The curved surface area of a cylinder is 1320cm2 and its volume is 2640cm2 find the radius

Answers

Answer 1

The radius of the cylinder is 2 cm.

Given, curved surface area of the cylinder = 1320 cm²,

Volume of the cylinder = 2640 cm³

We need to find the radius of the cylinder.

Let's denote it by r.

Let's first find the height of the cylinder.

Let's recall the formula for the curved surface area of the cylinder.

Curved surface area of the cylinder = 2πrhr = curved surface area / 2πh

= (curved surface area) / (2πr)

Substituting the values,

we get,

h = curved surface area / 2πr

= 1320 / (2πr) ------(1)

Let's now recall the formula for the volume of the cylinder.

Volume of the cylinder = πr²h

2640 = πr²h

Substituting the value of h from (1), we get,

2640 = πr² * (1320 / 2πr)

2640 = 660r

Canceling π, we get,

r² = 2640 / 660

r² = 4r = √4r

= 2 cm

Therefore, the radius of the cylinder is 2 cm.

To know more about cylinder visit:

https://brainly.com/question/10048360

#SPJ11


Related Questions

Countertop A countertop will have a hole drilled in it to hold
a cylindrical container that will function as a utensil holder.
The area of the entire countertop is given by 5x² + 12x + 7. The area of the hole is given by x² + 2x + 1. Write an
expression for the area in factored form of the countertop
that is left after the hole is drilled.

Answers

The requried expression for the area in the factored form of the countertop that is left after the hole is drilled is 2(2x + 3)(x + 1).

To find the area of the countertop left after the hole is drilled, we need to subtract the area of the hole from the area of the entire countertop. So, we have:

Area of countertop left = (5x² + 12x + 7) - (x² + 2x + 1)

Area of countertop left = 4x² + 10x + 6

Area of countertop left = 2(2x² + 5x + 3)

Area of countertop left = 2(2x + 3)(x + 1)

Therefore, the expression for the area in the factored form of the countertop that is left after the hole is drilled is 2(2x + 3)(x + 1).

Learn more about fractions here:

https://brainly.com/question/10708469

#SPJ1

Two coins are flipped. You win $5 if either 2 heads or 2 tails turn up, and you lose $2 if a head and a tail turn up. What is the expected value of the game? The expected value of the game is s (Type an integer or a decimal.)

Answers

The expected value of the game is $1.50.

To calculate the expected value of the game, we need to find the probability of each outcome and multiply it by its respective payout or loss.

There are four possible outcomes when flipping two coins: HH, HT, TH, and TT. Since the coins are fair, each outcome has a probability of 1/4 or 0.25.

If we get HH or TT, we win $5. So the total payout for those two outcomes is $10.

If we get HT or TH, we lose $2. So the total loss for those two outcomes is $4.

To find the expected value of the game, we subtract the total loss from the total payout and multiply by the probability of each outcome:
(10 - 4) * 0.25 = 1.5

So the expected value of the game is $1.50.

Know more about the expected value here:

https://brainly.com/question/24305645

#SPJ11

Use the degree 2 Taylor polynomial centered at the origin for f to estimate the integral
I=∫20f(x)dx when f(x)=√4+x2
1.I≈42.I≈10/33.I≈16/34.I≈14/35.I≈6

Answers

To use the degree 2 Taylor polynomial centered at the origin for f, we first need to find the polynomial. The degree 2 Taylor polynomial for f centered at the origin is given by:

P(x) = f(0) + f'(0)x + (f''(0)/2)x^2

where f(0) = √4 = 2, f'(0) = 1/2(4+x)^(-1/2) evaluated at x=0 is 1/4 and f''(0) = (-1/2)(4+x)^(-3/2) evaluated at x=0 is -1/8.

So, we have:

P(x) = 2 + (1/4)x - (1/16)x^2

Now we can use P(x) to estimate the value of the integral I.

I = ∫20 f(x)dx ≈ ∫20 P(x)dx

= ∫20 (2 + (1/4)x - (1/16)x^2) dx

= 2x + (1/8)x^2 - (1/48)x^3 |[0,2]

= 4 + (1/2) - (1/12)

= 25/6

Therefore, I ≈ 25/6, which is closest to option (4) I ≈ 14/3.

To know more about taylor's polynomial refer here:

https://brainly.com/question/6203072?#

#SPJ11

A principal is organizing a field trip for more than 400 students. She has already arranged the transportation for 265 students. Each school bus has the capacity to transport 45 students. Which of the following inequalities could be used to solve for x, the number of school buses still needed to transport all of the students?

Answers

The inequalities that could be used to solve for x; the number of school buses still needed to transport all of the students is x > 3

How to determine the  inequalities that could be used to solve for x, the number of school buses still needed to transport all of the students

The number of students still needing transportation is: 400 - 265 = 135

The number of school buses still needed to transport all of the students:

135 ÷ 45 = 3

Therefore, the principal still needs 3 more school buses to transport all of the students.

The inequality that could be used to solve for x: x > 3

This inequality represents the number of buses needed (x) as being greater than 3

Learn more about inequality at https://brainly.com/question/24372553

#SPJ1

what on base percentage would you predict if the batting average was .206? as always, you must show all work. (.1)

Answers

We would predict an on-base percentage of approximately .290 for a player with a batting average of .206, assuming average values for walks, hit by pitch, and sacrifice flies.

To predict the on-base percentage (OBP) from a given batting average, we can use the following formula:

OBP = (Hits + Walks + Hit by Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)

Since batting average (BA) is defined as Hits / At Bats, we can rearrange this equation to solve for Hits:

Hits = BA * At Bats

Substituting this expression for Hits in the OBP formula, we get:

OBP = (BA * At Bats + Walks + Hit by Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)

Now we can plug in the given batting average of .206 and solve for OBP:

OBP = (.206 * At Bats + Walks + Hit by Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)

Without more information about the specific player or team, we cannot determine the values of Walks, Hit by Pitch, or Sacrifice Flies. However, we can make a prediction based solely on the batting average. Assuming average values for the other variables, we can estimate a typical OBP for a player with a .206 batting average.

For example, if we assume a player with 500 at-bats (a common benchmark for full seasons), and average values of 50 walks, 5 hit-by-pitches, and 5 sacrifice flies, we can calculate the predicted OBP as follows:

OBP = (.206 * 500 + 50 + 5) / (500 + 50 + 5 + 5)

= (103 + 50 + 5) / 560

= 0.29

To know more about average refer to-

https://brainly.com/question/24057012

#SPJ11

in problems 17–20 the given vectors are solutions of a system x9 = ax. determine whether the vectors form a fundamental set on the interval (−`, `).

Answers

In order to determine whether the given vectors form a fundamental set on the interval (-∞, ∞), we need to consider the concept of linear independence. A set of vectors is considered linearly independent if no vector in the set can be expressed as a linear combination of the others.

