The correct answer is B. A solid gains kinetic energy to become a liquid and then becomes a gas.
Explanation:
In solids, particles are organized and tightly packed, due to this, they only vibrate, which implies the kinetic energy is quite low (energy related to motion). Additionally, when solids are exposed to heat and they change their state to liquid, the substance obtains kinetic energy and particles move more freely and are not as organized and solids. Also, this increases in gases, in which kinetic energy is high and particles move freely. Thus, in the diagram, the states solid, liquid, and gas are represented and in this, "a solid gains kinetic energy to become a liquid and then becomes a gas."
Answer: b
Explanation:
edge
Why polythene bags create big problem in garbage disposal ?
Answer:
Polythene bags are so lightweight and aerodynamic, they are easily picked up and carried by the wind. They can escape from trash bins, recycle bins, garbage trucks, and landfills, and end up littering the landscape.
hope it helps
Explanation:
How many neutrons does the isotope N-14 have?
Answer:
7
Explanation:
N-14 has 7
i looked it up ye ur probably gonna get it right
Answer:
7 protons + 7 neutrons!
Explanation:
A sample of gas has a volume of 2.36 L at a temperature of 53.00 °C. The gas sample is heated to a temperature of 139.00 °C (assume pressure and amount of gas are held constant). Predict whether the new volume is greater or less than the original volume, and calculate the new volume.
Answer:
The volume increases because the temperature increases and is 2.98L
Explanation:
Charles's law states that the volume of a gas is directely proportional to its temperature. That means if a gas is heated, its volume will increase and vice versa. The equation is:
V₁/T₁ = V₂/T₂
Where V is volume and T is absolute temperature of 1, initial state, and 2, final state of the gas.
In the problem, the gas is heated, from 53.00°C (53.00 + 273.15 = 326.15K) to 139.00°C (139.00 + 273.15 = 412.15K).
Replacing in the Charles's law equation:
2.36L / 326.15K= V₂/412.15K
2.98L = V₂
With methyl, ethyl, or cyclopentyl halides as your organic starting materials and using any needed solvents or inorganic reagents, outline syntheses of each of the following. More than one step may be necessary and you need not repeat steps carried out in earlier parts of this problem. (a) CH3I (b) I (c) CH3OH (d) OH (e) CH3SH (f) SH (g) CH3CN (h) CN (i) CH3OCH3 (j) OMe
Answer:
In the attachment you can find all the possible chemical reactions.
Some reaction can not be obtained by using alkyl halides because halides are weak leaving group which can leave compound during reaction easily but hydroxyl groups is a strong nucleophile which can not leave compound easily. So we can obtain alcohol from ethyl bromide, but we can not obtain hydroxyl ion from ethyl bromide.
Explanation:
The methyl of ethyl halides as the organic starting materials are using the needed solvents or the inorganic reagents. These can be not repeated in steps that arrive out in earlier parts.
The reaction can not be taken by the use of alkyl halides as the halides are the weakest leaving group which leave the compound during reaction easily.the hydroxyl group is the strong nucleophile that cannot leave the compound easily. Thus we can get alcohol from the ethyl bromide, but we can not obtain the hydroxyl ion from the ethyl bromide.Learn more about the methyl or the cyclopentyl.
brainly.com/question/12621202
Which of the following is evidence of a physical change?
A) burning
B) melting
C) decomposing
D) rusting
Which of the following ions has the largest radius? Br- S2- B3+ Mg2+ Li+
Answer:
Br - has the largest radius
Explanation:
These ions each have achieved the nearest noble gas configuration. Br - has a like electron configuration to that of Krypton, S2- has a like electron configuration to that of Argon, B3+ to Helium, Mg2+ to Neon, and Li+ to Helium.
_______________________________________________________
Traveling down a group, the radius tends to increase as atom gains another shell. Here we are comparing elements of like electron configuration to the noble gases Helium, Neon, Argon, Krypton. Krypton, being the last element present in the group out of the 4, has the greatest radius as it has the most shells. Thus, Br - has the largest radius.
Hope that helps!
Benny Beaver wants to determine what dyesare present in his favorite sports drink. He analyzesa sample witha UV-visiblespectrophotometer and sees absorbance peaks at 415.2nm and 519.6nm. What colordyesare present in his drink
Answer:
At 415.2nm and 519.6nm, the dyes observed by the instrument are violet and green respectively.
