substituting the values

β = 2π × 1.5 × 10¹⁰ × √(4μ₀ × 81ε₀ - (1.5 × 10¹⁰/23.87 × 10⁹)²) = 163.44 rad/m

The propagation constant, γ is given by the formula:

γ = α + jβ

Here,

α = attenuation constant

γ = α + jβ = jω√(με - (ω/ω_c)²)

= j(1.5π×10¹⁰)√(4μ₀ × 81ε₀ - (1.5π×10¹⁰/23.87×10⁹)²)

= (71.52 + j163.44) Np/m

The attenuation constant, α is given

α = ω√((f/f_c)² - 1)√(με)

Substituting the values;

α = (1.5π × 10¹⁰) √((1.5 × 10¹⁰/23.87 × 10⁹)² - 1) √(4μ₀ × 81ε₀) = 3.34 Np/m

The intrinsic wave impedance, ηTM is

ηTM = (jωμ)⁻¹ √(β² - (ωεμ)²)

ηTM = (j1.5π×10¹⁰×4π×10⁻⁷)⁻¹ × √((163.44)² - (1.5π×10¹⁰)²(81ε₀ × 4μ₀))

= (0.048 + j0.109) Ω

Learn more about the waveguide here; https://brainly.com/question/33256891

#SPJ4

What are 3 types of linear dynamic analyses? In considering any structural dynamic analysis, what analysis is always important to run first and why?

Answers

The three types of linear dynamic analyses are modal analysis, response spectrum analysis, and time history analysis.

Modal analysis is the first type of linear dynamic analysis that is typically performed. It involves determining the natural frequencies, mode shapes, and damping ratios of a structure. This analysis helps identify the modes of vibration and their corresponding frequencies, which are crucial in understanding the structural behavior under dynamic loads.

By calculating the modal parameters, engineers can assess potential resonance issues and make informed design decisions to avoid them. Modal analysis provides a foundation for further dynamic analyses and serves as a starting point for evaluating the structure's response.

The second type of linear dynamic analysis is response spectrum analysis. This method involves defining a response spectrum, which is a plot of maximum structural response (such as displacements or accelerations) as a function of the natural frequency of the structure.

The response spectrum is derived from a specific ground motion input, such as an earthquake record, and represents the maximum response that the structure could experience under that ground motion. Response spectrum analysis allows engineers to assess the overall structural response and evaluate the adequacy of the design to withstand dynamic loads.

The third type of linear dynamic analysis is time history analysis. In this method, the actual time-dependent loads acting on the structure are considered. Time history analysis involves applying a time-varying input, such as an earthquake record or a recorded transient event, to the structure and simulating its dynamic response over time. This analysis provides a more detailed understanding of the structural behavior and allows for the evaluation of factors like nonlinearities, damping effects, and local response characteristics.

Learn more about Modal analysis

brainly.com/question/31957993

#SPJ11

Hello,
I need to find the force required to push 300 CC of silicon in two separate syringes. The syringes A and B are fixed to a plate.
Detailed calculations would be appreciated.

Answers

To calculate the force required to push 300 CC of silicon in two separate syringes fixed to a plate, we need to consider a few factors. The force required to push 300 CC of silicon through two separate syringes fixed to a plate is 3.925 N.

These factors include the viscosity of the silicon, the diameter of the syringe, and the pressure required to push the silicon through the syringe.

Given that we have limited information about the problem, we will assume a few values to make our calculations more manageable.

Let us assume that the viscosity of the silicon is 10 Pa.s, which is the typical viscosity of silicon. We will also assume that the diameter of the syringe is 1 cm, and the pressure required to push the silicon through the syringe is 10 Pa.

To calculate the force required to push 300 CC of silicon in two separate syringes fixed to a plate, we will use the formula:

F = (P * A)/2

Where F is the force required, P is the pressure required, and A is the area of the syringe.

The area of the syringe is given by:

A = π * (d/2)^2

Where d is the diameter of the syringe.

Substituting the values we assumed, we get:

A = π * (1/2)^2 = 0.785 cm^2

Therefore, the force required to push 300 CC of silicon through two separate syringes fixed to a plate is:

F = (10 * 0.785)/2 = 3.925 N

To know more about force visit:

https://brainly.com/question/30507236

#SPJ11

Consider a unity-feedback control system whose open-loop transfer function is G(s). Determine the value of the gain K such that the resonant peak magnitude in the frequency response is 2 dB, or M, = 2 dB. Hint: you will need to use the Bode plot as well as at least one constant loci plot to solve. G(s) = K/s(s²+s+0.5)

Answers

To determine the value of gain K that results in a resonant peak magnitude of 2 dB, we need to analyze the frequency response of the system. Given the open-loop transfer function G(s) = K/s(s² + s + 0.5), we can use the Bode plot and constant loci plot to solve for the desired gain.

Bode Plot Analysis:

The Bode plot of G(s) can be obtained by breaking it down into its constituent elements: a proportional term, an integrator term, and a second-order system term.

a) Proportional Term: The gain K contributes 20log(K) dB of gain at all frequencies.

b) Integrator Term: The integrator term 1/s adds -20 dB/decade of gain at all frequencies.

c) Second-order System Term: The transfer function s(s² + s + 0.5) can be represented as a second-order system with natural frequency ωn = 0.707 and damping ratio ζ = 0.5.

Resonant Peak Magnitude:

In the frequency response, the resonant peak occurs when the frequency is equal to the natural frequency ωn. At this frequency, the magnitude response is determined by the damping ratio ζ.

The resonant peak magnitude M is given by M = 20log(K/2ζ√(1-ζ²)).

Solving for the Gain K:

We want to find the gain K such that M = 2 dB. Substituting the values into the equation, we have 2 = 20log(K/2ζ√(1-ζ²)).

Simplifying the equation, we get K/2ζ√(1-ζ²) = 10^(2/20) = 0.1.

Constant Loci Plot:

Using the constant loci plot, we can find the value of ζ for a given K.

Plot the constant damping ratio loci on the ζ-axis and find the intersection with the line K = 0.1. The corresponding ζ value will give us the desired gain K.

By following these steps and analyzing the Bode plot and constant loci plot, you can determine the value of the gain K that results in a resonant peak magnitude of 2 dB in the frequency response of the unity-feedback control system.

