THE DIFFERENCE OF TWO NUMBERS IS 4 AND THEIR SUM IS -7. WHAT IS THEIR PRODUCT. Who ever solved this correct will mark brainlist. 100%

Answers

Answer 1

Answer:

33/4

Step-by-step explanation:

Let the first number be x, and the second number be y.

x - y = 4

x + y = -7

Solve for x in the first equation.

x - y = 4

x = 4 + y

Put x as (4 + y) in the second equation and solve for y.

4 + y + y = -7

4 + 2y = -7

2y = -7 - 4

2y = -11

y = -11/2

Put y as -11/2 in the first equation and solve for x.

x - y = 4

x - (-11/2) = 4

x + 11/2 = 4

x = 4 - 11/2

x = -3/2

Their product is:

-11/2 × -3/2

33/4

Answer 2

Answer: 33/4

Step-by-step explanation:

We can use system of equations to find the missing numbers. Once we have the missing numbers, we can find the product. Let's use x and y for the missing numbers.

Equation 1

x-y=4

This equation comes from the difference of the 2 numbers being 4.

Equation 2

x+y=-7

This equation comes from the sum of the 2 numbers is -7.

We can use elimination to solve for y. We would subtract the 2 equations together so that x can cancel out.

-2y=11

y=-11/2

Now that we know y, we can substitute it into the equations above to find x.

x-(-11/2)=4

x+11/2=4

x=-3/2

With the x and y values, we can find the product.

(-3/2)*(-11/2)=33/4


Related Questions

Sue works an average of 45 hours each week. She gets paid $10.12 per hour and time-and-a-half for all hours over 40 hours per week. What is her annual income?

Answers

Step-by-step explanation:

40 x $10.12/hr = $404.80

5 x $15.18/hr = $ 75.90

over time = $10.12 + $5.06 ( half of $10.12) = $15.18/hr

$404.80 + $75.90 = $480.70/weekly pay

assuming she works 52 weeks a year

$480.70 × 52 weeks = $24,996.40/yr

Overweight participants who lose money when they don’t meet a specific exercise goal meet the goal more often, on average, than those who win money when they meet the goal, even if the final result is the same financially. In particular, participants who lost money met the goal for an average of 45.0 days (out of 100) while those winning money or receiving other incentives met the goal for an average of 33.7 days. The incentive does make a difference. In this exercise, we ask how big the effect is between the two types of incentives. Find a 90% confidence interval for the difference in mean number of days meeting the goal, between people who lose money when they don't meet the goal and those who win money or receive other similar incentives when they do meet the goal. The standard error for the difference in means from a bootstrap distribution is 4.14.

Answers

Answer:

The 90% confidence interval for the difference in mean number of days meeting the goal  is (4.49, 18.11).

Step-by-step explanation:

The (1 - α)% confidence interval for the difference between two means is:

[tex]CI=\bar x_{1}-\bar x_{2}\pm z_{\alpha/2}\times SE_{\text{diff}}[/tex]

It is provided that:

[tex]\bar x_{1}=45\\\bar x_{2}=33.7\\SE_{\text{diff}} =4.14\\\text{Confidence Level}=90\%[/tex]

The critical value of z for 90% confidence level is,

z = 1.645

*Use a z-table.

Compute the 90% confidence interval for the difference in mean number of days meeting the goal as follows:

[tex]CI=\bar x_{1}-\bar x_{2}\pm z_{\alpha/2}\times SE_{\text{diff}}[/tex]

    [tex]=45-33.7\pm 1.645\times 4.14\\\\=11.3\pm 6.8103\\\\=(4.4897, 18.1103)\\\\\approx (4.49, 18.11)[/tex]

Thus, the 90% confidence interval for the difference in mean number of days meeting the goal  is (4.49, 18.11).

1. A door of a lecture hall is in a parabolic shape. The door is 56 inches across at the bottom of the door and parallel to the floor and 32 inches high. Sketch and find the equation describing the shape of the door. If you are 22 inches tall, how far must you stand from the edge of the door to keep from hitting your head

Answers

Answer:

See below in bold.