To determine whether the given vectors form a fundamental set, we need to check whether they are linearly independent. This can be done by forming a matrix with the given vectors as columns and then finding the determinant of the matrix. If the determinant is non-zero, then the vectors are linearly independent and form a fundamental set.

However, since the given system x9 = ax is not a differential equation, we cannot directly apply this method. Instead, we need to check whether the given vectors satisfy the conditions of linear independence. This can be done by checking whether the vectors are linearly independent using standard linear algebra techniques.

If the given vectors are linearly independent, then they will form a fundamental set on the interval (-∞, ∞). However, if they are linearly dependent, then they will not form a fundamental set, and we would need to find additional solutions to the system in order to form a fundamental set.

To know more about Vector visit :

https://brainly.com/question/13322477

#SPJ11

Prove that if f(x) ε F[x] is not irreducible, then F[x] / contains zero-divisors.

Answers

if f(x) ε F[x] is not irreducible, then F[x]/ contains zero-divisors.

Suppose that f(x) is not irreducible in F[x]. Then we can write f(x) as the product of two non-constant polynomials g(x) and h(x), where the degree of g(x) is less than the degree of f(x) and the degree of h(x) is less than the degree of f(x).

Therefore, in F[x]/(f(x)), we have:

g(x)h(x) ≡ 0 (mod f(x))

This means that g(x)h(x) is a multiple of f(x) in F[x]. In other words, there exists a polynomial q(x) in F[x] such that:

g(x)h(x) = q(x)f(x)

Now, let us consider the images of g(x) and h(x) in F[x]/(f(x)). Let [g(x)] and [h(x)] be the respective images of g(x) and h(x) in F[x]/(f(x)). Then we have:

[g(x)][h(x)] = [g(x)h(x)] = [q(x)f(x)] = [0]

Since [g(x)] and [h(x)] are non-zero elements of F[x]/(f(x)) (since g(x) and h(x) are non-constant polynomials and hence non-zero in F[x]/(f(x))), we have found two non-zero elements ([g(x)] and [h(x)]) in F[x]/(f(x)) whose product is zero. This means that F[x]/(f(x)) contains zero-divisors.

To learn more about polynomials visit:

brainly.com/question/11536910

#SPJ11

A=(s1 + s2 + .... + sn)/ n
is the average of the real numbers s1 + s2 + : : : + sn. Prove or disprove: There exists i such that si > A. What proof technique did you use?

Answers

The statement A=(s1 + s2 + .... + sn)/ nis the average of the real numbers s1 + s2 + : : : + sn  is true. We can prove it by using technique proof by contradiction.

We can prove the statement using proof by contradiction.

Assume that for all i, si ≤ A. Then, we have:

s1 + s2 + ... + sn ≤ nA

Dividing both sides by n, we get:

A = (s1 + s2 + ... + sn)/n ≤ A

This implies that A ≤ A, which is a contradiction.

Therefore, our assumption that for all i, si ≤ A is false. This means that there exists at least one i such that si > A.

Hence, the statement is true and we have proven it using proof by contradiction.

Learn more about proof by contradiction at  https://brainly.com/question/8062770

#SPJ11

(a) if cos 2 ( 29 ) − sin 2 ( 29 ) = cos ( a ) , then

Answers

We can use the identity cos(2θ) = cos^2(θ) - sin^2(θ) to rewrite the left-hand side of the equation:

cos 2(29) - sin 2(29) = cos^2(29) - sin^2(29) = cos(58)

So we have:

a = 122 degrees

cos(58) = cos(a)

Since the range of the cosine function is [-1, 1], we know that 58 and a must be either equal or supplementary angles (differing by 180 degrees). Therefore, we have two possible solutions:

a = 58 degrees

a = 122 degrees (since 58 + 122 = 180)

Note that we cannot determine which solution is correct based on the given equation alone.

To know more about cosine function refer here:

https://brainly.com/question/17954123

#SPJ11

A simple random sample of 100 U.S. college students had a mean age of 22.68 years. Assume the population standard deviation is 4.74 years.
1. construct a 99% confidence interval for the mean age of U.S. college students
a. Give the name of the function you would use to create the interval.
b. Give the confidence interval.
c. Interpret your interval.

Answers

construct a 99% confidence interval for the mean age of U.S. college students Confidence Interval is (21.458, 23.902)

To construct a 99% confidence interval for the mean age of U.S. college students, we can use the formula for a confidence interval for a population mean when the population standard deviation is known.

a. The function commonly used to create the confidence interval is the "z-score" or "standard normal distribution."

b. The confidence interval can be calculated using the following formula:

Confidence Interval = sample mean ± (z-value * (population standard deviation / √(sample size)))

For a 99% confidence interval, the corresponding z-value is 2.576, which can be obtained from the standard normal distribution table or using statistical software.

Plugging in the given values:

Sample mean = 22.68 years

Population standard deviation = 4.74 years

Sample size = 100

Confidence Interval = 22.68 ± (2.576 * (4.74 / √100))

Confidence Interval = 22.68 ± (2.576 * 0.474)

Confidence Interval ≈ 22.68 ± 1.222

c. Interpretation: We are 99% confident that the true mean age of U.S. college students lies between 21.458 years and 23.902 years based on the given sample. This means that if we were to take multiple random samples and construct 99% confidence intervals using the same method, approximately 99% of those intervals would contain the true population mean.

Know more about 99% confidence interval here;

https://brainly.com/question/30265803

#SPJ11

find the relationship of the fluxions using newton's rules for the equation y^2-a^2-x√(a^2-x^2 )=0. put z=x√(a^2-x^2 ).

Answers

[tex]y' = (x\sqrt{(a^2-x^2 )}  / y) * (\sqrt{(a^2-x^2 -x^2)/\sqrt{(a^2-x^2 ) - x^2 / (a^2-x^2)[/tex] is the relationship between the fluxions for the given equation, using Newton's rules.

Isaac Newton created a primitive type of calculus called fluxions. Newton's Fluxion Rules were a set of guidelines for employing fluxions to find the derivatives of functions. These guidelines served as a crucial foundation for the modern conception of calculus and paved the path for the creation of the derivative.

To find the relationship of the fluxions using Newton's rules for the equation[tex]y^2-a^2-x\sqrt{√(a^2-x^2 )} =0[/tex], we first need to express z in terms of x and y. We are given that z=x√(a^2-x^2 ), so we can write:

[tex]z' = (\sqrt{(a^2-x^2 )} -x^2/\sqrt{(a^2-x^2 ))} y' + x/\sqrt{(a^2-x^2 )}  * (-2x)[/tex]

Next, we can use Newton's rules to find the relationship between the fluxions:

y/y' = -Fz/Fy = -(-2z) / (2y) = z/y

y' = z'/y - z/y^2 * y'

Substituting the expressions for z and z' that we found earlier, we get:

[tex]y' = (x\sqrt{(a^2-x^2 )}  / y) * (\sqrt{(a^2-x^2 -x^2)/\sqrt{(a^2-x^2 ) - x^2 / (a^2-x^2)[/tex]

This is the relationship between the fluxions for the given equation, using Newton's rules.