For more information on loci plot  visit https://brainly.com/question/30401765

#SPJ11

Explain why a diesel engine can operate at very high air fuel ratios but the gasoline engine must operate at close to the stoichiometric air fuel ratio.

Answers

diesel engines can operate at higher air-fuel ratios due to their compression ignition process, while gasoline engines require a near stoichiometric air-fuel ratio to ensure proper combustion and prevent knocking.

The difference in the air-fuel ratio requirements between a diesel engine and a gasoline engine can be explained by their respective combustion processes and fuel properties.

In a diesel engine, combustion is achieved through the process of compression ignition. The air and fuel are introduced separately into the combustion chamber. The high compression ratio and temperature in the cylinder cause the air to reach a state of high pressure and temperature. When fuel is injected into the cylinder, it rapidly ignites due to the high temperature and pressure, leading to combustion. Since the combustion is initiated by compression rather than a spark, diesel engines can operate at higher air-fuel ratios, commonly referred to as "lean" conditions.

On the other hand, gasoline engines use spark ignition, where a spark plug ignites the air-fuel mixture. Gasoline has a lower auto-ignition temperature compared to diesel fuel, making it more prone to knocking and misfires under lean conditions. Therefore, gasoline engines are designed to operate at or near the stoichiometric air-fuel ratio, which provides the ideal balance between complete combustion and avoiding knocking. The stoichiometric ratio ensures that there is enough fuel available to react with all the oxygen in the air, resulting in complete combustion and maximum power output.

To know more about diesel engines, visit:

https://brainly.com/question/13147547

#SPJ11

A 12N force is required to turn a screw of body diameter equal
to 6mm and 1mm pitch. Calculate the driving force acting on the
screw.
A. 452N
B. 144N
C. 24N

Answers

The driving force acting on the screw is 36 N. None of the options provided (A, B, or C) match the calculated value.

To calculate the driving force acting on the screw, we can use the equation:

Driving force = Torque / Lever arm

The torque required to turn the screw can be calculated as the product of the force applied and the radius of the screw:

Torque = Force * Radius

Given:

Force required to turn the screw = 12 N

Body diameter of the screw = 6 mm

Pitch of the screw = 1 mm

The radius of the screw can be calculated by dividing the diameter by 2:

Radius = Body diameter / 2 = 6 mm / 2 = 3 mm = 0.003 m

Now we can calculate the torque:

Torque = Force * Radius = 12 N * 0.003 m = 0.036 Nm

To calculate the driving force, we need to determine the lever arm of the screw. In this case, the lever arm is the pitch of the screw:

Lever arm = Pitch = 1 mm = 0.001 m

Finally, we can calculate the driving force:

Driving force = Torque / Lever arm = 0.036 Nm / 0.001 m = 36 N

To learn more about driving force, click here:

https://brainly.com/question/29795032

#SPJ11

3. In a generator, the most serious fault is a A. field ground current. B. zero sequence current. C. positive sequence current. D. negative sequence current.

Answers

In a generator, the most serious fault is the field ground current. This current flows from the generator's rotor windings to its shaft and through the shaft bearings to the ground. When this occurs, the rotor windings will short to the ground, which can result in arcing and overheating.


Current is the flow of electrons, and it is an important aspect of generators. A generator is a device that converts mechanical energy into electrical energy. This device functions on the basis of Faraday's law of electromagnetic induction. The electrical energy produced by a generator is used to power devices. The most serious fault that can occur in a generator is the field ground current.
The field ground current occurs when the generator's rotor windings come into contact with the ground. This current can result in the rotor windings shorting to the ground. This can cause arcing and overheating, which can damage the rotor windings and bearings. It can also cause other problems, such as decreased voltage, reduced power output, and generator failure.
Field ground currents can be caused by a variety of factors, including improper installation, wear and tear, and equipment failure. They can be difficult to detect and diagnose, which makes them even more dangerous. To prevent this issue from happening, proper maintenance of the generator and regular testing are important. It is also important to ensure that the generator is properly grounded.
In conclusion, the most serious fault in a generator is the field ground current. This can lead to a variety of problems, including arcing, overheating, decreased voltage, and generator failure. Proper maintenance and testing can help prevent this issue from occurring. It is important to ensure that the generator is properly grounded to prevent field ground currents.

To know more about generator visit:

https://brainly.com/question/28478958

#SPJ11

Water is to be cooled by refrigerant 134a in a Chiller. The mass flow rate of water is 30 kg/min at 100kpa and 25 C and leaves at 5 C. The refrigerant enters an expansion valve inside the heat exchanger at a pressure of 800 kPa as a saturated liquid and leaves the heat exchanger as a saturated gas at 337.65 kPa and 4 C.
Determine
a) The mass flow rate of the cooling refrigerant required.
b) The heat transfer rate from the water to refrigerant.

Answers

the heat transfer rate from water to refrigerant is 54.3165 kJ/min. The mass flow rate of the cooling refrigerant required Mass flow rate of water, m1 = 30 kg/min

The mass flow rate of the refrigerant is given by the equation below: Where, m2 = Mass flow rate of refrigeranth1 = Enthalpy of water at inleth2 = Enthalpy of water at exitHfg = Latent heat of vaporization of refrigeranthfg = 204.9 kJ/kg (From refrigerant table at 800 kPa)hf = 39.16 kJ/kg (From refrigerant table at 800 kPa and 4°C)hg = 280.05 kJ/kg (From refrigerant table at 800 kPa and 30°C)m2 = [m1 (h1 - h2)]/ (hfg + hf - hg)= [30 (4.19 × (100 - 5))] / (204.9 + 39.16 - 280.05)= 0.265 kg/min

Therefore, the mass flow rate of the cooling refrigerant required is 0.265 kg/min.b) The heat transfer rate from the water to refrigerant Heat transfer rate, Q = m1 × C × (T1 - T2)Where,C = Specific heat capacity of water= 4.19 kJ/kg ·°C (Assumed constant)T1 = Inlet temperature of water= 25°C (Given)T2 = Outlet temperature of water= 5°C (Given)Q = 30 × 4.19 × (25 - 5)= 2514 kJ/minHeat transfer rate of the refrigerant, QR = m2 × hfgQR = 0.265 × 204.9QR = 54.3165 kJ/min.