Step-by-step explanation:

We can write the equation as

y = a(x - 28)(x + 28)   as -28 and 28  ( +/- 1/2 * 56) are the zeros of the equation

y has coordinates (0, 32) at the top of the parabola so

32 = a(0 - 28)(0 + 28)

32 = a * (-28*28)

32 = -784 a

a = 32 / -784

a = -0.04082

So the equation is y = -0.04082(x - 28)(x + 28)

y = -0.04082x^2 + 32

The second part  is found by first finding the value of x corresponding to  y = 22

22 = -0.04082x^2 + 32

-0.04082x^2 = -10

x^2 = 245

x = 15.7 inches.

This is the distance from the centre of the door:

The distance from the edge = 28 - 15.7

= 12,3 inches.

Express 12/16 in quarters

Answers

3/4

Because 12 divided by 4 is 3
And 16 divided by 4 is 4
Therefore the answer is 3/4 (three quarters)
Hope this helped

Use Green's Theorem to evaluate ?C F·dr. (Check the orientation of the curve before applying the theorem.)
F(x, y) =< x + 4y3, 4x2 + y>

C consists of the arc of the curve y = sin x from (0, 0) to (p, 0) and the line segment from (p, 0) to (0, 0).

Answers

Answer:

Step-by-step explanation:

given a field of the form F = (P(x,y),Q(x,y) and a simple closed curve positively oriented, then

[tex]\int_{C} F \cdot dr = \int_A \frac{dQ}{dx} - \frac{dP}{dy} dA[/tex] where A is the area of the region enclosed by C.

In this case, by the description we can assume that C starts at (0,0). Then it goes the point (pi,0) on the path giben by y = sin(x) and then return to (0,0) along the straigth line that connects both points. Note that in this way, the interior the region enclosed by C is always on the right side of the point. This means that the curve is negatively oriented. Consider the path C' given by going from (0,0) to (pi,0) in a straight line and the going from (pi,0) to (0,0) over the curve y = sin(x). This path is positively oriented and we have that

[tex] \int_{C} F\cdot dr = - \int_{C'} F\cdot dr[/tex]

We use the green theorem applied to the path C'. Taking [tex] P = x+4y^3, Q = 4x^2+y[/tex] we get

[tex] \int_{C'} F\cdot dr = \int_{A} 8x-12y^2dA[/tex]

A is the region enclosed by the curves y =sin(x) and the x axis between the points (0,0) and (pi,0). So, we can describe this region as follows

[tex]0\leq x \leq \pi, 0\leq y \leq \sin(x)[/tex]

This gives use the integral

[tex] \int_{A} 8x-12y^2dA = \int_{0}^{\pi}\int_{0}^{\sin(x)} 8x-12y^2 dydx[/tex]

Integrating accordingly, we get that [tex]\int_{C'} F\cdot dr = 8\pi - \frac{16}{3}[/tex]

So

[tex] \int_{C} F cdot dr = - (8\pi - \frac{16}{3}) = \frac{16}{3} - 8\pi [/tex]

What is the perimeter of A’B’C’D’?

Answers

[tex]\displaystyle\bf\\\textbf{At any translation of a quadrilateral the sides remain the same,}\\\\\textbf{the angles remain the same.}\\\\\textbf{It turns out that the quadrilateral remains the same.}\\\\P_{A'B'C'D'}=P_{ABCD}=AB+BC+CD+DA=\\\\~~~~~~~~~~~~~~=2.2+4.5+6.1+1.4=\boxed{\bf14.2}[/tex]

 

It is known that when a certain liquid freezes into ice, its volume increases by 8%. Which of these expressions is equal to the volume of this liquid that freezes to make 1,750 cubic inches of ice?

Answers

Answer:

Volume of liquid which freezes to ice is 1620. 37 .

Expression to find this is 108x/100 = 1750

Step-by-step explanation:

Let the volume of liquid be x cubic inches

It is  given that volume of liquid increases by 8% when it freezes to ice

increase in volume of x  x cubic inches liquid = 8% of x = 8/100 * x = 8x/100

Total volume of ice = initial volume of liquid + increase in volume when it freezes to ice  = x + 8x/100 = (100x + 8x)/100 = 108x/100

Given that total volume of liquid which freezes is 1750

Thus,

108x/100 = 1750

108x = 1750*100

x = 1750*100/108 = 1620. 37

Volume of liquid which freezes to ice is 1620. 37 .