Explanation:
In the electromagentic spectrum, visible wavelengths cover a range from approximately 400 to 800 nm. The colours of the spectrum range from red to violet (Red, Orange, Yellow, Green, Blue, Indigo and violet: a.k.a ROGBIV), in order of decreasing wavelength.
I hope this explanation would suffice.
In the first 15.0 s of the reaction, 1.7×10−2 mol of O2 is produced in a reaction vessel with a volume of 0.440 L . What is the average rate of the reaction over this time interval?
Answer:
[tex]Rate=2.57x10^{-3}\frac{M}{s}[/tex]
Explanation:
Hello,
In this case, for the reaction:
[tex]2N_2O(g) \rightarrow 2N_2(g)+O_2(g)[/tex]
We can easily compute the average rate by firstly computing the final concentration of oxygen:
[tex][O_2]=\frac{0.017mol}{0.440L}=0.0386M[/tex]
Then, we compute it by using the given interval of time: from 0 seconds to 15.0 seconds and concentration: from 0 M to 0.0386M as oxygen is being formed:
[tex]Rate=\frac{0.0386M-0M}{15.0s-0s}\\ \\Rate=2.57x10^{-3}\frac{M}{s}[/tex]
Regards.
According to the question,
Volume = 0.440 LTime = 15.0 sMol of O₂ = 1.7×10⁻²The reaction will be:
[tex]2 N_2 O (g) \rightarrow 2 N_2 (g) +O_2 (g)[/tex]Now,
The final concentration of O₂ will be:
→ [tex][O_2] = \frac{0.017}{0.440}[/tex]
[tex]= 0.0386 \ M[/tex]
hence,
The rate of reaction will be:
= [tex]\frac{0.0386-0}{15.0-0}[/tex]
= [tex]2.57\times 10^{-3} \ M/s[/tex]
Thus the above approach is right.
Learn more about volume here:
https://brainly.com/question/15050688
A glass flask has a volume of 500 mL at a temperature of 20° C. The flask contains 492 mL of mercury at an equilibrium temperature of 20°C. The temperature is raised until the mercury reaches the 500 mL reference mark. At what temperature does this occur? The coefficients of volume expansion of mercury and glass are 18 ×10-5 K-1 (mercury) and 2.0 ×10-5 K-1 (glass).
Answer:
101.63° C
Explanation:
Volume expansivity γa = γr - γ g = 18 × 10⁻⁵ - 2.0 × 10⁻⁵ = 16 × 10⁻⁵ /K
v₂ - v₁ / v₁θ = 16 × 10⁻⁵ /K
(500 - 492 ) mL / (492 × 16 × 10⁻⁵) = θ
θ = 101.63° C
Telluric acid (H2TeH4O6) is a diprotic acid with Ka1 = 2.0x10-8 and Ka2 = 1.0x10-11. A 0.25 M H2TeH4O6 contains enough HCl so that the pH is 3.00. What is the concentration of HTeH4O6
Answer:
5x10⁻⁶ = [HTeH₄O₆⁺]
Explanation:
The first dissociation equilibrium of the telluric acid in water is:
H₂TeH₄O₆ + H₂O ⇄ HTeH₄O₆⁺ + H₃O⁺
Using H-H equation for telluric acid:
pH = pKa + log₁₀ [HTeH₄O₆⁺] / [H₂TeH₄O₆]
pKa of telluric acid is -logKa1
pKa = -log 2.0x10⁻⁸
pKa = 7.699
As concentration of [H₂TeH₄O₆] is 0.25M, replacing in H-H equation:
3.00 = 7.699+ log₁₀ [HTeH₄O₆⁺] / [0.25M]
-4.699 = log₁₀ [HTeH₄O₆⁺] / [0.25M]
2x10⁻⁵ = [HTeH₄O₆⁺] / [0.25M]
5x10⁻⁶ = [HTeH₄O₆⁺]Calculate the heat change in kilojoules for condensation of 195 g of steam at 100 ° C
Answer:
Q = 81.59kJ
Explanation:
Hello,
The heat of condensation is the energy required to to convert the steam into water.
Mass = 195g
Specific heat capacity of water = 4.184J/g°C
Initial temperature(T1) = 100°C
Final temperature(T2) = 0°C
Heat energy (Q) = ?