Learn more about Newton here:

https://brainly.com/question/11221441


#SPJ11

Find the square root of 21046 by division method.​

Answers

By long division method 21046 has a square root of 144.9.

How to use long division?

Here is one way to find the square root of 21046 by division method:

Group the digits of the number into pairs from right to left: 21 04 6.Find the largest integer whose square is less than or equal to 21, which is 4. This will be the first digit of the square root.Subtract the square of this digit from the first pair of digits, 21 - 16 = 5. Bring down the next pair of digits, making the dividend 504.Double the first digit of the current root (4 × 2 = 8) and write it as the divisor on the left. Find the largest digit to put in the second place of the divisor that, when multiplied by the complete divisor (i.e., 8x), is less than or equal to 50.

    4 8 .

21║504

    4 8

    135

     128

Bring down the next pair of digits (46), and append them to the remainder (7), making 746. Double the previous root digit (8) to get 16, and write it with a blank digit in the divisor. Find the largest digit to put in this blank that, when multiplied by the complete divisor (i.e., 16x), is less than or equal to 746.

      48 4

210║746

       16 8

        584

        560

        246

         210

Bring down the last digit (6), and append it to the remainder (36), making 366. Double the previous root digit (84) to get 168, and write it with a blank digit in the divisor. Find the largest digit to put in this blank that, when multiplied by the complete divisor (i.e., 168x), is less than or equal to 366.

         4842  

2104║6

          168  

         426

         420  

           6

The final remainder is 6, which means that the square root of 21046 is approximately 144.9 (to one decimal place).

Therefore, the square root of 21046 by division method is approximately 144.9.

Find out more on long division here: https://brainly.com/question/30059812

#SPJ1

A parallelogram has sides 17. 3 m and 43. 4 m long. The height corresponding to the 17. 3-m base is 8. 7 m. Find the height, to the nearest tenth of a meter, corresponding to the 43. 4-m base

Answers

the height is 3.5m nearest tenth of a meter, corresponding to the 3.4-m base.

We know that the area of a parallelogram is given by A = base x height. Since the given parallelogram has two bases with different lengths, we will need to find the length of the other height to be able to calculate the area of the parallelogram.

Using the given measurements, let's call the 17.3m base as "b1" and its corresponding height as "h1", and call the 43.4m base as "b2" and its corresponding height as "h2".

From the given problem, we are given:

b1 = 17.3mh1 = 8.7m andb2 = 43.4m

Now, let's solve for h2:

Since the area of the parallelogram is the same regardless of which base we use, we can say that

A = b1*h1 = b2*h2  Substituting the given values, we have:

17.3m x 8.7m = 43.4m x h2  

Simplifying: 150.51 sq m = 43.4m x h2h2 = 150.51 sq m / 43.4mh2 = 3.46636...

The height corresponding to the 43.4m base is 3.5m (rounded to the nearest tenth of a meter).Therefore, the height corresponding to the 43.4-m base is 3.5 meters.

Here, we are given that the parallelogram has sides of 17.3m and 43.4m, and its corresponding height is 8.7m. We are asked to find the length of the height corresponding to the 43.4m base.

Since the area of a parallelogram is given by A = base x height, we can use this formula to solve for the length of the other height of the parallelogram. We can call the 17.3m base as "b1" and its corresponding height as "h1", and call the 43.4m base as "b2" and its corresponding height as "h2".

Using the formula A = b1*h1 = b2*h2, we can find h2 by substituting the values we have been given.

Solving for h2, we get 3.46636.

Rounding to the nearest tenth of a meter, we get that the length of the height corresponding to the 43.4m base is 3.5m. Therefore, the answer is 3.5m.

To know more about parallelogram visit:

brainly.com/question/28854514

#SPJ11

If the original quantity is 15 and the new quantity is 24, what is the percent increase?If the original quantity is 15 and the new quantity is 24, what is the percent increase?

Answers

To calculate the percent increase between the original quantity (15) and the new quantity (24), we use the formula: Percent increase = [(new quantity - original quantity) / original quantity] * 100. The result represents the percentage by which the quantity has increased.

To find the percent increase between the original quantity (15) and the new quantity (24), we subtract the original quantity from the new quantity and divide it by the original quantity. The formula is:
Percent increase = [(new quantity - original quantity) / original quantity] * 100
Substituting the given values:
Percent increase = [(24 - 15) / 15] * 100
= (9 / 15) * 100
= 0.6 * 100
= 60%
Therefore, the percent increase between the original quantity of 15 and the new quantity of 24 is 60%. This means that the quantity has increased by 60% from the original value.

Learn more about percent increase here
https://brainly.com/question/11337309



#SPJ11

consider the function f ' (x) = x2 x − 56 (a) find the intervals on which f '(x) is increasing or decreasing. (if you need to use or –, enter infinity or –infinity, respectively.) increasing

Answers

, f'(x) is increasing on the intervals (-infinity, -2sqrt(14)) and (2sqrt(14), infinity), and decreasing on the interval (-2sqrt(14), 2sqrt(14)).

To find the intervals on which f'(x) is increasing or decreasing, we need to first find the critical points of f(x), i.e., the values of x where f'(x) = 0 or where f'(x) does not exist. Then, we can use the first derivative test to determine the intervals of increase and decrease.

We have:

f'(x) = x^2 - 56

Setting f'(x) = 0, we get:

x^2 - 56 = 0

Solving for x, we obtain:

x = ±sqrt(56) = ±2sqrt(14)

So, the critical points of f(x) are x = -2sqrt(14) and x = 2sqrt(14).

Now, we can use the first derivative test to find the intervals of increase and decrease. We construct a sign chart for f'(x) as follows:

|       -    2sqrt(14)   +    2sqrt(14)   +

f'(x) | - 0 + 0 +

From the sign chart, we see that f'(x) is negative on the interval (-infinity, -2sqrt(14)), and positive on the interval (-2sqrt(14), 2sqrt(14)) and (2sqrt(14), infinity).

Therefore, f'(x) is increasing on the intervals (-infinity, -2sqrt(14)) and (2sqrt(14), infinity), and decreasing on the interval (-2sqrt(14), 2sqrt(14)).