Expression to find this is 108x/100 = 1750

divide and simplify x^2+7x+12 over x+3 divided by x-1 over x+4

Answers

Answer:

  [tex]\dfrac{x^2+8x+16}{x-1}[/tex]

Step-by-step explanation:

In general, "over" and "divided by" are used to mean the same thing. Parentheses are helpful when you want to show fractions divided by fractions. Here, we will assume you intend ...

  [tex]\dfrac{\left(\dfrac{x^2+7x+12}{x+3}\right)}{\left(\dfrac{x-1}{x+4}\right)}=\dfrac{(x+3)(x+4)}{x+3}\cdot\dfrac{x+4}{x-1}=\dfrac{(x+4)^2}{x-1}\\\\=\boxed{\dfrac{x^2+8x+16}{x-1}}[/tex]

Rocco used these steps to solve the equation 4x + 6 = 4 + 2(2x + 1). Which choice describes the meaning of his result, 6 = 6?

Answers

Answer:

infinite solutions

Step-by-step explanation:

it means that all x are solution of this equation as 6=6 is always true

Word related to circle

Answers

Answer:

Center, radius, chord, diameter... are Words related to circle

I really need help, please help me.

Answers

Answer:

96 degrees

Step-by-step explanation:

Since x is half of 168, its angle measure is 84 degrees. Since x and y are a linear pair, their angle measures must add to 180 degrees, meaning that:

y+84=180

y=180-84=96

Hope this helps!

During the period of time that a local university takes phone-in registrations, calls come in at the rate of one every two minutes.a. What is the expected number of calls in one hour?b. What is the probability of three calls in five minutes?c. What is the probability of no calls in a five-minute period?

Answers

Answer:

Step-by-step explanation:

This is a poisson distribution. Let x be a random representing the number of calls in a given time interval.

a) the expected number of calls in one hour is the same as the mean score in 60 minutes. Thus,

Mean score = 60/2 = 30 calls

b) The interval of interest is 5 minutes.

µ = 5/2 = 2.5

We want to determine P(x = 3)

Using the Poisson probability calculator,

P(x = 3) = 0.21

c) µ = 5/2 = 2.5

We want to determine P(x = 0)

Using the Poisson probability calculator,

P(x = 0) = 0.08

Which are the right ones?

Answers

Answer:

20 4/5

Step-by-step explanation:

13/5 times 8/1

104/5

which is simplify

to 20 4/5\

hope this helps

Suppose that prices of recently sold homes in one neighborhood have a mean of $225,000 with a standard deviation of $6700. Using Chebyshev's Theorem, what is the minimum percentage of recently sold homes with prices between $211,600 and $238,400

Answers

Answer:

[tex] 211600 = 225000 -k*6700[/tex]

[tex] k = \frac{225000-211600}{6700}= 2[/tex]

[tex] 238400 = 225000 +k*6700[/tex]

[tex] k = \frac{238400-225000}{6700}= 2[/tex]

So then the % expected would be:

[tex] 1- \frac{1}{2^2}= 1- 0.25 =0.75[/tex]

So then the answer would be 75%

Step-by-step explanation:

For this case we have the following info given:

[tex] \mu = 225000[/tex] represent the true mean

[tex]\sigma =6700[/tex] represent the true deviation

And for this case we want to find the minimum percentage of sold homes between $211,600 and $238,400.

From the chebysev theorem we know that we have [tex]1 -\frac{1}{k^2}[/tex] % of values within [tex]\mu \pm k\sigma[/tex] if we use this formula and the limit given we have:

[tex] 211600 = 225000 -k*6700[/tex]

[tex] k = \frac{225000-211600}{6700}= 2[/tex]

[tex] 238400 = 225000 +k*6700[/tex]

[tex] k = \frac{238400-225000}{6700}= 2[/tex]

So then the % expected would be:

[tex] 1- \frac{1}{2^2}= 1- 0.25 =0.75[/tex]