To know more about heat transfer rate visit :-

https://brainly.com/question/17029788

#SPJ11

Composite Product/Process Matching. (
Ladder____
Pressurized gas cylinder____
Shower enclosure____ Fireman's helmet____
Aircraft wing____ a. Filament winding b. Spray-up c. Pultrusion d. Automated prepreg tape laying e. Compression molding

Answers

The manufacturing techniques associated with the given examples are as follows:

a. Filament winding: This method is used to create composite structures by winding continuous filaments around a rotating mandrel. It is suitable for producing fireman's helmets that require Pultrusion and impact resistance.

b. Spray-up: Also known as open molding, this process involves spraying or manually placing fiberglass or other reinforcements into a mold. It is commonly used for manufacturing shower enclosures due to its flexibility and ease of customization.

c. Pultrusion: This continuous manufacturing process is used to produce composite profiles with a constant cross-section. It is commonly employed for manufacturing ladders, which require high strength and lightweight properties.

d. Automated prepreg tape laying: This technique involves automated placement of pre-impregnated fiber tape onto a mold to create composite structures. It is utilized in the production of aircraft wings to ensure precision and consistent fiber alignment.

e. Compression molding: This method involves placing a preheated composite material into a mold and applying pressure to shape and cure it. It is used for manufacturing pressurized gas cylinders to ensure structural integrity and pressure resistance.

These manufacturing techniques are chosen based on the specific requirements of each product to achieve the desired properties, strength, and functionality.

To know more about Pultrusion, visit

https://brainly.com/question/33289071

#SPJ11

(a) A cougar was found dead in the woods by a ranger, which he assumed was shot by a poacher. The recorded body temperature of the dead body was 27∘C (degree Celcius) while the temperature of the woods was assumed to be uniform at 24∘C. The rate of cooling of the body can be expressed as: dT/dt=−k(T−Ta), where T is the temperature of the body in ∘C,Ta​ is temperature of the surrounding medium (in ∘
C ) and k is proportionally constant. Let initial temperature of the cougar be 37∘C while k=0.152. i Estimate the temperature of the dead body at time, 0≤t≤9 hours by using Euler's method with Δt=1 hour. Approximate how long the cougar had been killed at T=27∘C by using linear interpolation techniques. (b) Solve y′′+y=0,y(0)=3,y(1)=−3 by using finite-difference method with h=0.2.

Answers

The temperature of the dead body at 9th hour is 28.191 degrees Celsius and the time for the cougar to cool down from 28.191 degrees Celsius to 27 degrees Celsius is approximately 1 hour.

a) The differential equation for the rate of cooling of a body can be expressed as

d/=−(−)

where T is the temperature of the body in degrees Celsius,

Ta is the temperature of the surrounding medium in degrees Celsius, and

k is the proportionality constant.

Given ,Initial temperature of the cougar T = 37 degrees Celsius;

The temperature of the woods Ta = 24 degrees Celsius;

Proportionality constant k = 0.152;

Recorded body temperature of the dead body = 27 degrees Celsius.

To find the temperature of the dead body at time, 0≤t≤9 hours using Euler's method with Δt=1 hour.

To find T at t = 1 hour, use Euler's Method as follows: dT/dt=−k(T−Ta)T(0) = 37,

Ta = 24, k = 0.152

dT/dt=−0.152(T−24)

Substituting h = 1 in the Euler's formula we get:

Tp + 1 = Tp + h(dT/dt)

Putting the above values, we get:

T1 = T0 + h dT/dtT1 = 37 + (1)(-0.152)(37 - 24)

T1 = 36.016

So, the temperature of the dead body at t = 1 hour is 36.016 degrees Celsius.

Similarly, for t = 2,3,4,5,6,7,8 and 9 hours, the calculations are:T2 = 34.682

T3 = 33.472

T4 = 32.376

T5 = 31.379

T6 = 30.469

T7 = 29.639

T8 = 28.882

T9 = 28.191

To find out how long the cougar had been killed, we use linear interpolation between 28.191 degrees Celsius and 27 degrees Celsius. At T = 28.191 degrees Celsius, the time is 9 hours.

At T = 27 degrees Celsius,

T = Tn + (Tn+1 - Tn) / (ΔTn+1 - ΔTn)(27 - 28.191) = (Tn+1 - Tn) / (ΔTn+1 - ΔTn)(27 - 28.191) = (27 - 28.191) / (9 - 8)

Tn+1 - Tn = 1.191 / (1)

Tn+1 = Tn - 1.191

Tn+1 = 28.191 - 1.191

Tn+1 = 27

b) The differential equation is y′′+y=0, y(0) = 3, y(1) = −3.

Substituting the values of h and x in the following finite-difference equations

y′=(y(i+1)−y(i))/h

y′′=(y(i+1)+y(i−1)−2y(i))/h²

we havey(i+1) - y(i) = hy'(i+1) + y(i) = h/2(y''(i) + y''(i+1)) + y

(i)Using y(0) = 3 and y(1) = −3, the values of y(0.2), y(0.4), y(0.6), and y(0.8) are obtained as follows:

For i = 0y'(0) = (y(0.2) - y(0))/0.2y'(0) = (y(0.2) - 3)/0.2y'(0) = (0.2y(0.2) - 0.6) / 0.2²y'(0) = 0.2y(0.2) - 0.6y''(0) = (y(0.2) + y(0) - 2y(0))/0.2²y''(0) = (y(0.2) - 6) / 0.2²(y'(0.2) + y'(0)) / 2 = (y''(0) + y''(0.2)) / 2

Using the above equations, we get

y(0.2) = 2.4554y'(0.2) = -3.72y''(0.2) = 2.2738

For i = 1y'(0.2) = (y(0.4) - y(0.2))/0.2y'(0.2) = (y(0.4) - 2.4554)/0.2y'(0.2) = (0.2y(0.4) - 0.49108) / 0.2²y'(0.2) = y(0.4) - 2.4554y''(0.2) = (y(0.4) + y(0.2) - 2y(0.2))/0.2²y''(0.2) = (y(0.4) - 4.9108) / 0.2²

Using the above equations, we get y(0.4) = -0.312y'(0.4) = -2.0918y''(0.4) = -1.0234

Similarly, for i = 2 and i = 3, the calculations are:

y(0.6) = -4.472y'(0.6) = -0.8938y''(0.6) = 1.5744y(0.8) = -2.6799

y'(0.8) = 1.4172y''(0.8) = -0.5754

Therefore, the solution of the differential equation y'' + y = 0, y(0) = 3, y(1) = −3 by using the finite-difference method with h = 0.2 is:

y(0) = 3y(0.2) = 2.4554y(0.4) = -0.312y(0.6) = -4.472y(0.8) = -2.6799

y(1) = −3

Know more about equation here:

https://brainly.com/question/32645495

#SPJ11

There is a spherical thermometer. The thermometer initially pointed to 0°C, but the thermometer was suddenly exposed to a liquid of 100°C. (a) If the thermometer shows 80°C after S, what is the time constant for the thermometer? (b) Determine the value shown on the thermometer after 1.5 s.