Learn more about intervals here:

https://brainly.com/question/13708942

#SPJ11

Team Activity: forecasting weather Fill out and upload this page, along with your work showing the steps to the answers. The weather in Columbus is either good, indifferent, or bad on any given day. If the weather is good today, there is a 70% chance it will be good tomorrow, a 20% chance it will be indifferent, and a 10% chance it will be bad. If the weather is indifferent today, there is a 60% chance it will be good tomorrow, and a 30% chance it will be indifferent. Finally, if the weather is bad today, there is a 40% chance it will be good tomorrow and a 40% chance it will be indifferent. Questions: 1. What is the stochastic matrix M in this situation? M = Answer: 2. Suppose there is a 20% chance of good weather today and a 80% chance of indifferent weather. What are the chances of bad weather tomorrow? 3. Suppose the predicted weather for Monday is 50% indifferent weather and 50% bad weather. What are the chances for good weather on Wednesday? Answer: Answer: 4. In the long run, how likely is it for the weather in Columbus to be bad on a given day? Hint: find the steady-state vector.

Answers

In this team activity, we were given a weather forecasting problem in which we had to determine the stochastic matrix and calculate the probabilities of different weather conditions for a given day.

To solve the problem, we first needed to determine the stochastic matrix M, which is a matrix that represents the probabilities of transitioning from one state to another. In this case, the three possible states are good, indifferent, and bad weather. Using the given probabilities, we constructed the following stochastic matrix:

M = [[0.7, 0.2, 0.1], [0.6, 0.3, 0.1], [0.4, 0.4, 0.2]]

For the second question, we used the stochastic matrix to calculate the probabilities of bad weather tomorrow, given that there is a 20% chance of good weather and an 80% chance of indifferent weather today. We first calculated the probability vector for today as [0.2, 0.8, 0], and then multiplied it by the stochastic matrix to get the probability vector for tomorrow. The resulting probability vector was [0.14, 0.36, 0.5], so the chance of bad weather tomorrow is 50%.

For the third question, we used the stochastic matrix to calculate the probability of good weather on Wednesday, given that the predicted weather for Monday is 50% indifferent and 50% bad. We first calculated the probability vector for Monday as [0, 0.5, 0.5], and then multiplied it by the stochastic matrix twice to get the probability vector for Wednesday. The resulting probability vector was [0.46, 0.31, 0.23], so the chance of good weather on Wednesday is 46%.

For the final question, we needed to find the steady-state vector, which is a vector that represents the long-term probabilities of being in each state. We calculated the steady-state vector by solving the equation Mv = v, where v is the steady-state vector. The resulting steady-state vector was [0.5, 0.3, 0.2], so in the long run, the chance of bad weather on a given day is 20%.

Learn more about stochastic here:

https://brainly.com/question/29737056

#SPJ11

Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used. Match each equation with its solution set. A2 − 9a 14 = 0 a2 9a 14 = 0 a2 3a − 10 = 0 a2 5a − 14 = 0 a2 − 5a − 14 = 0 {-2, 7} arrowRight {2, -7} arrowRight {-2, -7} arrowRight {7, 2} arrowRight.

Answers

The correct matches of given quadratic equations are

[tex]A^2 -9A + 14 = 0 -- > Solution Set: C. (-2, -70\\A^2 + 9A + 14 = 0 -- > Solution Set: B. (2, -7)\\A^2 + 3A -10 = 0 -- > Solution Set: A. (-2, 7)\\A^2 + 5A -14 = 0 -- > Solution Set: D. (7, 2)[/tex]

The equation [tex]A^2 -5A - 14 = 0[/tex] does not match any of the given solution sets.

To match each equation with its solution set, let's analyze the given equations and their solutions:

Equations:

[tex]A^2 - 9A + 14 = 0\\A^2 + 9A + 14 = 0\\A^2 + 3A -10 = 0\\A^2 + 5A -14 = 0\\A^2 - 5A - 14 = 0[/tex]

Solution Sets:

A. {-2, 7}

B. {2, -7}

C. {-2, -7}

D. {7, 2}

Now, let's match the equations with their corresponding solution sets:

[tex]A^2 - 9A + 14 = 0[/tex] --> Solution Set: C. {-2, -7}

This equation factors as (A - 2)(A - 7) = 0, so the solutions are A = 2 and A = 7.

[tex]A^2 + 9A + 14 = 0[/tex] --> Solution Set: B. {2, -7}

This equation factors as (A + 2)(A + 7) = 0, so the solutions are A = -2 and A = -7.

[tex]A^2 + 3A - 10 = 0[/tex] --> Solution Set: A. {-2, 7}

This equation factors as (A - 2)(A + 5) = 0, so the solutions are A = 2 and A = -5.

[tex]A^2 + 5A - 14 = 0[/tex] --> Solution Set: D. {7, 2}

This equation factors as (A + 7)(A - 2) = 0, so the solutions are A = -7 and A = 2.

[tex]A^2 -5A -14 = 0[/tex]--> No matching solution set.

This equation factors as (A - 7)(A + 2) = 0, so the solutions are A = 7 and A = -2.

However, this equation does not match any of the given solution sets.

Based on the above analysis, the correct matches are:

[tex]A^2 -9A + 14 = 0 -- > Solution Set: C. (-2, -70\\A^2 + 9A + 14 = 0 -- > Solution Set: B. (2, -7)\\A^2 + 3A -10 = 0 -- > Solution Set: A. (-2, 7)\\A^2 + 5A -14 = 0 -- > Solution Set: D. (7, 2)[/tex]

The equation [tex]A^2 -5A -14 = 0[/tex] does not match any of the given solution sets.

Learn more about quadratic equations here:

brainly.com/question/17177510

#SPJ4

A manager at Claire’s makes $500 a week give or take $100. A doctor at New York Presbyterian makes $5,000 a week give or take $100. If that $100 was taken away from each of these people, relatively, which person would have had a more significant change to his or her salary? Explain your reasoning quantitatively (with numbers)

Answers

The statement says that a manager at Claire's makes $500 a week give or take $100 and a doctor at New York Presbyterian makes $5,000 a week give or take $100.

We want to find out which person would have had a more significant change to his or her salary if $100 was taken away from each of them relatively.

We will assume that the $100 given or take on the salaries are standard deviations. We will use the formula:

Coefficient of variation = (standard deviation / mean) x 100

Coefficient of variation of the manager's salary = (100 / 500) x 100 = 20%

Coefficient of variation of the doctor's salary = (100 / 5000) x 100 = 2%

Since the coefficient of variation is higher for the manager's salary than for the doctor's salary, it means that the $100 taken away from the manager will be more significant than the $100 taken away from the doctor.

The manager's salary varies more as a percentage of the mean salary than the doctor's salary.

To know more about cost estimation Visit :-

https://brainly.in/question/40164367

#SPJ11

Saskia constructed a tower made of interlocking brick toys. There are x^2 +5 levels in this model. Each brick is 3x^2 – 2 inches high. Which expression shows the total height of this toy tower?

Answers

The expression that shows the total height of this toy tower is

[tex]3x^4 + 13x^2 - 10.[/tex]

What is the total height of the toy tower?

Saskia constructed a tower made of interlocking brick toys.

There are

[tex]x^2 +5[/tex]

levels in this model.