So then the answer would be 75%


The function f(x)= 200/X+ 10 models the cost per student of a field trip when x students go on the trip. How is the parent function

f(x) = 1/x transformed to create the function f(x)= 200/x + 10
O It is vertically stretched by a factor of 200.
O It is vertically stretched by a factor of 200 and shifted 10 units leftt
O It is vertically stretched by a factor of 200 and shifted 10 units up.
O It is vertically stretched by a factor of 200 and shifted 10 units right

Answers

Answer:

It is vertically stretched by a factor of 200 and shifted 10 units right

Step-by-step explanation:

Suppose we have a function f(x).

a*f(x), a > 1, is vertically stretching f(x) a units. Otherwise, if a < 1, we are vertically compressing f(x) by a units.

f(x - a) is shifting f(x) a units to the right.

f(x + a) is shifting f(x) a units to the left.

In this question:

Initially: [tex]f(x) = \frac{1}{x}[/tex]

Then, first we shift, end up with:

[tex]f(x+10) = \frac{1}{x + 10}[/tex]

f was shifted 10 units to the left.

Finally,

[tex]200f(x+10) = \frac{200}{x + 100}[/tex]

It was vertically stretched by a factor of 200.

So the correct answer is:

It is vertically stretched by a factor of 200 and shifted 10 units right

Answer:

the answer is D

Step-by-step explanation:

Rockwell hardness of pins of a certain type is known to have a mean value of 50 and a standard deviation of 1.5. (Round your answers to four decimal places.)(a) If the distribution is normal, what is the probability that the sample mean hardness for a random sample of 10 pins is at least 51

Answers

Answer:

0.0174 = 1.74% probability that the sample mean hardness for a random sample of 10 pins is at least 51

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question, we have that:

[tex]\mu = 50, \sigma = 1.5, n = 10, s = \frac{1.5}{\sqrt{10}} = 0.4743[/tex]

What is the probability that the sample mean hardness for a random sample of 10 pins is at least 51

This is 1 subtracted by the pvalue of Z when X = 51. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{51 - 50}{0.4743}[/tex]

[tex]Z = 2.11[/tex]

[tex]Z = 2.11[/tex] has a pvalue of 0.9826

1 - 0.9826 = 0.0174

0.0174 = 1.74% probability that the sample mean hardness for a random sample of 10 pins is at least 51

A College Alcohol Study has interviewed random samples of students at four-year colleges. In the most recent study, 494 of 1000 women reported drinking alcohol and 552 of 1000 men reported drinking alcohol. What is the 95% confidence interval of the drinking alcohol percentage difference between women and men

Answers

Answer:

The 95% confidence interval for the difference between the proportion of women who drink alcohol and the proportion of men who drink alcohol is (-0.102, -0.014) or (-10.2%, -1.4%).

Step-by-step explanation:

We want to calculate the bounds of a 95% confidence interval of the difference between proportions.

For a 95% CI, the critical value for z is z=1.96.

The sample 1 (women), of size n1=1000 has a proportion of p1=0.494.

[tex]p_1=X_1/n_1=494/1000=0.494[/tex]

The sample 2 (men), of size n2=1000 has a proportion of p2=0.552.

[tex]p_2=X_2/n_2=552/1000=0.552[/tex]

The difference between proportions is (p1-p2)=-0.058.

[tex]p_d=p_1-p_2=0.494-0.552=-0.058[/tex]

The pooled proportion, needed to calculate the standard error, is:

[tex]p=\dfrac{X_1+X_2}{n_1+n_2}=\dfrac{494+552}{1000+1000}=\dfrac{1046}{2000}=0.523[/tex]

The estimated standard error of the difference between means is computed using the formula:

[tex]s_{p1-p2}=\sqrt{\dfrac{p(1-p)}{n_1}+\dfrac{p(1-p)}{n_2}}=\sqrt{\dfrac{0.523*0.477}{1000}+\dfrac{0.523*0.477}{1000}}\\\\\\s_{p1-p2}=\sqrt{0.000249+0.000249}=\sqrt{0.000499}=0.022[/tex]

Then, the margin of error is:

[tex]MOE=z \cdot s_{p1-p2}=1.96\cdot 0.022=0.0438[/tex]

Then, the lower and upper bounds of the confidence interval are:

[tex]LL=(p_1-p_2)-z\cdot s_{p1-p2} = -0.058-0.0438=-0.102\\\\UL=(p_1-p_2)+z\cdot s_{p1-p2}= -0.058+0.0438=-0.014[/tex]

The 95% confidence interval for the difference between proportions is (-0.102, -0.014).

