Answer:
42 headbands per dancer
Step-by-step explanation:
Selling 1260 headband
Divide by the three coaches
1260/3
420 per coach
Divide by each dancer under a coach
420/10 = 42
Each dancer must sell 42 headbands
Please help me to find out the answer
9514 1404 393
Answer:
80.99 m
Step-by-step explanation:
The hypotenuse of the triangle is given, and the desired side length is the one adjacent to the angle marked. The relevant trig relation is ...
Cos = Adjacent/Hypotenuse
Multiplying by the hypotenuse, we find ...
RY = (82 m)cos(9°) ≈ 80.99 m
If f(x) = x2 + 9x – 14 and g(x) = x2 – x + 3, find (f – g)(x).
Answer:
10x-17
Step-by-step explanation:
f(x) = x^2 + 9x – 14
g(x) = x^2 – x + 3
(f – g)(x)=x^2 + 9x – 14 - (x^2 – x + 3)
Distribute the minus sign
(f – g)(x)=x^2 + 9x – 14 - x^2 + x - 3
Combine like terms
=10x-17
A random sample of 149 recent donations at a certain blood bank reveals that 76 were type A blood. Does this suggest that the actual percentage of type A donations differs from 40%, the percentage of the population having type A blood? Carry out a test of appropriate hypotheses using a significance level of 0.01. Would your conclusion have been different if a significance level of 0.05 has been used?
Answer:
Yes it suggest that the actual percentage of type A donations differs from 40%, the percentage of the population having type A blood.
Well if a significance level of 0.05 is used it will not affect the conclusion
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 149[/tex]
The number that where type A blood is k = 76
The population proportion is [tex]p = 0.40[/tex]
The significance level is [tex]\alpha = 0.01[/tex]
Generally the sample proportion is mathematically represented as
[tex]\r p = \frac{k}{n}[/tex]
=> [tex]\r p = \frac{76}{149}[/tex]
=> [tex]\r p = 0.51[/tex]
The Null hypothesis is [tex]H_o : p = 0.41[/tex]
The Alternative hypothesis is [tex]H_a : p \ne 0.40[/tex]
Next we obtain the critical value of [tex]\alpha[/tex] from the z-table.The value is
[tex]Z_{\alpha } = Z_{0.01} = 1.28[/tex]
Generally the test statistics is mathematically evaluated as
[tex]t = \frac{\r p - p }{ \sqrt{ \frac{p(1-p)}{n} } }[/tex]
substituting values
[tex]t = \frac{0.51 - 0.40 }{ \sqrt{ \frac{0.40 (1-0.40 )}{149} } }[/tex]
[tex]t =2.74[/tex]
So looking at the values for t and [tex]Z_{0.01}[/tex] we see that [tex]t > Z_{0.01}[/tex] so we reject the null hypothesis. Which means that there is no sufficient evidence to support the claim
Now if [tex]\alpha = 0.05[/tex] , the from the z-table the critical value for [tex]\alpha = 0.05[/tex] is [tex]Z_{0.05} = 1.645[/tex]
So comparing the value of t and [tex]Z_{0.05} = 1.645[/tex] we see that [tex]t > Z_{0.05}[/tex] hence the conclusion would not be different.
Please answer this correctly without making mistakes
Step-by-step explanation:
Option A and B are the correct answer because it equal to 688.5 and 688.05
Answer:
it is 1377/2 and 688 1/17 thats the answer
Step-by-step explanation:
Twelve dieters lost an average of 13.7 pounds in 6 weeks when given a special diet plus a "fat-blocking" herbal formula. A control group of twelve other dieters were given the same diet, but without the herbal formula, and lost an average of 10.7 pounds during the same time. The standard deviation of the "fat-blocker" sample was 2.6 and the standard deviation of the control group was 2.4. Find the 95% confidence interval for the differences of the means.