Answers

The time constant for the thermometer can be determined using the observed temperature change, and the time it takes to reach this point.

The time constant of a thermometer (τ) characterizes how quickly it responds to changes in temperature, which can be found using the formula for the response of a first-order system to a step input. From the given conditions, we know that the thermometer reaches 80% of the final temperature (100°C) in 5s. Using this information, the time constant τ can be computed. Once we have τ, we can then determine the temperature reading of the thermometer after 1.5s using the first-order response equation, which relates the current temperature to the initial and final temperatures, the time elapsed, and the time constant.

Learn more about [time constant] here:

https://brainly.com/question/32577767

#SPJ11

A Δ-connected source supplies power to a Y-connected load in a three-phase balanced system. Given that the line impedance is 3+j1Ω per phase while the load impedance is 6+j4Ω per phase, find the magnitude of the line voltage at the load. Assume the source phase voltage V ab= 208∠0∘ Vrms. A. VLL=125.5Vrms at the load B. VLL=145.7Vrms at the load C. VLL=150.1Vrms at the load D. VLL=130.2Vrms at the load

Answers

Given that the line impedance is 3+j1Ω per phase while the load impedance is 6+j4Ω per phase, find the magnitude of the line voltage at the load. Assume the source phase voltage Vab= 208∠0∘ Vrms.

The line voltage per phase, Vl = Vab - ILine (ZLine)Where Vab is the source phase voltage, and ILine is the line current.

The phase currents in the load, IPhase = Vab / ZLoad = (208 / √3 ) ∠0° / (6 + j4) = 20.97 ∠-36.87°

The line current,

ILine = √3 IPhase = 36.34 ∠-36.87°

The line impedance, ZLine = 3 + j1 Ω (per phase)

The line voltage, Vl = Vab - ILine (ZLine) = (208 / √3) ∠0° - 36.34 ∠-36.87° (3 + j1) V= 145.7 ∠2.77° VRMS, approximately 146 VRMS

The line voltage is, VLL = √3 VL = √3 (145.7) = 251.89 Vrms ≈ 252 Vrms

The answer is B. VLL=145.7Vrms at the load.

To know more about the voltage, visit:

https://brainly.com/question/31215137

#SPJ11

Question 5 (15 marks)
For an assembly manufactured at your organization, a
flywheel is retained on a shaft by six bolts, which are each
tightened to a specified torque of 90 Nem x 10/N-m,
‘The results from a major 5000 bolt study show a normal
distribution, with a mean torque reading of 83.90 N-m, and a
standard deviation of 1.41 Nm.
2. Estimate the %age of bolts that have torques BELOW the minimum 80 N-m torque. (3)
b. Foragiven assembly, what is the probabilty of there being any bolt(s) below 80 N-m? (3)
¢. Foragiven assembly, what isthe probability of zero bolts below 80 N-m? (2)
Question 5 (continued)
4. These flywheel assemblies are shipped to garages, service centres, and dealerships across the
region, in batches of 15 assemblies.
What isthe likelihood of ONE OR MORE ofthe 15 assemblies having bolts below the 80 N-m
lower specification limit? (3 marks)
. Whats probability n df the torque is "loosened up", iterally toa new LSL of 78 N-m? (4 marks)

Answers

The answer to the first part, The standard deviation is 1.41 N-m.

How to find?

The probability distribution is given by the normal distribution formula.

z=(80-83.9)/1.41

=-2.77.

The percentage of bolts that have torques below the minimum 80 N-m torque is:

P(z < -2.77) = 0.0028

= 0.28%.

Thus, there is only 0.28% of bolts that have torques below the minimum 80 N-m torque.

b) For a given assembly, what is the probability of there being any bolt(s) below 80 N-m?

The probability of there being any bolt(s) below 80 N-m is given by:

P(X < 80)P(X < 80)

= P(Z < -2.77)

= 0.0028

= 0.28%.

Thus, there is only a 0.28% probability of having bolts below 80 N-m in a given assembly.

c) For a given assembly, what is the probability of zero bolts below 80 N-m?The probability of zero bolts below 80 N-m in a given assembly is given by:

P(X ≥ 80)P(X ≥ 80) = P(Z ≥ -2.77)

= 1 - 0.0028

= 0.9972

= 99.72%.

Thus, there is a 99.72% probability of zero bolts below 80 N-m in a given assembly.

4) What is the likelihood of ONE OR MORE of the 15 assemblies having bolts below the 80 N-m lower specification limit?

The probability of having one or more of the 15 assemblies with bolts below the 80 N-m lower specification limit is:

P(X ≥ 1) =

1 - P(X = 0)

= 1 - 0.9972¹⁵

= 0.0418

= 4.18%.

Thus, the likelihood of one or more of the 15 assemblies having bolts below the 80 N-m lower specification limit is 4.18%.

5) What is the probability of the torque being "loosened up" literally to a new LSL of 78 N-m?

The probability of the torque being loosened up to a new LSL of 78 N-m is:

P(X < 78)P(X < 78)

= P(Z < -5.74)

= 0.0000

= 0%.

Thus, the probability of the torque being "loosened up" literally to a new LSL of 78 N-m is 0%.

To know more on Probability visit:

https://brainly.com/question/31828911

#SPJ11

SUBJECT: INTRODUCTION TO FUZZY/NEURAL SYSTEM
Implement E-OR function using McCulloch-Pitts Neuron?

Answers

You have implemented the E-OR function using a McCulloch-Pitts neuron.

To implement the E-OR (Exclusive OR) function using a McCulloch-Pitts neuron, we need to create a logic circuit that produces an output of 1 when the inputs are exclusively different, and an output of 0 when the inputs are the same. Here's how you can implement it:

Define the inputs: Let's assume we have two inputs, A and B.