If the endpoints of AB have the coordinates A(9, 8) and B(-1, -2), what is the AB midpoint of ?

Answers

Answer:

(4, 3)

Step-by-step explanation:

Use the midpoint formula: [tex](\frac{x1+x2}{2}, \frac{y1+y2}{2} )[/tex]

Suppose that the demand function for a product is given by ​D(p)equals=StartFraction 50 comma 000 Over p EndFraction 50,000 p and that the price p is a function of time given by pequals=1.91.9tplus+99​, where t is in days. ​a) Find the demand as a function of time t. ​b) Find the rate of change of the quantity demanded when tequals=115115 days. ​a)​ D(t)equals=nothing ​(Simplify your​ answer.)

Answers

Answer:

(a)[tex]D(t)=\dfrac{50000}{1.9t+9}[/tex]

(b)[tex]D'(115)=-1.8355[/tex]

Step-by-step explanation:

The demand function for a product is given by :

[tex]D(p)=\dfrac{50000}{p}[/tex]

Price, p is a function of time given by [tex]p=1.9t+9[/tex], where t is in days.

(a)We want to find the demand as a function of time t.

[tex]\text{If } D(p)=\dfrac{50000}{p},$ and p=1.9t+9\\Then:\\D(t)=\dfrac{50000}{1.9t+9}[/tex]

(b)Rate of change of the quantity demanded when t=115 days.

[tex]\text{If } D(t)=\dfrac{50000}{1.9t+9}[/tex]

[tex]\dfrac{\mathrm{d}}{\mathrm{d}t}\left[\dfrac{50000}{\frac{19t}{10}+9}\right]}}=50000\cdot \dfrac{\mathrm{d}}{\mathrm{d}t}\left[\dfrac{1}{\frac{19t}{10}+9}\right]}[/tex]

[tex]=-50000\cdot\dfrac{d}{dt} \dfrac{\left[\frac{19t}{10}+9\right]}{\left(\frac{19t}{10}+9\right)^2}}}[/tex]

[tex]=\dfrac{-50000(1.9\frac{d}{dt}t+\frac{d}{dt}9)}{\left(\frac{19t}{10}+9\right)^2}}}[/tex]

[tex]=-\dfrac{95000}{\left(\frac{19t}{10}+9\right)^2}\\$Simplify/rewrite to obtain:$\\\\D'(t)=-\dfrac{9500000}{\left(19t+90\right)^2}[/tex]

Therefore, when t=115 days

[tex]D'(115)=-\dfrac{9500000}{\left(19(115)+90\right)^2}\\D'(115)=-1.8355[/tex]

Evaluate for f=3. 2f - f +7

Answers

2(3) - 3 + 7 = 6 - 3 + 7 = 10

What is the value of (4-2) – 3x4?
О-20
оооо
4

Answers

(-10) is the answer
First you do 4-2 to get 2 then u get 2-3•4 and 3•4 is 12 so then u do 2-12 to get negative 10

Answer:

-10

Step-by-step explanation:

Use the Order of Operations - PEMDAS

Do what is in parentheses first - (4-2) = 2

Next multiply 3 and 4 = 12

Last, perform 2 - 12; which equals -10

wo cards are selected from a standard deck of 52 playing cards. The first card is not replaced before the second card is selected. Find the probability of selecting a nine and then selecting an eight. The probability of selecting a nine and then selecting an eight is nothing.

Answers

Answer:

0.6%

Step-by-step explanation:

We have a standard deck of 52 playing cards, which is made up of 13 cards of each type (hearts, diamonds, spades, clubs)

Therefore there are one nine hearts, one nine diamonds, one nine spades and one nine clubs, that is to say that in total there are 4. Therefore the probability of drawing a nine is:

4/52

In the second card it is the same, an eight, that is, there are 4 eight cards, but there is already one less card in the whole deck, since it is not replaced, therefore the probability is:

4/51

So the final probability would be:

(4/52) * (4/51) = 0.006

Which means that the probability of the event is 0.6%

Multi step equation 18=3(3x-6)

Answers

Answer: X= 4

Step-by-step explanation:

Step 1: Simplify both sides of the equation.