Heat energy (Q) = mc∇T
M = mass of the substance
C = specific heat capacity of the substance
∇T = T2 - T1 = change in temperature of the substance
Q = 195 × 4.184 × (0 - 100)
Q = -81588J
Q = -81.588kJ
The heat required for the condensation of 195g of steam is 81.59kJ
Tubes through which water flows as it is brought from 0.8 MPa, 150C to 240C at essentially constant pressure in the boiler of a power plant. The total mass flow rate of the water is 100 kg/s. Combustion gases passing over the tubes cool from 1067 to 547C at essentially constant pressure. The combustion gases can be modeled as air as an ideal gas. There is no significant heat transfer from the boiler to its surroundings. Surrounding (dead state) temperature and pressure are given as 25C and 1 atm, respectively. Determine i) the exergetic efficiency of the boiler ii) rate of exergy destruction as kW iii) mass flow rate of the combustion gases as kg/s
Answer:
The correct answer is i) 50.2 % ii) 13440.906 kW and iii) 71.986 kg/s.
Explanation:
In order to find the mass flow rate of the combustion of gases, there is a need to use the energy balance equation:
Mass of water × specific heat of water (T2 -T1)w = mass of gas × specific heat of gas (T2-T1)g
100 × 4.18 × [(240 + 273) - (150 + 273)] = mass of gas × 1.005 × [(1067+273) - (547+273)]
Mass of gas = 71.986 kg/s
The entropy generation of water can be determined by using the formula,
(ΔS)w = mass of water × specific heat of water ln(T2/T1)w
= 100 × 4.18 ln(513/423)
= 80.6337 kW/K
Similarly the entropy generation of water will be,
(ΔS)g = mass of gas × specific heat of gas ln(T2/T1)g
= 71.986 × 1.005 ln (820/1340)
= -35.53 kW/K
The rate of energy destruction will be,
Rate of energy destruction = To (ΔS)gen
= T₀ [(ΔS)w + (ΔS)g]
= (25+273) [80.6337-53.53)
Rate of energy destruction = 13440.906 kW
The availability of water will be calculated as,
= mass of water (specific heat of water) [(T₁-T₂) -T₀ ln T₁/T₂]
= 100 × 4.8 [(513-423) - 298 ln 513/423]
= 13591.1477 kW
The availability of gas will be calculated as,
= mass of gas (specific heat of gas) [(T₁-T₂) - T₀ ln T₁/T₂]
= 71.986 × 1.005 × [(1340-820) - 298 ln 1340/820]
= 27031.7728 kW
The exergetic efficiency can be calculated as,
= Gain of availability / loss of availability
= 13591.1477/27031.7728
= 0.502
The exergetic efficiency is 50.2%.
need helpp asapp please
Answer:
B. None of these
Explanation:
Sulfur has less ionization energy than phosphorus because sulfur has a pair of electron in its 3p subshell that increases electron repulsion in sulfur and sulfur electrons can easily remove from its sub-level.
While, there are no electron pairs in 3p subshell of phosphorus, therefore it requires more energy to remove an electron from 3p subshell.
Hence, the reason is electron repulsion and the correct answer is B.
Combustion analysis of a 13.42-g sample of estriol (which contains only carbon, hydrogen, and oxygen) produced 36.86 g CO2 and 10.06 g H2O. The molar mass of estriol is 288.38 g/mol . Find the molecular formula for estriol. Express your answer as a chemical formula.
Answer:
C18H24O3
Explanation:
Step 1:
Data obtained from the question. This include the following:
Mass of estriol = 13.42g
Mass of CO2 = 36.86g
Mass of H2O = 10.06g
Molar mass of estriol = 288.38g/mol
Step 2:
Determination of the mass of Carbon (C), Hydrogen (H) and Oxygen (O) present in the compound. This is illustrated below:
For Carbon, C:
Molar mass of CO2 = 12 + (2x16) = 44g/mol
Mass of C in CO2 = 12/44 x 36.86 = 10.05g
For Hydrogen, H:
Molar Mass of H2O = (2x1) + 16 = 18g/mol
Mass of H in H2O = 2/18 x 10.06 = 1.12g
For Oxygen, O:
Mass of O = 13.42 – (10.05 + 1.12) = 2.25g
Step 3:
Determination of the empirical formula for estriol. This is illustrated below:
C = 10.05g
H = 1.12g
O = 2.25g
Divide by their molar mass
C = 10.05/12 = 0.8375
H = 1.12/1 = 1.12
O = 2.25/16 = 0.1406
Divide by the smallest i.e 0.1406
C = 0.8375/0.1406 = 6
H = 1.12/0.1406 = 8
O = 0.1406/0.1406 = 1
Therefore, the empirical formula for estriol is C6H8O
Step 4:
Determination of the molecular formula for estriol. This is illustrated below:
Molecular formula is simply a multiple of the empirical formula i.e
Molecular formula => [C6H8O]n
[C6H8O]n = 288.38g/mol
[(12x6) + (8x1) + 16]n = 288.38
[72 + 8 + 16]n = 288.38
96n = 288.38
Divide both side by 96
n = 288.38/96 = 3
Molecular formula => [C6H8O]n
=> [C6H8O]n
=> [C6H8O]3
=> C18H24O3
Therefore, the molecular formula for estriol is C18H24O3
The compound is C18H24O3.