Set the weights and threshold: Assign weights of +1 to input A and -1 to input B. Set the threshold to 0.

Define the activation function: The McCulloch-Pitts neuron uses a step function as the activation function. It outputs 1 if the input is greater than or equal to the threshold, and 0 otherwise.

Calculate the net input: Multiply each input by its corresponding weight and sum them up. Let's call this value net_input.

net_input = (A * 1) + (B * -1)

Apply the activation function: Compare the net input to the threshold. If net_input is greater than or equal to the threshold (net_input >= 0), output 1. Otherwise, output 0.

Output = 1 if (net_input >= 0), else 0.

By following these steps, you have implemented the E-OR function using a McCulloch-Pitts neuron.

to learn more about E-OR function.

https://brainly.com/question/31499369?referrer=searchResults

Implement a parameterizable 3:1 multiplexer. Make the default
bit-width 10 bits.

Answers

Here is the implementation of a parameterizable 3:1 multiplexer with a default bit-width of 10 bits.

The mux_3to1 module takes three input data signals (data0, data1, data2) of width WIDTH and a 2-bit select signal (select). The output signal (output) is also of width WIDTH.

Inside the always block, a case statement is used to select the appropriate data input based on the select signal. If select is 2'b00, data0 is assigned to the output. If select is 2'b01, data1 is assigned to the output. If select is 2'b10, data2 is assigned to the output. In the case of an invalid select value, the default assignment is data0.

You can instantiate this mux _3to1 module in your design, specifying the desired WIDTH parameter value. By default, it will be set to 10 bits.

To know more about data signals visit:

https://brainly.com/question/32391218

#SPJ11

An airport is to be constructed at a site 190m above mean sea level and on a level ground. The runway length required under standard atmospheric condition at sea level for landing is considered as 2100m and for take-off as 1600m respectively. Determine the actual runway length to be provided at this airport site. Airport reference temperature may be considered as 21-degree C

Answers

The actual runway length to be provided at the airport site 190m above mean sea level is 2171m.

The required runway length for landing under standard atmospheric conditions at sea level is 2100m, while for take-off it is 1600m. However, since the airport site is located 190m above mean sea level, the altitude needs to be taken into account when determining the actual runway length.

As altitude increases, the air density decreases, which affects the aircraft's performance during take-off and landing. To compensate for this, additional runway length is required. The specific calculation for this adjustment depends on various factors, including temperature, pressure, and the aircraft's performance characteristics.

In this case, we can use the International Civil Aviation Organization (ICAO) standard formula to calculate the adjustment factor. According to the formula, for every 30 meters of altitude above mean sea level, an additional 7% of runway length is required for take-off and 15% for landing.

For the given airport site at 190m above mean sea level, we can calculate the adjustment as follows:

Additional runway length for take-off: 190m / 30m * 7% of 1600m = 76m

Additional runway length for landing: 190m / 30m * 15% of 2100m = 199.5m

Adding these adjustment lengths to the original required runway lengths, we get:

Actual runway length for take-off: 1600m + 76m = 1676m

Actual runway length for landing: 2100m + 199.5m = 2299.5m

Rounding up to the nearest whole number, the actual runway length to be provided at this airport site is 2299.5m.

Learn more about Runway length

brainly.com/question/30909833

#SPJ11

QUESTION 3 An engineer in the design team is finalizing the design for the pressing cylinder - cylinder P - in the upgraded stamping machine. a. The engineer suggested the use speed controllers to control the speed of the double acting cylinder. Draw a pneumatic circuit showing the proper connection speed controllers to a double acting cylinder and a 5/2 way pilot operated valve. [C6, SP1, SP3] [5 marks] b. The engineer suggested 2 cylinders for your evaluation. The first proposed cylinder is 12 mm diameter cylinder with the radius of cylinder rod of 2 mm. The second proposed cylinder is 16 mm diameter cylinder with the radius of cylinder rod of 4 mm. Evaluate the cylinders and recommend which cylinder delivers a higher cylinder force. Assume pressure, Pauge=4 bar. [CS, SP4] [5 marks] c. The engineering team has asked you to design an upgraded stamping machine using double acting cylinders arranged in the following sequence: Start, C+, C-, B+, A+, A-, X-, X+, B- Design a pneumatic circuit using basic sequence technique for this machine. [C5, SP4] [15 marks

Answers

Answer:a. The circuit for the speed controller can be designed using a 5/2 way pilot-operated valve in combination with a double-acting cylinder. It should be noted that a pilot-operated valve cannot provide fluidic resistance, making it necessary to include a separate flow control valve between the pilot-operated valve and the cylinder. Below is the circuit diagram:b.

To evaluate the force produced by the cylinders, we can use the formula for force: Force= Pressure x AreaFor the 12 mm cylinder: Force= 4 x π(0.012² - 0.002²)= 0.441 NFor the 16 mm cylinder: Force= 4 x π(0.016² - 0.004²)= 1.005 NThe cylinder with a diameter of 16 mm and a rod radius of 4 mm produces a higher force than the cylinder with a diameter of 12 mm and a rod radius of 2 mm. c. The sequence for the upgraded stamping machine can be represented using basic sequence technique. The basic sequence technique includes three positions of the directional control valve and five ports. Port A and port B are the supply ports while ports P and T are the exhaust ports. Below is the circuit diagram for the upgraded stamping machine

:The given problem involves designing a pneumatic circuit for the upgraded stamping machine using a double-acting cylinder. The design engineer suggested the use of speed controllers to control the speed of the cylinder.The pneumatic circuit for the speed controller can be designed using a 5/2 way pilot-operated valve in combination with a double-acting cylinder. The circuit diagram should include a flow control valve between the pilot-operated valve and the cylinder. The evaluation of the force produced by the cylinders involves the use of the formula for force, which is force= pressure x area.The basic sequence technique can be used to design the pneumatic circuit for the upgraded stamping machine. This technique includes three positions of the directional control valve and five ports. Port A and port B are the supply ports, while ports P and T are the exhaust ports.