18=3(3x−6)

18=(3)(3x)+(3)(−6)(Distribute)

18=9x+−18

18=9x−18

Step 2: Flip the equation.

9x−18=18

Step 3: Add 18 to both sides.

9x−18+18=18+18

9x=36

Step 4: Divide both sides by 9.

9x

9

=

36

9

Answer:

X=4

Step-by-step explanation:

18=3(3X-6)

18=3><(3X-6)

18=9X-18

9X=-18-18

9X=36

X=36/9

X=4

Hope this helps

Brainliest please

The volume of a water in a fish tank is 84,000cm the fish tank has the length 60cm and the width 35cm. The water comes to 10cm from the top of the tank. calculate the height of the tank.

Answers

Answer:

Height of tank = 50cm

Step-by-step explanation:

Volume of water from tank that the water is 10cm down is 84000cm³

Length = 60cm

Width = 35cm

Height of water = x

Volume = length* width* height

Volume= 84000cm³

84000 = 60*35*x

84000= 2100x

84000/2100= x

40 = x

Height of water= 40cm

Height of tank I = height of water+ 10cm

Height of tank= 40+10= 50cm

Height of tank = 50cm

Which expression is equivalent to 24 ⋅ 2−7?

Answers

Answer:

41

Step-by-step explanation:

[tex]24*2-7=\\48-7=\\41[/tex]

Circle O has a circumference of 36π cm. Circle O with radius r is shown. What is the length of the radius, r? 6 cm 18 cm 36 cm 72 cm

Answers

Answer: 18 cm

Step-by-step explanation:

We know the circumference formula is C=2πr. Since our circumference is given in terms of π, we can easily figure out what the radius is.

36π=2πr                   [divide both sides by π to cancel out]

36=2r                        [divide both sides by 2]

r=18 cm

Answer:

18cm

Step-by-step explanation:

because i found it lol

To reach a particular department at a warehouse, a caller must dial a 4-digit extension. Suppose a caller remembers that the first and last digits of an extension are 5, but they are not sure about the other digits.


How many possible extensions might they have to try?

Answers

Answer:

100 possible extensions

Step-by-step explanation:

we can calculated how many possible extensions they have to try using the rule of multiplication as:

___1_____*___10_____*___10_____*____1____ = 100

1st digit        2nd digit        3rd digit         4th digit

You know that the 1st and 4th digits of the extension are 5. it means that you just have 1 option for these places. On the other hand, you don't remember nothing about the 2nd and 3rd digit, it means that there are 10 possibles digits (from 0 to 9) for each digit.

So, There are 100 possibles extensions in which the 5 is the first and last digit.

For what values (cases) of the variables the expression does not exist: a / a−b

Answers

Answer:

a=b

Step-by-step explanation:

When the denominator is zero, the expression is undefined

a-b=0

a=b

The area of the sector of a circle with a radius of 8 centimeters is 125.6 square centimeters. The estimated value of is 3.14.
The measure of the angle of the sector is

Answers

Answer:

225º or 3.926991 radians

Step-by-step explanation:

The area of the complete circle would be π×radius²: 3.14×8²=200.96

The fraction of the circle that is still left will be a direct ratio of the angle of the sector of the circle.

[tex]\frac{125.6}{200.96}[/tex]=.625. This is the ratio of the circe that is in the sector. In order to find the measure we must multiply it by either the number of degrees in the circle or by the number of radians in the circle (depending on the form in which you want your answer).

There are 360º in a circle, so .625×360=225 meaning that the measure of the angle of the sector is 225º.

We can do the same thing for radians, if necessary. There are 2π radians in a circle, so .625×2π=3.926991 radians.

Answer:

225º

Step-by-step explanation:

Point C ∈ AB and AB = 33 cm. Point C is 2 times farther from point B than point C is from point A. Find AC and CB.