From the information in the question;
Mass of C = 36.86 g/44 g/mol × 12 g/mol = 10.1 g
Number of moles of carbon = 10.1 g/12 g/mol = 0.84 moles
Mass of hydrogen = 10.06 g/18 g/mol × 2 g/mol = 1.11 g
Number of moles of hydrogen = 1.11 g/1g/mol = 1.11 moles
Mass of oxygen = 13.42 - (10.1 g + 1.11 g) = 2.21 g
Number of moles of oxygen = 2.21g/16 g/mol = 0.14 moles
Dividing through by the lowest number of moles;
C - 0.84 moles/0.14 moles H - 1.11 moles/0.14 moles O - 0.14 moles/0.14 moles
C - 6 H - 8 O -1
The empirical formula is C6H8O
The molecular formula of the compound is;
[6(12) + 8(1) + 16]n = 288.38
n = 288.38/86 =3
The compound is C18H24O3
Learn more about molecular formula:https://brainly.com/question/8073802
What type of chemical reaction occurs between AgNO3 (sliver nitrate) and Cu (Copper)?
Answer:
The answer is option c.
I hope this helps you.
A weather balloon is inflated to a volume of 27.6 L at a pressure of 755 mmHg and a temperature of 29.9 ∘C. The balloon rises in the atmosphere to an altitude where the pressure is 385 mmHg and the temperature is -14.1 ∘C. Assuming the balloon can freely expand, calculate the volume of the balloon at this altitude.
Answer: The volume of the balloon at this altitude is 46.3 L
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 755 mm Hg
[tex]P_2[/tex] = final pressure of gas (at STP) = 385 mm Hg
[tex]V_1[/tex] = initial volume of gas = 27.6 L
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]29.9^0C=(29.9+273)K=302.9K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]-14.1^0C=((-14.1)+273)K=258.9K[/tex]
Putting all the values we get:
[tex]\frac{755\times 27.6}{302.9}=\frac{385\times V_2}{258.9}[/tex]
[tex]V_2=46.3L[/tex]
Thus the volume of the balloon at this altitude is 46.3 L
The water in a pressure cooker boils at a temperature greater than 100°C because it is under pressure. At this higher temperature, the chemical reactions associated with the cooking of food take place at a greater rate. (a) Some food cooks fully in 7.00 min in a pressure cooker at 113.0°C and in 49.0 minutes in an open pot at 100.0°C. Calculate the average activation energy for the reactions associated with the cooking of this food. kJ mol-1 (b) How long will the same food take to cook in an open pot of boiling water at an altitude of 10000 feet, where the boiling point of water is 89.8 °C? min
Answer:
the activation energy Ea = 179.176 kJ/mol
it will take 7.0245 mins for the same food to cook in an open pot of boiling water at an altitude of 10000 feet.