To know more about cylinder visit:

https://brainly.com/question/31462197

#SPJ11

The decay rate of radioisotope X (with an atomic mass of 2 amu) is 36 disintegration per 8 gram per 200 sec. What is a half-life of this radioisotope (in years)? O a. 3.83 x 1017 years O b.2.1 x 1097 years O c.2.94 x 1017 years O d. 3.32 x 10'7 years O e.2.5 10'7 years

Answers

The half-life of radioisotope X is approximately 0.000975 years, which is closest to 2.5 x 10⁷ years. Hence, the correct answer is option e. 2.5 x 10⁷ years.

Let's consider a radioisotope X with an initial mass of m and N as the number of atoms in the sample. The half-life of X is denoted by t. The given information states that the decay rate of X is 36 disintegrations per 8 grams per 200 seconds. At t = 200 seconds, the number of remaining atoms is N/2.

To calculate the decay constant λ, we can use the formula: λ = - ln (N/2) / t.

The half-life (t1/2) can be calculated using the formula: t1/2 = (ln 2) / λ.

By substituting the given decay rate into the formula, we find: λ = (36 disintegrations/8 grams) / 200 seconds = 0.0225 s⁻¹.

Using this value of λ, we can calculate t1/2 as t1/2 = (ln 2) / 0.0225, which is approximately 30.8 seconds.

To convert this value into years, we multiply 30.8 seconds by the conversion factors: (1 min / 60 sec) x (1 hr / 60 min) x (1 day / 24 hr) x (1 yr / 365.24 days).

This results in t1/2 = 0.000975 years.

Learn more about radioisotope

https://brainly.com/question/28142049

#SPJ11

A boundary layer develops with no pressure gradient imposed. The momentum thickness is found to be Θ = δ/4. At some location, the boundary layer thickness is measured to be 8mm. At another location 4mm downstream, the thickness is measured to be 16 mm. Use the momentum integral equation to estimate the value of the skin-friction coefficient C’f, in the vicinity of these two measurements.

Answers

The value of the skin-friction coefficient C’ f in the vicinity of these two measurements using the momentum integral equation is 0.0031.

The thickness of the boundary layer grows due to the movement of the fluid and, to some extent, the shear stresses produced as the fluid moves across a surface. No pressure gradient has been imposed in this scenario, implying that the fluid velocity is entirely determined by the local shear stresses within the fluid.

According to the question, Θ = δ/4, where Θ is the momentum thickness. This indicates that the momentum thickness is a quarter of the displacement thickness, δ. To use the momentum integral equation, the value of the momentum thickness must be found first. According to the problem statement, the momentum thickness is given as Θ = δ/4.

To know more  coefficient visit:-

https://brainly.com/question/16546282

#SPJ11

The petrol engine works on 0 0 0 O Rankine cycle Otto cycle Diesel cycle

Answers

The petrol engine works on Otto cycle. It is also known as the four-stroke cycle, which is an idealized thermodynamic cycle used in gasoline internal combustion engines (ICE) to accomplish the tasks of intake, compression, combustion, and exhaust. The Otto cycle is an ideal cycle and is never completely achieved in practice.

This cycle is a closed cycle, meaning that the working fluid (the air-fuel mixture) is repeatedly drawn through the system, but it is not exchanged with its environment as it passes through the different stages of the cycle .The working cycle consists of four strokes in which the fuel-air mixture is drawn into the engine cylinder, compressed, ignited, and discharged to complete the cycle.

The piston performs the required operations to extract the energy from the fuel in this cycle. A spark plug ignites the fuel-air mixture in the Otto cycle after it has been compressed, generating high-pressure combustion gases that drive the piston and perform the necessary work.An Otto cycle operates on the principle of compression ignition, in which the fuel-air mixture is drawn into the cylinder and compressed, causing the temperature and pressure to rise. When the spark plug ignites the fuel-air mixture, combustion takes place, resulting in a high-pressure and high-temperature gas that pushes the piston down to generate power.

To know more about Otto cycle visit:

https://brainly.com/question/12976213

#SPJ11

A farmer requires the construction of a water tank of dimension 2m x 2m. Four timber columns of cross section 150mm x 150mm are to be used to support the tank. The timber in question has an allowable compression of 5N/mm² and a modulus of elasticity of 2500N/mm². What length of timber column would you use if the length is available in 4m and 6m. (Weight of tank =30kN and density of water =1000kg/m³

Answers

Both the 4m and 6m lengths of timber columns can be used for supporting the water tank. The choice between the two lengths would depend on other factors such as cost, availability, and construction requirements.

To determine the appropriate length of timber column to support the water tank, we need to calculate the load that the columns will bear and then check if it falls within the allowable compression limit.

The weight of the tank can be calculated using its volume and the density of water. The tank's volume is given by the product of its dimensions, 2m x 2m x 2m = 8m³. The weight of the tank is then calculated as the product of its volume and the density of water: 8m³ x 1000kg/m³ = 8000kg = 80000N.

To distribute this weight evenly among the four columns, each column will bear a quarter of the total weight: 80000N / 4 = 20000N.

Now, we can calculate the maximum allowable compression load on the timber column using the given allowable compression strength: 5N/mm².

The cross-sectional area of each column is (150mm x 150mm) = 22500mm² = 22.5cm² = 0.00225m².

The maximum allowable compression load on each column is then calculated as the product of the allowable compression strength and the cross-sectional area: 5N/mm² x 0.00225m² = 0.01125N.

Since the actual load on each column is 20000N, we can check if it falls within the allowable limit. 20000N < 0.01125N, which means that the timber columns can support the load without exceeding the allowable compression.

To learn more about compression limit, click here:

https://brainly.com/question/14760695

#SPJ11

what is athree quadrant dc drive

Answers

A three-quadrant DC drive refers to a type of DC motor drive system that can operate in three different quadrants of the motor's speed-torque characteristic. In DC drives, the quadrants represent different combinations of motor speed and torque.

The four quadrants in a DC motor drive system are:

Quadrant I: Forward motoring - Positive speed and positive torque.

Quadrant II: Forward braking or regenerative braking - Negative speed and positive torque.

Quadrant III: Reverse motoring - Negative speed and negative torque.

Quadrant IV: Reverse braking or regenerative braking - Positive speed and negative torque.

A three-quadrant DC drive is capable of operating in three of these quadrants, excluding one of the braking quadrants. Typically, a three-quadrant DC drive allows for forward motoring, forward braking/regenerative braking, and reverse motoring.