Answers

Answer:

AC = 11 cm , CB = 22 cm

Step-by-step explanation:

let AC = x then BC = 2x , then

AC + BC = 33, that is

x + 2x = 33

3x = 33 ( divide both sides by 3 )

x = 11

Thus

AC = x = 11 cm and CB = 2x = 2 × 11 = 22 cm

Other Questions
A 300-W computer (including the monitor) is turned on for 8.0 hours per day. If electricity costs 15 per kWh, how much does it cost to run the computer annually for a typical 365-day year? (Choose the closest answer) Assume a Cobb-Douglas production function of the form: q equals 10 Upper L Superscript 0.33 Baseline Upper K Superscript 0.75. What type of returns to scaleLOADING... does this production function exhibit? Matthew learned how to break dance when he was just seven years old. His older brother taught him the new dance trend when he and his friends heard about it at school. Matthew asked his grandfather if he used to break dance when he was a kid. His grandfather said, No, we did not have break dancing when I was a kid. We did something called the Twist. In this example, the Twist and break dancing are both examples of __________. A. dominant culture B. universal culture C. popular culture D. local culture Find the volume of a right circular cone that has a height of 4.2m and a base with a radius of 3.4m Four lines extend from point K. The space between lines K J and K N is 58 degrees. The space between lines K N and K M is 61 degrees. The space between lines K M and K L is 61 degrees. Which statement must be true about the diagram? Point K is a midpoint of Line segment J L. mAngleJKN = One-halfmAngleJKM Ray KM is an angle bisector of AngleNKL. JK = One-halfKL Need help with f asapppppppppppppppppppppp Rebecca would like to get started on a Mediterranean diet for optimal health what changes would you recommend Your friend Cameron just bought a top-of-the-line mountain bike and paid with cash. He listed his old one online. A buyer expressed interest in the bike and while they were talking, you heard Cameron describe the old bike as like new. You know the bikes front-wheel fork once snapped and had to be welded. With new paint, the weld is invisible. The buyer passed on the bike. What do you do? Do you talk to Cameron about lying to a potential buyer paulina plays both volleyball and soccer .the probability of her getting injured playing soccer is 0.10 and the probability of her getting injured playing soccer is 0.20 .which of the event is more likely cereal is on sale for $3.60 for a 9-ounce box. what is the price per ounce? You throw a ball straight up into the air from the top of a building. The building has a height of 15.0 m. The ball reaches a height (measured from the ground) of 25.0 m and then it starts to fall back down. a) Determine the initial velocity of the ball. b) What is the velocity of the ball when it comes back down and is at the same height from which it was thrown? c) How long will it take the ball to come back down to this height from the time at which it was first thrown? d) Lets say that you missed catching the ball on the way back down and it fell to the ground. How long did it take to hit the ground from the moment you threw it up? e) What was the balls final velocity the moment before it hit the ground? Estimate the solution to the system of equations.You can use the interactive graph below to find the solution.2x + 3y = 6- 4x + 3y = 12 Which of the following choices is the x intercept of the equation 2y-x=-6 Suppose that there are two types of tickets to a show: advance and same-day. Advance tickets cost $30 and same-day tickets cost $35. For one performance,there were 65 tickets sold in all, and the total amount paid for them was $2125. How many tickets of each type were sold? What is the point-slope form of a line with slope -3 that contains the point (10,-1)?A. y + 1 = 3(x+10)B. y + 1 = 3(x-10) C. y + 1 =-3(x-10) D. x + 1 = -3(y -10) (3534)(33+32) is divisible by 24; When the Articles of Confederation was adopted, land between the Appalachian Mountains and the Mississippi RiverA.was given to states whose colonial charters claimed landB.was divided up among the 13 original statesC.was closed to white settlersD. became national territory Question 2: The average price for a BMW 3 Series Coupe 335i is $39,368. Suppose these prices are also normally distributed with a standard deviation of $2,367. What percentage of BMW dealers are pricing the BMW 3 Series Coupe 335i at more than the average price ($44,520) for a Mercedes CLK350 Coupe? Round your answer to 3 decimal places. Which of the following groups protected the livelihood of craftspeople in the 1800s?scabsguildstrade unionslabor unions A student walk 60m on a bearing of 028 degree and then 180m due east. How is she from her starting point, correct to the nearest whole number?