Answer:
The 95% confidence interval is [tex]0.88 < \mu_1 - \mu_2 < 5.12[/tex]
Step-by-step explanation:
From the question we are told that
The sample mean for fat-blocking [tex]\= x_1 = 13.7[/tex]
The sample size for fat-blocking [tex]n = 12[/tex]
The standard deviation for fat-blocking is [tex]\sigma_1 = 2.6[/tex]
The sample mean for control group is [tex]\= x _2 = 10.7[/tex]
The sample size for control group is [tex]n_2 = 12[/tex]
The standard deviation for control group is [tex]\sigma _2 = 2.4[/tex]
Given that the confidence level is 95% then the level of significance can me mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5 \%[/tex]
[tex]\alpha =0.05[/tex]
Generally the degree of freedom is mathematically represented as
[tex]df = n_1 + n_2 - 2[/tex]
substituting values
[tex]df = 12 +12 - 2[/tex]
[tex]df = 22[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] at a degree of freedom of 22 form the students t-distribution , the value is
[tex]t_{\frac{\alpha }{2}, df } = 2.074[/tex]
Generally the margin of error is mathematically represented as
[tex]E = t_{\frac{\alpha }{2}, df } * \sqrt{ \frac{\sigma^2_1 }{n_1 } + \frac{\sigma^2_2 }{n_2 } }[/tex]
substituting values
[tex]E = 2.07 4 * \sqrt{ \frac{ 2.6^2 }{12 } + \frac{2.4^2 }{12 } }[/tex]
[tex]E = 2.12[/tex]
the 95% confidence interval for the differences of the means is mathematically represented as
[tex]\= x_1 - \= x_2 - E < \mu_1 - \mu_2 < \= x_1 - \= x_2 + E[/tex]
substituting values
[tex]13.7 - 10.7 - 2.12 < \mu_1 - \mu_2 < 13.7 - 10.7 + 2.12[/tex]
[tex]0.88 < \mu_1 - \mu_2 < 5.12[/tex]
(20/2 + 4)/2
^^^ I NEED A EQUATION LIKE THAT BUT FOR IT TO EQUAL 16
Answer:
Here are a few examples.
(30/2 + 1)/2
(26/2 + 3)/2
(28/2 + 2)/2
Find and interpret a 95% confidence interval to estimate the average number of bolts per box for all boxes in the population. Round to 3 decimal places.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The 95% confidence interval is [tex]49.85 < \mu < 54.15[/tex]
This means that there is 95% chance that the true population mean is within this interval
Step-by-step explanation:
From the question we are told that
The sample size is n = 30
The sample mean is [tex]\= x = 52[/tex]
The population standard deviation is [tex]\sigma = 6[/tex]
Given that the confidence level is 95% then the level of confidence is evaluate as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5\%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table , the values is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 1.96 * \frac{ 6 }{\sqrt{30} }[/tex]
[tex]E = 2.147[/tex]
The 95% confidence interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
substituting values
[tex]52 - 2.147 < \mu < 52 + 2.147[/tex]
[tex]49.85 < \mu < 54.15[/tex]
Can I have somebody answer a few more of the questions that I need please and this one too?
Answer:
x > 22
Step-by-step explanation:
Hey there!
Well to solve,
52 - 3x < -14
we need to single out x
52 - 3x < -14
-52 to both sides
-3x < -66
Divide both sides by -3
x > 22
The < changes to > because the variable number is a - being divided.
Hope this helps :)
Answer:
x > 22
Step-by-step explanation:
First, rearrange the equation
52 - 3 × x - (-14) < 0Then, pull out the like terms:
66 - 3xNext, apply algebra to the equation by dividing each side by -3. It should now look like this: x > 22.
Therefore, the solution set of the inequality would be x > 22.
Please answer ASAP PLEASE!
Answer/Step-by-step explanation:
The inequality, x ≤ 7, has solutions that includes values that is equal to 1 or less than 7.
This can be represented on a number line as shown in the number line graphed in the attachment below.
A full circle or shaded "o" indicates that the number 7 is included in the solution.
The arrow points from 7 to the left, telling us that the value of x are all numbers from 7 and below.