This type of drive is commonly used in applications where bidirectional control of the DC motor is required, such as in electric vehicles, cranes, elevators, and rolling mills.

By providing control over motor speed and torque in multiple directions, a three-quadrant DC drive enables precise and efficient control of the motor's operation, allowing for smooth acceleration, deceleration, and reversing capabilities.

to learn more about DC drive.

https://brainly.com/question/14268310

2. The total copper loss of a transformer as determined by a short-circuit test at 20°C is 630 watts, and the copper loss computed from the true ohmic resistance at the same temperature is 504 watts. What is the load loss at the working temperature of 75°C?

Answers

Load Loss = (R75 - R20) * I^2

To determine the load loss at the working temperature of 75°C, we need to consider the temperature coefficient of resistance and the change in resistance with temperature.

Let's assume that the true ohmic resistance of the transformer at 20°C is represented by R20 and the temperature coefficient of resistance is represented by α. We can use the formula:

Rt = R20 * (1 + α * (Tt - 20))

where:

Rt = Resistance at temperature Tt

Tt = Working temperature (75°C in this case)

From the information given, we know that the copper loss computed from the true ohmic resistance at 20°C is 504 watts. We can use this information to find the value of R20.

504 watts = R20 * I^2

where:

I = Current flowing through the transformer (not provided)

Now, we need to determine the temperature coefficient of resistance α. This information is not provided, so we'll assume a typical value for copper, which is approximately 0.00393 per °C.

Next, we can use the formula to calculate the load loss at the working temperature:

Load Loss = (Resistance at 75°C - Resistance at 20°C) * I^2

Substituting the values into the formulas and solving for the load loss:

R20 = 504 watts / I^2

R75 = R20 * (1 + α * (75 - 20))

Load Loss = (R75 - R20) * I^2

Please note that the specific values for R20, α, and I are not provided, so you would need those values to obtain the precise load loss at the working temperature of 75°C.

to learn more about coefficient of resistance.

https://brainly.com/question/9793655

#SPJ11

A beam is constructed of 6061-T6 aluminum (α = 23.4 x 10-6K-¹ ; E 69 GPa; Sy = 275 MPa with a length between supports of 2.250 m. The beam is simply supported at each end. The cross section of the beam is rectangular, with the width equal to 1/3 of the height. There is a uniformly distributed mechanical load directed downward of 1.55kN/m. The temperature distribution across the depth of the beam is given by eq. (3-66), with AT. = 120°C. If the depth of the beam cross section is selected such that the stress at the top and bottom surface of the beam is zero at the center of the span of the beam, determine the width and height of the beam. Also, determine the transverse deflection at the center of the span of the beam.

Answers

To determine the width and height of the beam and the transverse deflection at the center of the span, perform calculations using the given beam properties, load, and equations for temperature distribution and beam bending.

What are the width and height of the beam and the transverse deflection at the center of the span, given the beam properties, load, and temperature distribution equation?

To determine the width and height of the beam and the transverse deflection at the center of the span, you would need to analyze the beam under the given conditions and equations. The following steps can be followed:

1. Use equation (3-66) to obtain the temperature distribution across the depth of the beam.

2. Apply the principle of superposition to determine the resulting thermal strain distribution.

3. Apply the equation for thermal strain to calculate the temperature-induced stress at the top and bottom surfaces of the beam.

4. Consider the mechanical load and the resulting bending moment to calculate the required dimensions of the beam cross-section.

5. Use the moment-curvature equation and the beam's material properties to determine the height and width of the beam cross-section.

6. Calculate the transverse deflection at the center of the span using the appropriate beam bending equation.

Performing these calculations will yield the values for the width and height of the beam as well as the transverse deflection at the center of the span.

Learn more about deflection

brainly.com/question/31967662

#SPJ11

Question 1 Tony Stark designed a new type of large wind turbine with blade span diameters of 10 m which is capable of converting 95 percent of wind energy to shaft work. Four units of the wind turbines are connected to electric power generators with 50 percent efficiency, and are placed at an open area at a point of 200 m height on the Stark Tower, with steady winds of 10 m/s during a 24-hour period. Taking the air density as 1.25 kg/m?, 1) determine the maximum electric power generated by these wind turbines; and (8 marks) 11) determine the amount of revenue he generated by reselling the electricity to the electric utility company for a unit price of $0.11/kWh. (3 marks) [Total: 25 marks]

Answers

The maximum electric power generated is 273546.094 W. The amount of revenue generated is $2696075.086.

The new type of large wind turbine with blade span diameters of 10m designed by Tony Stark can convert 95% of wind energy to shaft work. The wind turbines are connected to electric power generators that have an efficiency of 50%. The units are placed at an open area at a point of 200 m height on the Stark Tower. During a 24-hour period, the steady winds are at 10 m/s. The air density is 1.25 kg/m3.1. Calculation of maximum electric power generated

P = 0.5 × density × A × v3 × CpWhereP = power

A = 0.25πd2 = 0.25π × 102 = 78.54 m2v = 10 m/s

Cp = 0.95

density = 1.25 kg/m3

Therefore, P = 0.5 × 1.25 × 78.54 × (10)3 × 0.95= 273546.094 W

The maximum electric power generated is 273546.094 W.2. Calculation of the amount of revenue generated

Revenue = P × t × c Where

P = 273546.094 Wt = 24 h/day × 365 day/year = 8760 h/yearc = 0.11 $/kWh

Therefore,Revenue = 273546.094 × 8760 × 0.11 = $2696075.086

To know more about power visit:

brainly.com/question/29575208

#SPJ11

Other Questions
Write five riddles with descriptions of people, places, or things. Follow the model.ModeloLo uso para escribir en mi cuaderno. No es muy grande y tiene borrador. Qu es?End example answer In Aequorea victoria, the gene that codes for number of tentacles is located on an autosomal chromosome. The allele that codes for 6 tentacles is dominant over the allele that codes for 12 tentacles. The gene that codes for the shape of the edge of the bell is also on an autosomal chromosome and scalloped edges is dominant over straight edges (show your work for all crosses). Show your abbreviation key here: a. If you crossed a jelly that had 12 tentacles and straight bell edges with a jelly that was true-breeding (or homozygous) with 6 tentacles and scalloped bell edges, what would you expect to see in the offspring? b. If you crossed a jelly with 6 tentacles and scalloped bell edges with a jelly that had 12 tentacles and straight edges and got the following results in the F1 generation; 50% 6 tentacles and scalloped and 50% 12 tentacles and scalloped, what must be the genotypes of the parents? (show all options) c. If you crossed two jellies, both heterozygous for both traits, what would you expect to see among the F1 generation? Find the sum: 3 + 9 + 15 +21+...+243. Which of the following is NOT the major driving force in the formation of Concanavalin A tetramers from its dimers?a) Randomization of several water molecules.b) Products have a higher entropy than the reactants.c) Organization of two protein dimers.d) Disruption of ice-like water lattice. You have just been hired as the Production Manager at the facility described in #7. Briefly describe a couple of concepts you would consider implementing to deal with this material handling issue. Name a guideline or document that would be useful in dealing with this issue. A corporate bond has 17 years to maturity, a face value of $1,000, a coupon rate of 5.4% and pays interest twice a year. The annual market interest rate for similar bonds is 3.1%.What is the value of the bond (in $)? (0 Decimals) Nina and Ryan each ran at a constant speed for a 100-meter race. Each runners distance for the same section of the race is displayed on the left. Who had a head start, and how big was the head start? had a head start of meters. A steel pipe of 130 mm bore and 9 mm wall thickness and thermal conductivity 52 W/m K, carrying steam at 260C, is insulated with 60 mm of insulation of thermal conductivity 0.08 W/m K and an outer layer of insulation 70 mm thick of thermal conductivity 0.06 W/m K. The atmospheric temperature is 24C. The heat transfer coefficients for the inside and outside surfaces are 540 and 15 W/mK respectively. Calculate: (a) The rate of heat loss by the steam per unit length of pipe. (b) The temperature of the outside surface. (16) (4) Use the transformation defined by T(v): 12: V3) = (v2 - V1: ,+ v2: 2v1) to find the image of v= (1.4.0) a.(-3, 5, 2) . b.(-3,5,8) O c. (5,3, 2) O d. (3, 5, 2) O e.(3,5,8) Consider a smooth, horizontal, rectangular channel having a bottom width of 10 feet. A sluice gate is used to regulate the flow in the channel. Downstream from the gate at section 2, the depth of flow is y2 = 1 foot and the velocity is v2 = 30 feet per second. Neglect energy losses under the gate. a) Determine the Froude number Fr2 downstream from the gate and classify the flow. b) Use the continuity equation along with energy equation to determine the flow Q in cfs, the depth of flow y in feet, and the velocity vi in feet per second upstream from the gate. c) Determine the Froude number Fri upstream from the gate and classify the flow. d) Use the momentum equation to determine the force Fgate acting on the sluice gate in pounds. One glucose molecule results in how many acetyl CoA molecules? Provide your answer below: b) Given another scenario of the free flight reaching the speed of sound where the normal shock wave condition occurs during this flight. The flow just upstream of the normal shock wave is given by static pressure p = 1 atm, temperature To = 288 K, and Mach number Mi = 2.6. Calculate the following properties just 2/3 downstream of the normal shock wave (Given gas constant (R) = 287 Joule/kg.K, specific heat (Y) = 1.4 and 1 atm = 101000 N/m2). *Note: students are allowed to used tables or equations to solve this problem. i) ii) iii) iv) v) vi) vii) Static pressure (p2) Static temperature (T2) Density (P2) Mach number (M2) Total pressure (P.2) Total temperature (T.2) And the change in entropy (s) across the shock. Question 2 20 Points . (20 points) A single crystal copper is oriented for a tensile test such that its slip plane normal makes an angle of 40 with the tensile axis. Three possible slip directions make angles of 55, 68, and 75 with the same tensile axis. (a) Which of these three slip directions is most favored and which one is least favored? Explain why. (8 points) (b) if plastic deformation begins at a tensile stress of 5 MPa, determine the critical resolved shear stress (CRSS) for this single crystal copper. (6 points) . (c) If the critical resolved shear stress is 3 MPa, in order for slip (yielding) to occur in all three directions, what is the minimum required tensile stress? (6 points) . The correct answer is carbohydrates, but I am not sure why. Please provide me with an explanation for why that is. Don't proteins also have small molecules (Amino acids) and larger polymers (polypeptides)?Which of these classes of biological molecules consist of both small molecules and macromolecular polymers?nucleic acidslipids, carbohydrates, proteins, and nucleic acids all consist of only macromolecular polymerslipidsproteinscarbohydrates 1. design one simple experiment to find out whether your proteinof interest is overexpressed in E.coli 45 MPa with a critical stress intensity factor 30 : A steel plate has 20mm thick has a dimensions of 1x1m loaded in a Question 5 tensile stress in longitudinal direction MPa. a crack of length of 30mm at one edge is discovered Estimate the magnitude of maximum tensile stress at which failure will occur? Identify and discuss the 4 components of Zuckermans sensationseeking personality facets and give personal examples with eachcomponent as to your actions. Tell me how you would distinguish the anterior tibial,posteriortibial, and fibular artery from each other.short and striaght to the point please!!thank you please help with correct answer!Which of the following is NOT correct? The sympathetic nervous system is more active when the body is resting. Efferent signals carry signals from the central nervous system to motor neurons. The auto A basketball has a 300-mm outer diameter and a 3-mm wall thickness. It is inflated to a 120 kPa gauge pressure. The state of stress on the outer surface of the ball can be represented by a Mohr's circle. Which of the following options is true? Choose only one option. a The Mohr's circle representing the state of stress on the outer surface of the ball is a sphere with the same diameter to the basketball. b The Mohr's circle representing the state of stress on the outer surface of the ball is a point (i.e. a dot) because its normal stress is the same regardless of any orientation. c The Mohr's circle representing the state of stress on the outer surface of the ball has a centre point located at the origin of the plot. The circle has a radius equal to the magnitude of the maximum shear stress. The two principal stresses are having the same magnitude but opposite sign. This is because the ball has spherical symmetry. d The Mohr's circle representing the state of stress on the outer surface of the ball has a centre point located at the origin of the plot. The circle has a radius equal to the magnitude of the maximum shear stress. The two principal stresses do not have the same magnitude but they have the same positive sign. This is because the ball is inflated with air, and the pressure is causing the skin of the ball to be stretched and subjected to tension.