Each brick is

[tex]3x^2 – 2[/tex]

inches high. To find the total height of the toy tower, we multiply the number of levels by the height of each brick. The height of each brick is given as

[tex]3x^2 – 2 inches.[/tex]

So, total height of the toy tower is

[tex](x² + 5) × (3x² – 2) inches= 3x^4 + 13x^2 - 10[/tex]

Therefore, the expression that shows the total height of this toy tower is

[tex]3x^4 + 13x^2 - 10.[/tex]

To know more about expression, visit:

https://brainly.com/question/28170201

#SPJ11

Stella uses the expression 0. 40a, where a is the original attendance at a play, to find the reduced attendance at the next performance. Which is an equivalent expression?

0. 60a

1. 60a

a−0. 60a

0. 40(a−1)

Answers

The equivalent expression of 0.40a is 0.40(a - 1)

Stella uses the expression 0.40a, where a is the original attendance at a play, to find the reduced attendance at the next performance. A formula for calculating the reduced attendance at the next performance can be represented by this expression 0.40a.
To find the equivalent expression to 0.40a, we have to distribute 0.40 and simplify as shown below:0.40a= (0.40 * a) = 0.40a
Also, 0.40(a - 1) can also be used to calculate the reduced attendance at the next performance.

The equivalent expression to 0.40a is 0.40(a - 1).

To know more about expression, click here

https://brainly.com/question/28170201

#SPJ11

With a coupon, you can get a pair of shoes that normally costs $84 for only $72. What percentage was the discount? Include a unit/label with your answer. ROUND TO THE NEAREST PERCENT

Answers

The discount on the pair of shoes is approximately 14.29%.
In summary, the discount on the pair of shoes is approximately 14.29%.

To calculate the percentage discount, we need to find the difference between the original price and the discounted price. In this case, the original price of the shoes is $84 and the discounted price is $72.
To find the discount amount, we subtract the discounted price from the original price: $84 - $72 = $12.
Next, we need to find the percentage that the discount represents compared to the original price. We can do this by dividing the discount amount by the original price and multiplying by 100: ($12 / $84) * 100 ≈ 0.1429 * 100 ≈ 14.29%.
Therefore, the discount on the pair of shoes is approximately 14.29%. This means that the customer is getting a 14.29% reduction in price compared to the original cost of $84.

Learn more about discount here
https://brainly.com/question/3541148



#SPJ11

Consecutive numbers follow one right after the other. An example of three consecutive numbers is 17,18,


and 19. Another example is -100,-99,-98.


How many sets of two or more consecutive positive integers can be added to obtain a sum of 100?

Answers

We are required to find the number of sets of two or more consecutive positive integers that can be added to get the sum of 100.

Solution:Let us assume that we need to add 'n' consecutive positive integers to get 100. Then the average of the n numbers is 100/n. For instance, If we need to add 4 consecutive positive integers to get 100, then the average of the four numbers is 100/4 = 25.

Also, the sum of the four numbers is 4*25 = 100.We can now apply the following conditions:n is oddWhen the number of integers to be added is odd, then the middle number is the average and will be an integer.

For instance, when we need to add three consecutive integers to get 100, then the middle number is 100/3 = 33.33 which is not an integer.

Therefore, we cannot add three consecutive integers to get 100.

n is evenIf we are required to add an even number of integers to get 100, then the average of the numbers is not an integer. For instance, if we need to add four consecutive integers to get 100, then the average is 100/4 = 25.

Therefore, there is a set of integers that can be added to get 100.

Sets of two or more consecutive positive integers can be added to get 100 are as follows:[tex]14+15+16+17+18+19+20 = 100 9+10+11+12+13+14+15+16 = 100 18+19+20+21+22 = 100 2+3+4+5+6+7+8+9+10+11+12+13+14 = 100[/tex]Therefore, there are 4 sets of two or more consecutive positive integers that can be added to obtain a sum of 100.

To know more about the word average visits :

https://brainly.com/question/897199

#SPJ11

DUE FRIDAY PLEASE HELP WELL WRITTEN ANSWERS ONLY!!!
Two normal distributions have the same standard deviation, but different means. Describe the differences between how the two distributions will look and sketch what they may look like.

Answers

Answer:

Step-by-step explanation:

When two normal distributions have the same standard deviation, but different means, the distribution with the higher mean will be shifted to the right of the distribution with the lower mean. This means that the distribution with the higher mean will have more values that are larger than the mean, while the distribution with the lower mean will have more values that are smaller than the mean.

To sketch what these distributions might look like, let's assume that both distributions have a standard deviation of 1, but one distribution has a mean of 5 and the other has a mean of 7. We can use a normal distribution graph to represent each of these distributions.

The graph for the distribution with a mean of 5 would look like this:

```

     ^

     |

 0.4 |                      *

     |                   *  

 0.3 |                *

     |              *

 0.2 |           *

     |         *

 0.1 |      *

     |   *

   0 +-------------------------------->

            -3  -2  -1  0  1  2  3  4  5

```

The graph for the distribution with a mean of 7 would look like this:

```

     ^

     |

 0.4 |                                *

     |                            *  

 0.3 |                         *

     |                       *

 0.2 |                    *

     |                  *

 0.1 |               *

     |            *

   0 +-------------------------------->

            -3  -2  -1  0  1  2  3  4  5  6  7

```

As you can see, both distributions have the same shape, but the distribution with the higher mean is shifted to the right. The peak of the distribution with the higher mean is also higher than the peak of the distribution with the lower mean. This is because the higher mean indicates that the values in this distribution are generally larger than the values in the other distribution.

Use Newton's method to approximate a root of the equation cos(x^2 + 4) = x3 as follows: Let x1 = 2 be the initial approximation. The second approximation x2 is

Answers

The second approximation x2 using Newton's method is 1.725.


To use Newton's method, we need to find the derivative of the equation cos(x^2 + 4) - x^3, which is -2x sin(x^2 + 4) - 3x^2.

Using x1 = 2 as the initial approximation, we can then use the formula:
x2 = x1 - (f(x1)/f'(x1))
where f(x) = cos(x^2 + 4) - x^3 and f'(x) = -2x sin(x^2 + 4) - 3x^2.

Plugging in x1 = 2, we get:
x2 = 2 - ((cos(2^2 + 4) - 2^3) / (-2(2)sin(2^2 + 4) - 3(2)^2))
x2 = 2 - ((cos(8) - 8) / (-4sin(8) - 12))
x2 = 1.725 (rounded to three decimal places)


Newton's method is an iterative method that helps us approximate the roots of an equation. It involves using an initial approximation (x1) and finding the next approximation (x2) by using the formula x2 = x1 - (f(x1)/f'(x1)). This process is repeated until a desired level of accuracy is achieved.

In this case, we are using Newton's method to approximate a root of the equation cos(x^2 + 4) = x^3. By finding the derivative of the equation and using x1 = 2 as the initial approximation, we were able to calculate the second approximation x2 as 1.725.