A house m by m is surrounded by a walkway m wide. 27 9 1.8 a) Find the area of the region covered by the house and the walkway. b) Find the area of the walkway.
Answer:
A. 385.56 square meters.
B. 142.56 square meters.
Step-by-step explanation:
A house 27m by 9m is surrounded by a walkway 1.8m wide.
a) Find the area of the region covered by the house and the walkway.
b) Find the area of the walkway.
Let
Length of the house=l=27m
Width of the house=w=9m
Wideness of the walkway=x=1.8m
Area of the region covered by the house and the walkway
=( L + 2*x) * (w + 2*x)
= (27+2*1.8)*(9+2*1.8)
=(27+3.6)*(9+3.6)
=(30.6)*(12.6)
=385.56 square meters.
b) Area of the walkway
= (L + 2*x)*(w + 2*x) - l*w
= (27+2*1.8)*(9+2*1.8) - 27*9
=(27+3.6)*(9+3.6) - 243
=(30.6)*(12.6) - 243
=385.56 - 243
=142.56 square meters.
After running 3/4 of a mile tess has only run 1/3 how long is the race in miles but I want to know how you did it
I really need help with this one
A plane traveled 4425 miles with the wind in 7.5 hours and 3675 miles against the wind in the same amount of time. Find the speed of the plane in still air and the speed of the wind.
Answer:
540 and 50 respectively
Step-by-step explanation:
Let the speed of plane in still air be x and the speed of wind be y.
ATQ, (x+y)*7.5=4425 and (x-y)*7.5=3675. Solving it, we get x=540 and y=50
A bag contains five white balls and four black balls. Your goal is to draw two black balls. You draw two balls at random. Once you have drawn two balls, you put back any white balls, and redraw so that you again have two drawn balls. What is the probability that you now have two black balls? (Include the probability that you chose two black balls on the first draw.)
Answer:
Probabilty of both Black
= 1/6
Step-by-step explanation:
A bag contains five white balls and four black balls.
Total number of balls= 5+4
Total number of balls= 9
Probabilty of selecting a black ball first
= 4/9
Black ball remaining= 3
Total ball remaining= 8
Probabilty of selecting another black ball without replacement
= 3/8
Probabilty of both Black
=3/8 *4/9
Probabilty of both Black
= 12/72
Probabilty of both Black
= 1/6
can anyone ans this question
Answer:
Question 1: the angle of y is the same as 49 degrees.
So, y = 49 degrees.
y + x = straight line
=> Straight line = 180 degrees
=> 49 + x = 180
=> 49 - 49 + x = 180 - 49
=> x = 131
Answer to Question 1:
x = 131 degrees
y = 49 degrees
Question 2: Angle x is the same as 119 degrees
x + y = straight line
=> Straight line = 180 degrees
=> 119 + y = 180
=> 119 - 119 + y = 180 - 119
=> y = 61
y + z = straight line
=> Straight line = 180 degrees
=> 61 + z = 180
=> 61 - 61 + z = 180 - 61
=> z = 119
Answer to Question 2:
x = 119 degrees
y = 61 degrees
z = 119 degrees
Last year, Leila had $30,000 to invest. She invested some of it in an account that paid 6% simple interest per year, and she invested the rest in an account that paid 5% simple interest per year. After one year, she received a total of $1580 in interest. How much did she invest in each account?
Answer:
6%: $8,0005%: $22,000Step-by-step explanation:
Let x represent the amount invested at 6%. Then 30000-x is the amount invested at 5%. Leila's total earnings for the year are ...
0.06x +0.05(30000-x) = 1580
0.01x +1500 = 1580 . . . . . . . . . . . . simplify
0.01x = 80 . . . . . . . . . . . subtract 1500
x = 8000 . . . . . . . . . . . . multiply by 100
Leila invested $8000 at 6% and $22000 at 5%.
Estimate the product of 0.235 and 13.467 to the nearest hundredth. Round each value to the nearest hundredth before multiplying. Your final answer should also be rounded to the nearest hundredth.