Explanation:
From the given information
[tex]T_1 = 100^0 C = 100+273 = 373 \ K \\ \\ T_2 = 113^0 C = 113 + 273 = 386 \ K[/tex]
[tex]R_1 = \dfrac{1}{7}[/tex]
[tex]R_2 = \dfrac{1}{49}[/tex]
Thus; [tex]\dfrac{R_2}{R_1} = 7[/tex]
Because at 113.0°C; the rate is 7 time higher than at 100°C
Hence:
[tex]In (7) = \dfrac{Ea}{8.314}( \dfrac{1}{373}- \dfrac{1}{386})[/tex]
1.9459 = [tex]\dfrac{Ea}{8.314}* 9.0292 *10^{-5}[/tex]
[tex]1.9459*8.314 = Ea * 9.0292*10^{-5}[/tex]
[tex]16.1782126= Ea * 9.0292*10^{-5}[/tex]
[tex]Ea = \dfrac{16.1782126}{ 9.0292*10^{-5}}[/tex]
Ea = 179.176 kJ/mol
Thus; the activation energy Ea = 179.176 kJ/mol
b)
here;
[tex]T_2 = 386 \ K \\ \\T_1 = (89.8 + 273)K = 362.8 \ K[/tex]
[tex]In(\dfrac{R_2}{R_1})= \dfrac{Ea}{R}(\dfrac{1}{T_1}- \dfrac{1}{T_2})[/tex]
[tex]In(\dfrac{R_2}{R_1})= \dfrac{179.176}{8.314}(\dfrac{1}{362.8}- \dfrac{1}{386})[/tex]
[tex]In (\dfrac{R_2}{R_1}) = 0.00357[/tex]
[tex]\dfrac{R_2}{R_1}= e^{0.00357}[/tex]
[tex]\dfrac{R_2}{R_1}= 1.0035[/tex]
where ;
[tex]R_2 = \dfrac{1}7{}[/tex]
[tex]R_1 = \dfrac{1}{t}[/tex]
Now;
[tex]\dfrac{t}{7}= 1.0035[/tex]
t = 7.0245 mins
Therefore; it will take 7.0245 mins for the same food to cook in an open pot of boiling water at an altitude of 10000 feet.
a). The activation energy given by the reactions related to the cooking of food in the pressure cooker would be:
[tex]Ea = 179.176 kJ/mol[/tex]
b). The time duration that is taken by the same food to cook in an open vessel would be:
[tex]7.0245 mins[/tex]
Activation Energya). Given that,
Temperature [tex]1[/tex] [tex]= 100[/tex]° C
Temperature [tex]2[/tex] [tex]= 113[/tex]° C
In Kelvin,
Temperature [tex]1[/tex] [tex]= 100 + 273[/tex]
[tex]= 373 K[/tex]
Temperature [tex]2[/tex] [tex]= 113 + 273[/tex]
[tex]= 386 K[/tex]
[tex]R_{1} = 1/7\\R_{2} = 1/49[/tex]
∵ [tex]R_{2}/R_{1} = 49/7 = 7[/tex]
It is given that at [tex]113[/tex] rate [tex]=[/tex] [tex]7[/tex] × [tex]100[/tex]°C
Therefore,
[tex]Ea/8.314 (1/373 - 1/386) =[/tex] [tex]In(7)[/tex]
so,
[tex]Ea[/tex] [tex]= 16.1782126/(9.0292 * 10^{-5})[/tex]
∵ Activation energy [tex]= 179.176 kJ/mol[/tex]
b). As we know,
[tex]T_{2}[/tex] [tex]= 386 K[/tex]
[tex]T_{1}[/tex] [tex]= (89. 8 + 273)[/tex]
[tex]= 362.8 K[/tex]
by employing the formulae,
[tex]In(\frac{R_{2} }{R_{1} }) = \frac{Ea}{R} (1/T_{1} - 1/T_{2})[/tex]
[tex]In(\frac{R_{2} }{R_{1} }) = 179.176/8.314 (1/362.8 - 1/386)[/tex]
By solving this, we get
[tex]R_{2}/R_{1} = 1.0035[/tex]
Thus,
[tex]R_{2} = 1/7[/tex]
[tex]R_{1} = 1/t[/tex]
∵ t [tex]= 7.0245 min[/tex]
Thus, the time duration would be [tex]7.0245 minutes[/tex].
Learn more about "Boiling Point" here:
brainly.com/question/2153588
17. Write the molecular balanced equation for the recovering of copper metal. 18. Write the complete ionic balanced equation for the recovering of copper metal. 19. Write the net ionic balanced equation for the recovering of copper metal. 20. What type of reaction is this
Answer:
Explanation:
17. it goes from solid copper to aqueous copper:
Cu(s) --> Cu₂(aq) + 2e⁻
18. complete ionic:
Cu(s) --> Cu₂(aq) + 2e⁻
19. net ionic, must include only reacting species, so
Cu(s) --> Cu₂(aq) + 2e⁻
20. this type of reaction is dissolution reaction(redox reaction)
copper reduced from Cu²⁺ to Cu.
Which spheres of earth are represented in tropical rainforests?
Answer:
Biosphere
Explanation:
because of the rain it gets from huge water sources.