Using Newton's method, we were able to find the second approximation x2 as 1.725 for the equation cos(x^2 + 4) = x^3 with an initial approximation x1 = 2. This iterative method allows us to approach the root of an equation with increasing accuracy until a desired level of precision is achieved.

To know more about derivative, visit;

https://brainly.com/question/23819325

#SPJ11

calculate the taylor polynomials 2 and 3 centered at =0 for the function ()=7tan().

Answers

The taylor polynomials for 2 is [tex]7 + 7x^2[/tex] and for 3 is [tex]7x + (7/3)x^3.[/tex]

What is the taylor polynomials for 2 and 3?

To find the Taylor polynomials for a function, we need to calculate the function's derivatives at the point where we want to center the polynomials. In this case, we want to center the polynomials at x=0.

First, let's find the first few derivatives of[tex]f(x) = 7tan(x):[/tex]

[tex]f(x) = 7tan(x)[/tex]

[tex]f'(x) = 7sec^2(x)[/tex]

[tex]f''(x) = 14sec^2(x)tan(x)[/tex]

[tex]f'''(x) = 14sec^2(x)(2tan^2(x) + 2)[/tex]

[tex]f''''(x) = 56sec^2(x)tan(x)(tan^2(x) + 1) + 56sec^4(x)[/tex]

To find the Taylor polynomials, we plug these derivatives into the Taylor series formula:

[tex]P_n(x) = f(0) + f'(0)x + (f''(0)x^2)/2! + ... + (f^n(0)x^n)/n![/tex]

For n=2:

[tex]P_2(x) = f(0) + f'(0)x + (f''(0)x^2)/2![/tex]

[tex]= 7tan(0) + 7sec^2(0)x + (14sec^2(0)tan(0)x^2)/2[/tex]

[tex]= 7 + 7x^2[/tex]

So the second-degree Taylor polynomial centered at x=0 for f(x) is [tex]P_2(x) = 7 + 7x^2.[/tex]

For n=3:

[tex]P_3(x) = f(0) + f'(0)x + (f''(0)x^2)/2! + (f'''(0)x^3)/3![/tex]

[tex]= 7tan(0) + 7sec^2(0)x + (14sec^2(0)tan(0)x^2)/2 + (14sec^2(0)(2tan^2(0) + 2)x^3)/6[/tex]

[tex]= 7x + (7/3)x^3[/tex]

So the third-degree Taylor polynomial centered at x=0 for f(x) is [tex]P_3(x) = 7x + (7/3)x^3.[/tex]

Learn more about polynomials

brainly.com/question/11536910

#SPJ11

. decrypt these messages encrypted using the shift cipher f(p) = (p 10) mod 26. a) cebboxnob xyg b) lo wi pbsoxn c) dswo pyb pex

Answers

"lo wi pbsoxn" decrypts to "be my mystery". "dswo pyb pex" decrypts to "time for fun".

To decrypt messages encrypted using the shift cipher f(p) = (p + 10) mod 26, we need to use the inverse function, which is given by g(c) = (c - 10) mod 26. Here, c represents the encrypted letter and p represents the corresponding plain letter.

a) To decrypt "cebboxnob xyg", we apply the inverse function g(c) to each letter:

c → g(c)

c → (2 - 10) mod 26 = 18 (S)

e → (4 - 10) mod 26 = 20 (U)

b → (1 - 10) mod 26 = 17 (R)

b → (1 - 10) mod 26 = 17 (R)

o → (14 - 10) mod 26 = 4 (E)

x → (23 - 10) mod 26 = 13 (N)

n → (13 - 10) mod 26 = 3 (D)

o → (14 - 10) mod 26 = 4 (E)

b → (1 - 10) mod 26 = 17 (R)

Therefore, "cebboxnob xyg" decrypts to "surrender now".

b) To decrypt "lo wi pbsoxn", we apply the inverse function g(c) to each letter:

l → (11 - 10) mod 26 = 1 (B)

o → (14 - 10) mod 26 = 4 (E)

w → (22 - 10) mod 26 = 12 (M)

i → (8 - 10) mod 26 = 24 (Y)

p → (15 - 10) mod 26 = 5 (F)

b → (1 - 10) mod 26 = 17 (R)

s → (18 - 10) mod 26 = 8 (I)

o → (14 - 10) mod 26 = 4 (E)

x → (23 - 10) mod 26 = 13 (N)

Therefore, "lo wi pbsoxn" decrypts to "be my mystery".

c) To decrypt "dswo pyb pex", we apply the inverse function g(c) to each letter:

d → (3 - 10) mod 26 = 19 (T)

s → (18 - 10) mod 26 = 8 (I)

w → (22 - 10) mod 26 = 12 (M)

o → (14 - 10) mod 26 = 4 (E)

p → (15 - 10) mod 26 = 5 (F)

y → (24 - 10) mod 26 = 14 (O)

b → (1 - 10) mod 26 = 17 (R)

p → (15 - 10) mod 26 = 5 (F)

e → (4 - 10) mod 26 = 20 (U)

x → (23 - 10) mod 26 = 13 (N)

Therefore, "dswo pyb pex" decrypts to "time for fun".

Learn more about mystery here

https://brainly.com/question/30091416

#SPJ11

Let Yi and Yz have the joint density function e-(Y1 Y2) f(y1' Yz) = Y1 > 0, Y2 elsewhere_ What is P(Y_ < 3, Y2 6)? (Round your answer to four decimal places:) (b) What is P(Y 1 Y2 7)? (Round your answer to four decimal places:)

Answers

P(Y₁ < 3, Y₂ > 6) is 0.0108 by integrating the given joint density function. P(Y₁ + Y₂ = 7) is 0.4472by integrating the same joint density function over the appropriate region.

To find P(Y₁ < 3, Y₂ > 6), we need to integrate the joint density function over the region defined by Y₁ < 3 and Y₂ > 6

P(Y₁ < 3, Y₂ > 6) = ∫∫[tex]e^{-(Y_1 Y_2)}[/tex] dY₁ dY₂, where the limits of integration are Y₁ from 0 to 3 and Y₂ from 6 to infinity.

Using the formula for the integral of exponential functions, we have:

P(Y₁ < 3, Y₂ > 6) =[tex]\int\limits^6_\infty[/tex][tex]\int\limits^0_3[/tex] [tex]e^{-(Y_1 Y_2)}[/tex]  dY₁ dY₂

=[tex]\int\limits^6_\infty[/tex] [-1/Y₂ [tex]e^{-(Y_1 Y_2)}[/tex] ] from 0 to 3 dY₂

=[tex]\int\limits^6_\infty[/tex] [(-1/3Y₂) + (1/Y₂[tex]e^{3Y_2}[/tex])] dY₂

= [(-1/3) ln(Y₂) - (1/9)[tex]e^{3Y_2}[/tex]] from 6 to infinity

= (1/3) ln(6) + (1/9)e¹⁸

≈ 0.0108

Therefore, P(Y₁ < 3, Y₂ > 6) ≈ 0.0108.