Answer:
0.235 = 0.24
13.467 = 13.47
0.24+13.47=13.71
Find the length of DM
Answer:
67
Step-by-step explanation:
DM=JM-JD=84-17=67
Answer:
Step-by-step explanation:
1.3 is 10% of what number
Answer:
33.33 percent
Step-by-step explanation:
Answer:
13
Step-by-step explanation:
Make a proportion
part/whole = part/whole
1.3/x=10/100
130=10x
x=13
What fraction of a pound is an ounce?
Answer:
1/16
Step-by-step explanation:
there are 16 ounces in a pound
Answer:
1/16 pounds
Step-by-step explanation:
13% of a sample of 200 students do not like ice cream. What is the 95% confidence interval to describe the total percentage of students who do not like ice cream?
The 95% confidence interval is (8.3%,17.7%), and the correct option is C.
------------------------------------------
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
------------------------------------------
13% of a sample of 200 students do not like ice cream.
This means that [tex]\pi = 0.13, n = 200[/tex]
------------------------------------------
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
------------------------------------------
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.13 - 1.96\sqrt{\frac{0.13*0.87}{200}} = 0.083[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.13 + 1.96\sqrt{\frac{0.13*0.87}{200}} = 0.177[/tex]
------------------------------------------
As a percentage:
0.083x100% = 8.3%0.177x100% = 17.7%Thus, the 95% confidence interval is (8.3%,17.7%), and the correct option is C.
A similar problem is given at https://brainly.com/question/22223066
Convert 0.450 to a proper fraction
Answer:
9/20
Step-by-step explanation:
450/1000
this is not the answer, because it is not simplified
so here we have to find common factor and simplifying
________________________________________________
450/1000 is simplified to 9/20, and it can no longer be simplified.
What are the Links of two sides of a special right triangle with a 306090° and a Hypotenuse of 10
Answer:
Step-by-step explanation:
60°=2×30°
one angle is double the angle of the same right angled triangle.
so hypotenuse is double the smallest side.
Hypotenuse=10
smallest side=10/2=5
third side =√(10²-5²)=5√(2²-1)=5√3
The 1991 Tractor has a horse power of 195, which is five less than four times the horsepower of the Cinderella's carriage. What was the horsepower of the carriage?
Answer:
The horsepower of the carriage is 50
Step-by-step explanation:
Let the horsepower of the carriage=x
ATQ, 195+5=4x, x=50.
How many variables terms are in the expression 3xcube y+5xsquare+y+9
Answer: Please Give Me Brainliest, Thank You!
2
Step-by-step explanation:
There are two variables here, X and Y
The age of some lecturers are 42,54,50,54,50,42,46,46,48 and 48 calculate the mean age and standard deviation
Answer:
Mean age: 48
Standard deviation: 4
Step-by-step explanation:
a) Mean
The formula for Mean = Sum of terms/ Number of terms
Number of terms
= 42 + 54 + 50 + 54 + 50 + 42 + 46 + 46 + 48+ 48/ 10
= 480/10
= 48
The mean age is 48
b) Standard deviation
The formula for Standard deviation =
√(x - Mean)²/n
Where n = number of terms
Standard deviation =
√[(42 - 48)² + (54 - 48)² + (50 - 48)² +(54 - 48)² + (50 - 48)² +(42 - 48)² + (46 - 48)² + (46 - 48)² + (48 - 48)² + (48 - 48)² / 10]
= √-6² + 6² + 2² + 6² + 2² + -6² + -2² + -2² + 0² + 0²/10
=√36 + 36 + 4 + 36 + 4 + 36 + 4 + 4 + 0 + 0/ 10
=√160/10
= √16
= 4
The standard deviation of the ages is 4
Farah is x years old. Ibtisam is 3 years younger than Farah. Muna is twice as old as Ibtisam. Write and expression in terms of x, for
(a) Ibtisam's age,
(b) The sum of their three ages, giving your answer in its simplest form.