I hope that was useful.
A certain mass of carbon reacts with 9.53 g of oxygen to form carbon monoxide. ________ grams of oxygen would react with that same mass of carbon to form carbon dioxide, according to the law of multiple proportions.
Answer: 9.53 *2= 19.06
Explanation:
The law of multiple proportions states that if two elements combines to form more than one compound the ratio of masses of the second element which combines to the fixed mass of the first element will always be the ratios of the small whole numbers.
in case of carbon monoxide, mass of carbon will be the same of mass of oxygen.
But in case of carbon dioxide, if carbon is 9.53 units then oxygen will be twice as that of carbon.
CO2, so 9.53*2= 19.06 grams of oxygen will combine with 9.53 grams of carbon to form carbon dioxide.
calculate how many moles of CaCl2•2H2O are present in 1.50 g of CaCl2•2H2O and then calculate how many moles of pure CaCl2 are present in the 1.50 g of CaCl2•2H2O.
Answer:
[tex]0.0102~mol~CaCl_2*2H_2O[/tex]
[tex]0.0102~mol~CaCl_2[/tex]
Explanation:
For this question, we have to start with the molar mass calculation of [tex]CaCl_2*2H_2O[/tex]. For this, we have to know the atomic mass of each atom:
O: 16 g/mol
Cl: 35.45 g/mol
H: 1 g/mol
Ca: 40 g/mol
If we take into account the amount of each atom in the formula we will have:
[tex](40*1)+(35.45*2)+(1*4)+(16*2)=~147.01~g/mol[/tex]
So, in 1 mol of [tex]CaCl_2*2H_2O[/tex] we will have 147.01 g. Now we can do the conversion:
[tex]1.50~g~CaCl_2*2H_2O\frac{1~mol~CaCl_2*2H_2O}{147.01~g~CaCl_2*2H_2O}=0.0102~mol~CaCl_2*2H_2O[/tex]
Additionally, in 1 mol of [tex]CaCl_2*2H_2O[/tex] we will have 1 mol of [tex]CaCl_2[/tex]. Therefore, we have a 1:1 mol ratio . With this in mind, we will have the same number of moles for [tex]CaCl_2[/tex]
[tex]0.0102~mol~CaCl_2*2H_2O=0.0102~mol~CaCl_2[/tex]
I hope it helps!
What is Key for the reaction 2503(9) = 2802(9) + O2(g)?
Answer:
Option C. Keq = [SO2]² [O2] /[SO3]²
Explanation:
The equilibrium constant keq for a reaction is simply the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.
Now, let us determine the equilibrium constant for the reaction given in the question.
This is illustrated below:
2SO3(g) <==> 2SO2(g) + O2(g)
Reactant => SO3
Product => SO2, O2
Keq = concentration of products /concentration of reactants
Keq = [SO2]² [O2] /[SO3]²
Question 1
1 pts
2B+6HCI --
| --> 2BCl3 + 3H2
How many moles of boron chloride will be produced if you start with 8.752 moles of HCI
(hydrochloric acid)? (Round to 3 sig figs. Enter the number only do not include units.)
Answer:
2.92 mol
Explanation:
Step 1: Write the balanced equation
2 B(s) + 6 HCI(aq) ⇒ 2 BCl₃(aq) + 3 H₂(g)
Step 2: Establish the appropriate molar ratio
The molar ratio of hydrochloric acid to boron chloride is 6:2.
Step 3: Calculate the moles of boron chloride produced from 8.752 moles of hydrochloric acid
[tex]8.752molHCl \times \frac{2molBCl_3}{6molHCl} = 2.92molBCl_3[/tex]
An empty beaker is weighed and found to weigh 23.1 g. Some potassium chloride is then added to the beaker and weighed again. The second weight is 24.862 g. What is the mass of the potassium chloride
Answer:Mass of Potassium chloride =1.762g
Explanation:
Mass of empty beaker = 23.100 g
Mass of beaker with Potassium chloride = 24.862g
Mass of Potassium chloride = Final weight - initial weight = Mass of beaker with Potassium chloride - Mass of empty beaker = 24.862-23.100 = 1.762g
16. Which of the following is considered to be a vector?
A. Velocity
B. Temperature
C. Time
D. Mass
Answer:
Velocity
Explanation:
it is the rate of displacement over time in a SPECIFIED DIRECTION i.e it has both magnitude and direction
Consider the reaction of aqueous potassium sulfate with aqueous g silver nitrate based on the solubility rule predict the product likely to be precipitate write a balanced molecular equation describing the reaction.