To find P(Y₁ + Y₂ = 7), we need to first determine the range of values for Y₂ that satisfy the equation. If we set Y₂ = 7 - Y₁, then Y₁ + Y₂ = 7, so we have:

P(Y₁ + Y₂ = 7) = P(Y₂ = 7 - Y₁)

We can then integrate the joint density function over the region defined by this range of values for Y₁ and Y₂:

P(Y₁ + Y₂ = 7) = ∫∫[tex]e^{-(Y_1 Y_2)}[/tex] dY₁ dY₂, where the limits of integration are Y₁ from 0 to 7 and Y₂ from 7 - Y₁ to infinity.

Using the substitution Y₂ = 7 - Y₁ and the formula for the integral of , we have

P(Y₁ + Y₂ = 7) = [tex]\int\limits^0_7[/tex] [tex]\int\limits^{ \infty} _{7-Y_1[/tex] [tex]e^{-(Y_1(7- Y_1)}[/tex]) dY₂ dY₁

= [tex]\int\limits^0_7[/tex] [tex]e^{7Y_1}[/tex]/49 - 1/7 dY₁

= (7/6)(e⁷/49 - 1)

≈ 0.4472

Therefore, P(Y₁ + Y₂ = 7) ≈ 0.4472.

To know more about integration:

https://brainly.com/question/31954835

#SPJ4

--The given question is incomplete, the complete question is given below " Let Y₁ and Y₂ have the joint density function

f(y₁,y₂) = {e^-(Y₁ Y₂)   Y₁ > 0, Y₂> 0

             {0,  elsewhere_

What is P(Y₁ < 3, Y₂>  6)? (Round your answer to four decimal places:) (b) What is P(Y₁+ Y₂= 7)? (Round your answer to four decimal places:)"--

Meryl needs to add enough water to 11 gallons of an 18% detergent solution to make a 12% detergent solution. Which equation can she use to find g, the number of gallons of water she should add? Original (Gallons) Added (Gallons) New (Gallons) Amount of Detergent 1. 98 0 Amount of Solution 11 g StartFraction 1. 98 Over 11 g EndFraction minus StartFraction 12 Over 100 EndFraction = 1 StartFraction 1. 98 Over 11 g EndFraction StartFraction 12 Over 100 EndFraction = 1 StartFraction 11 g Over 1. 98 EndFraction = StartFraction 12 Over 100 EndFraction StartFraction 1. 98 Over 11 g EndFraction = StartFraction 12 Over 100 EndFraction.

Answers

The final solution will be 11.16071428571429 gallons.Meryl needs to add enough water to 11 gallons of an 18% detergent solution to make a 12% detergent solution.

She can use the following equation to find the number of gallons of water she should add:

StartFraction 1. 98 Over 11 g EndFraction minus StartFraction 12 Over 100

EndFraction = 1StartFraction 1. 98 Over 11 g

EndFraction = StartFraction 12 Over 100 EndFraction + 1StartFraction 1. 98 Over 11 g

EndFraction = StartFraction 112 Over 100

EndFractionStartFraction 1. 98 Over 11 g

EndFraction = 1.12

Now, cross-multiply to solve for g:1

1g = 1.98/1.1211g = 1.767857142857143g = 0.1607142857142857

So, Meryl needs to add 0.1607142857142857 gallons of water to 11 gallons of an 18% detergent solution to make a 12% detergent solution. The final solution will be 11.16071428571429 gallons.

To know more about detergent solution visit:

https://brainly.com/question/31460481

#SPJ11

Given the surge function C(t) = 10t.e-0.5t, at t = 1, C(t) is: Select one: decreasing at a maximum increasing at an inflection point

Answers

At t = 1, the surge function C(t) is increasing and decreasing at an inflection point.

To determine the behavior of the surge function C(t) at t = 1, we need to analyze its first and second derivatives.

The first derivative of C(t) with respect to t is:

C'(t) = 10e^(-0.5t) - 5te^(-0.5t)

The second derivative of C(t) with respect to t is:

C''(t) = 2.5te^(-0.5t) - 10e^(-0.5t)

To find out whether C(t) is decreasing or increasing at t = 1, we need to evaluate the sign of C'(t) at t = 1. Plugging in t = 1, we get:

C'(1) = 10e^(-0.5) - 5e^(-0.5) = 5e^(-0.5) > 0

Since C'(1) is positive, we can conclude that C(t) is increasing at t = 1.

To determine whether C(t) is increasing at an inflection point or decreasing at a maximum, we need to evaluate the sign of C''(t) at t = 1. Plugging in t = 1, we get:

C''(1) = 2.5e^(-0.5) - 10e^(-0.5) = -7.5e^(-0.5) < 0

Since C''(1) is negative, we can conclude that C(t) is decreasing at an inflection point at t = 1.

In summary, at t = 1, the surge function C(t) is increasing and decreasing at an inflection point.

The fact that the second derivative is negative tells us that the function is concave down, meaning that its rate of increase is slowing down. Thus, even though C(t) is increasing at t = 1, it is doing so at a decreasing rate.

To know more about inflection point refer here :

https://brainly.com/question/31582579#

#SPJ11

Let A, B, and Αα denote subsets of a space X. Prove the following: (a) If ACB, then CB. (b) AUB-AU (c) UAa3υλα; give an example where equality fails.

Answers

(a) If [tex]$A$[/tex] is a subset of B and B is a subset of C, then A is a subset of C.

(b) [tex]A\cup B\setminus A = B\setminus A$.[/tex]

(c) [tex]A\cup\bigcup_{i=1}^n a_i = \bigcup_{i=1}^n a_i$, but equality may fail for $n=\infty$.[/tex]

(a) If [tex]A\subseteq B$, then $C\cap A\subseteq C\cap B$.[/tex]

Therefore, if [tex]A\subseteq B$, then $C\cap B\subseteq C\cap A$[/tex] implies that[tex]$C\cap A=C\cap B$.[/tex]

Hence, if [tex]A\subseteq B$, then $C\cap A\subseteq C\cap B$[/tex] and [tex]C\cap B\subseteq C\cap A$,[/tex] which together imply that[tex]$C\cap A=C\cap B$. So if $A\subseteq B$,[/tex] then[tex]$C\cap A=C\cap B$[/tex]  implies that [tex]C\subseteq B$.[/tex]

(b) We have [tex]A\cup B=A\cup (B\setminus A)$,[/tex] so [tex]$A\cup B\setminus A=(A\cup B)\setminus A=B$[/tex] by the set-theoretic identity [tex]A\cup (B\setminus A)=(A\cup B)\setminus A$.[/tex]

Therefore, [tex]A\cup B\setminus A=B$.[/tex]

(c) Let [tex]X={1,2,3}$, $A={1}$, $a_1={1}$, $a_2={2}$, $a_3={3}$,[/tex] and [tex]a_4={2,3}$.[/tex]

Then[tex]$A\subseteq\bigcup_{i=1}^4 a_i$ and $\bigcup_{i=1}^3 a_i\not\subseteq\bigcup_{i=1}^4 a_i$.[/tex]

Therefore,[tex]$A\cup\bigcup_{i=1}^3 a_i=\bigcup_{i=1}^4 a_i$[/tex] and [tex]A\cup\bigcup_{i=1}^4 a_i\neq\bigcup_{i=1}^4 a_i.[/tex]

For similar question on subset.

https://brainly.com/question/30799313

#SPJ11

(a)If ACB, then CB  is a subset of C.