Answer:
Farah: x
Ibtisam: x-3
Muna: 2(x-3) or 2x-6
Sum of all their ages: 4x-6
Step-by-step explanation:
Farah is x, so we don't need an expression for that.
Ibtisam is 3 years younger than Farah, which means that we need to subtract 3 from Farah, and that would be Ibtisam's age. x-3.
Muna is 2 TIMES Ibtisam's age, so we need to multiply whatever expression taht was used for Ibtisam by 2. Put brackets around the equation with 2 outside: 2(x-3). Solve and you get 4x-6
Now, you have all their ages in expression form, now you need to simplify by adding:
x+x+2x-6
We cannot simplify -6, so we put that aside. Add all the x's and you get 4x, insert the minus 6 at the end:
4x-6
Hope this helps!
--Applepi101
Answer:
a) X -3
b) 4x - 9
Step-by-step explanation:
a) Farah's age is X so Ibtisam will be X - 3 old since he is 3years younger than Farah
b) Farah is X years old
Ibtisam is X - 3 years old
Muna is 2(X -3) since she is 2 times older than Ibtisam.
the sum of Thier ages will be
X + X -3 + 2(x-3)
= 2x - 3 + 2x - 6
= 4x - 9
Find the first six partial sums S1, S2, S3, S4, S5, S6 of the sequence whose nth term is given. 1 2 , 1 22 , 1 23 , 1 24 , . .
Answer:
the first partial sum [tex]\mathbf{S_1= \dfrac{1}{2}}[/tex]
the second partial sum [tex]\mathbf{S_2= \dfrac{3}{4} }[/tex]
the third partial sum [tex]\mathbf{S_3= \dfrac{7}{8}}[/tex]
the fourth partial sum [tex]\mathbf{S_4= \dfrac{15}{16}}[/tex]
the fifth partial sum [tex]\mathbf{S_5= \dfrac{31}{32}}[/tex]
the sixth partial sum [tex]\mathbf{S_6= \dfrac{63}{64}}[/tex]
Step-by-step explanation:
The term of the sequence are given as : [tex]\dfrac{1}{2}[/tex], [tex]\dfrac{1}{2^2}[/tex], [tex]\dfrac{1}{2^3}[/tex], [tex]\dfrac{1}{2^4 }[/tex] , . . .
The nth term for this sequence is , [tex]\mathtt{a_n =( \dfrac{1}{2})^n}[/tex]
The nth partial sum of the sequence for [tex]\mathtt{a_1,a_2,a_3.... a_n}[/tex] is [tex]\mathtt{S_n}[/tex]
where;
[tex]\mathtt{S_n = a_1 +a_2+a_3+ ...+a_n}[/tex]
The first partial sum is: [tex]\mathtt{S_1= a_1}[/tex]
[tex]\mathtt{S_1= (\dfrac{1}{2})^1}[/tex]
[tex]\mathbf{S_1= \dfrac{1}{2}}[/tex]
Therefore, the first partial sum [tex]\mathbf{S_1= \dfrac{1}{2}}[/tex]
The second partial sum is: [tex]\mathtt{S_2= a_1+a_2}[/tex]
[tex]\mathtt{S_2= (\dfrac{1}{2})^1 + (\dfrac{1}{2})^2}[/tex]
[tex]\mathtt{S_2= \dfrac{1}{2} + \dfrac{1}{4}}[/tex]
[tex]\mathtt{S_2= \dfrac{2+1}{4} }[/tex]
[tex]\mathbf{S_2= \dfrac{3}{4} }[/tex]
Therefore, the second partial sum [tex]\mathbf{S_2= \dfrac{3}{4} }[/tex]
The third partial sum is : [tex]\mathtt{S_3= a_1+a_2+a_3}[/tex]
[tex]\mathtt{S_3= (\dfrac{1}{2})^1 + (\dfrac{1}{2})^2+(\dfrac{1}{2})^3 }[/tex]
[tex]\mathtt{S_3= \dfrac{1}{2} + \dfrac{1}{4}+\dfrac{1}{8}}[/tex]