Answer:
K₂SO₄(aq) + 2AgNO₃ (aq) → 2KNO₃(aq) + Ag₂SO₄ (s) ↓
2Ag⁺ (aq) + SO₄⁻²(aq) ⇄ Ag₂SO₄ (s) ↓
Explanation:
Our reactants are: K₂SO₄ and AgNO₃
By the solubility rules, we know that sulfates are insoluble when they react to Ag⁺, Pb²⁺, Ca²⁺, Ba²⁺, Sr²⁺, Hg⁺
We also determine, that salts from nitrate are all soluble.
The reaction is:
K₂SO₄(aq) + 2AgNO₃ (aq) → 2KNO₃(aq) + Ag₂SO₄ (s) ↓
2Ag⁺ (aq) + SO₄⁻²(aq) ⇄ Ag₂SO₄ (s) ↓
Methane (CH4) and the perchlorate ion (ClO4â) are both described as tetrahedral. Methane and the perchlorate ion are both described as tetrahedral. What does this indicate about their bond angles?
a. Bond angles in the methane molecule are greater than those in the perchlorate ion.
b. Bond angles in the perchlorate ion are greater than those in the methane molecule.
c. Bond angles in the methane molecule and in the perchlorate ion are approximately equal
Answer:
c
Explanation:
The correct answer would be that the bond angles in the methane molecule and in the perchlorate ion are approximately equal.
A tetrahedral shape or geometry means both molecules are sp3 hybridized with the hydrogen atoms and the oxygen ions surrounding the central carbon and chlorine atoms respectively being as far away from one another as possible. This results in an approximate angle of 109.5 degrees in both molecules.
The correct option is c.
Which of the following would describe a spontaneous process? (Select all that apply.) ΔGreaction < 0 ΔSuniverse < 0 ΔSuniverse > 0 ΔHreaction > 0 ΔHreaction < 0 ΔGreaction > 0
Answer:
ΔGreaction < 0
ΔSuniverse > 0
ΔHreaction < 0
Explanation:
A spontaneous process is one which can proceed without additional input of energy releasing free energy in the process and then moves to a lower more stable thermodynamical state.
For an isolated system, a spontaneous process proceeds with an increase in entropy.
The conditions for a spontaneous process at constant temperature and pressure, can be determined using the change in Gibbs free energy, which is given by: ∆G = ∆H - T∆S
Where ∆G is change in free energy; ∆H is change in enthalpy or Heat content; ∆S is change in entropy, T is temperature.
For a process to be spontaneous, the following conditions are necessary:
1. ∆G < 0; must be negative
2. ∆S > 0; there must be an increase in entropy
3. ∆H < 0; enthalpy change must be negative such that heat is lost to the surroundings
The above conditions ensures that ∆G is negative and the process is spontaneous.
When 1-iodo-1-methylcyclohexane is treated with NaOCH2CH3 as the base, the more highly substituted alkene product predominates. When KOC(CH3)3 is used as the base, the less highly substituted alkene predominates. Give the structures of the two products and offer an explanation.
Answer:
See explanation
Explanation:
In this case, we have 2 types of reactions. [tex]CH_3CH_2ONa[/tex] is a strong base but only has 2 carbons therefore we will have less steric hindrance in this base. So, the base can remove hydrogens that are bonded on carbons 1 or 6, therefore, we will have a more substituted alkene (1-methylcyclohex-1-ene).
For the [tex]KOC(CH_3)_3[/tex] we have more steric hindrance. So, we can remove only the hydrogens from carbon 7 and we will produce a less substituted alkene (methylenecyclohexane).
See figure 1
I hope it helps!
At a particular temperature, an equilibrium mixture the reaction below was found to contain 0.171 atm of I2, 0.166 atm of Cl2 and 9.81 atm of ICl. Calculate the value of the equilibrium constant, Kp at this temperature.I2(g) + Cl2(g) <=> 2 ICl(g)
Answer: 3390
Explanation:
Since this problem already gives is the equilibrium values, all we have to do is to plug them into the formula for [tex]K_{p}[/tex].
[tex]K_{p} =\frac{[ICl]^2}{[I_{2}][Cl_{2}] }[/tex]
[tex]K_{p} =\frac{(9.81)^2}{(0.171)(0.166)} =3390[/tex]