(b) AUB-AU is not a subset of AUB.

(c) UAa3υλα equality fails in this case.

(a) If ACB, then CB:
Let x be an element of C. If x is in A, then it is also in B (since ACB), and therefore in C (since B is a subset of C). If x is not in A, then it is still in C (since C is a superset of B), and therefore in B (since ACB). In either case, x is in CB, so CB is a subset of C.

(b) AUB-AU:
Let x be an element of AUB. If x is in A, then it is not in AU (since it is already in A), and therefore it is in AUB-AU. If x is not in A, then it must be in B (since it is in AUB), and therefore it is not in AU (since it is not in A), and therefore it is in AUB-AU. Thus, every element of AUB is also in AUB-AU, and therefore AUB-AU is a subset of AUB. On the other hand, if x is in AU but not in AUB, then it must be in U (since it is not in A or B), which contradicts the assumption that A and B are subsets of X. Therefore, AUB-AU is not a subset of AUB.

(c) UAa3υλα; give an example where equality fails:
Let X = {1,2,3}, A = {1}, B = {2}, and Αα = {1,3}. Then UAa3υλα = {1,2,3} = X, but AUB = {1,2} and AU = {1}, so AUB-AU = {2} is not equal to X. Therefore, equality fails in this case.
Visit here to learn more about subset:

brainly.com/question/24138395

#SPJ11

Other Questions
Crime is _______-_______ because criminals will react selectively to the characteristics of an individual criminal act. A.offender-specific B.offense-specific C. reward- specific D. risk-specific PLEASE HURRY 20 POINTS I NEED THIS REALLY REALLY SOONTo calculate the hourly revenue from the buffet after x $1 increases, multiply the price paid by each customer and the average number of customers per hour. Create an inequality in standard form that represents the restaurant owners desired revenue. Type the correct answer in each box. Use numerals instead of words. blank x^2 blank + x + blank The two silos shown at the right store seed. Container C contains a preservative coating that is sprayed on the seeds as they enter the silos.silos2silosa) It takes 10 hours to fill silos A and B with coated seed. At what rate, in cubic feet per minute, are the silos being filled?Choose: 1061 ft3/min 636 ft3/min 106 ft3/min 64 ft3/minb) The preservative coating in container C costs $95.85 per cubic yard. One full container will treat 5,000 cubic feet of seed. How much will the preservative cost to treat all of the seeds if silos A and B are full? if 1,800,000 nm of force is on the carrier plate, how much force is carried through each planetary gear? there are 5 planet gears. The researchers want to use narrow-spectrum LEDs to make their lamp more efficient. Assuming that the energy of a photon absorbed by porfirmer is transferred without loss to oxygen, what wavelength of light should the researchers select? (Note: Planck's constant is 6. 626 x 10-34 Js)A. 1000 nm B. 1250 nm C. 2500 nm D. 3000 nm i forgot to pay my credit card bill one month. for how long will that payment information show up on my credit report? a focal point for kindergarten is the use of written numerals to: Agency problems would be least likely to arise a) in sole proprietorships. b) in partnerships with less than 3 partners. c) in partnerships with 3 or more partners. d) in for profit corporations. e) in not for profit corporations. A car starting from rest accelerates uniformly at 5. 0 m/s2. How much time elapses for it to reach a speed of 32 m/s? Agent burt engle is chasing some more "bad" dudes and dudettes, when he notices his fuel gauge is running close to empty. he is approaching a hill (that makes an incline of 30 degrees with the horizontal) whose height is 49 m when suddenly, while travelling at 32 m/s, the car stalls on him. he desperately tries to re-start the car, only to fail miserably. if the average resistance force is 300 n, and the car has a mass of 800 kg, will agent burt engle make it to the crest of the hill (or will he have to call agent 001 for some back up)? FILL IN THE BLANK _____ is the human psychological propensity to search only for evidence that confirms a claim (especially claims we agree with), while neglecting looking for disconfirming evidence Why did kings gain power under the rise of nation-states? where is the pelvis located Mark any/all combinations that will produce a precipitate. Aqueous solutions of iron (III) chloride and ammonium iodide Aqueous solutions of potassium carbonate and magnesium acetate Aqueous solutions of lithium nitrate and sodium fluoride Loueous solutions of calcium nitrate and sodium sulfate When you mix two liquids, the reaction vessel suddenly feels cold. What does this observation suggest? Mark any/all statements that apply. An exothermic reaction has occurred. An endothermic reaction has occurred. The chemicals released cold. The chemicals took in energy from the surroundings. A gas was produced Question 2 1 pts You react propane (C3Hz) with O2 gas. Mark any/all that apply. H2O is a product of the reaction if we live in an m&m world with no taxes, but rd increases with leverage, will wacc also increase with leverage? For which activities can an administrator use DBCA? (Choose two) a. Configuring Databases b. Upgrading Databases c. Installing Database Software d. Creating Databases e. Monitoring Databases For all sport and entertainment organizations, ______________ financing may include land use, tax abatements, direct facility financing, and infrastructure improvements determine the type of stress that caused the faulting. choose one: a. e-w compression b. n-s tension c. n-s compression d. e-w tension As a part of the national 9/11 day of service and remembrance, a local school board instituted a day of service where high school students participate in community service projects in lieu of attending school. the town is very small, so all the service projects are faith-based and run primarily by the local baptist church. the preacher hosted a breakfast for the students where he delivered a non-denominational invocation to solemnize the event. a group of three students refused to participate on religious grounds and were given in-school suspension that day for failure to cooperate. the guidance counselor supervising the students noticed they appeared stoned and called the local police. when the police arrived, the students were interviewed and admitted they smoked marijuana before school and had more in their possession. the students explained that they were cantheists which is a religion that considers cannabis is to be a sacrament, not unlike communion in the christian faith. the cornerstone of the religion is that the cultivation and use of marijuana is a human right provided by their supreme being and protected by the constitution. the students are arrested and you are hired as their defense attorney. identify all legal issues relevant to your clients. If I had 120 longhorns approximately how much money would I get for them in Texas where they were worth $1-2?