[tex]\mathtt{S_3= \dfrac{4+2+1}{8}}[/tex]
[tex]\mathbf{S_3= \dfrac{7}{8}}[/tex]
Therefore, the third partial sum [tex]\mathbf{S_3= \dfrac{7}{8}}[/tex]
The fourth partial sum : [tex]\mathtt{S_4= a_1+a_2+a_3+a_4}[/tex]
[tex]\mathtt{S_4= (\dfrac{1}{2})^1 + (\dfrac{1}{2})^2+(\dfrac{1}{2})^3+(\dfrac{1}{2})^4 }[/tex]
[tex]\mathtt{S_4= \dfrac{1}{2} + \dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}}[/tex]
[tex]\mathtt{S_4= \dfrac{8+4+2+1}{16}}[/tex]
[tex]\mathbf{S_4= \dfrac{15}{16}}[/tex]
Therefore, the fourth partial sum [tex]\mathbf{S_4= \dfrac{15}{16}}[/tex]
The fifth partial sum : [tex]\mathtt{S_5= a_1+a_2+a_3+a_4+a_5}[/tex]
[tex]\mathtt{S_5= (\dfrac{1}{2})^1 + (\dfrac{1}{2})^2+(\dfrac{1}{2})^3+(\dfrac{1}{2})^4 +(\dfrac{1}{2})^5 }[/tex]
[tex]\mathtt{S_5= \dfrac{1}{2} + \dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}}[/tex]
[tex]\mathtt{S_5= \dfrac{16+8+4+2+1}{32}}[/tex]
[tex]\mathbf{S_5= \dfrac{31}{32}}[/tex]
Therefore, the fifth partial sum [tex]\mathbf{S_5= \dfrac{31}{32}}[/tex]
The sixth partial sum: [tex]\mathtt{S_5= a_1+a_2+a_3+a_4+a_5+a_6}[/tex]
[tex]\mathtt{S_6= (\dfrac{1}{2})^1 + (\dfrac{1}{2})^2+(\dfrac{1}{2})^3+(\dfrac{1}{2})^4 +(\dfrac{1}{2})^5 +(\dfrac{1}{2})^6 }[/tex]
[tex]\mathtt{S_6= \dfrac{1}{2} + \dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64} }[/tex]
[tex]\mathtt{S_6= \dfrac{32+16+8+4+2+1}{64}}[/tex]
[tex]\mathbf{S_6= \dfrac{63}{64}}[/tex]
Therefore, the sixth partial sum [tex]\mathbf{S_6= \dfrac{63}{64}}[/tex]
The mass of a species of mouse commonly found in houses is normally distributed with a mean of 20.2 grams with a standard deviation of 0.18 grams. Enter your responses as a decimal with 4 decimal places. (a) What is the probability that a randomly chosen mouse has a mass of less than 19.99 grams?
Answer:
12.1%
Step-by-step explanation:
Given that:
Mean (μ) = 20.2 grams and standard deviation (σ) = 0.18 grams.
The z score is a score used to determine the number of standard deviations by which the raw score is above or below the mean. A positive z score means that the raw score is above the mean and a negative z score means that the raw score is below the mean. It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
a) For x < 19.99 g:
[tex]z=\frac{x-\mu}{\sigma}\\\\z=\frac{19.99-20.2}{0.18} \\\\z=-1.17[/tex]
From the normal distribution table, P(x < 19.99) = P(z < -1.17) = 0.1210 = 12.1%
The probability that a randomly chosen mouse has a mass of less than 19.99 grams is 12.1%
Help question 25 pleasee
Answer:
4b³ + 11b² - 6b + 13
Step-by-step explanation:
Subtract like terms.
6b³ - 2b³ = 4b³
3b² - (-8b²) = 3b² + 8b² = 11b²
0 - 6b = -6b
8 - (-5) = 13
All together, the difference is 4b³ + 11b² - 6b + 13.