The closed feedwater heater of a regenerative Rankine cycle is to heat 7000 kPa feedwater from 2608C to a saturated liquid. The turbine supplies bleed steam at 6000 kPa and 3258C to this unit. This steam is condensed to a saturated liquid before entering the pump. Calculate the amount of bleed steam required to heat 1 kg of feedwater in this unit.

Answers

Answer 1

Answer:

the amount of bleed steam required to heat 1 kg of feedwater in this unit is 0.078 kg/s

Explanation:

Given that:

Pressure of the feed water = 7000 kPa

Temperature of the closed feedwater heater = 260 ° C

Pressure of of the turbine = 6000 kPa

Temperature of the turbine = 325 ° C

The  objective is to calculate the amount of bleed steam required to heat 1 kg of feedwater in this unit.

From the table A-4 of saturated water temperature table at temperature  260° C at state 1 ;

Enthalpies:

[tex]h_1 = h_f = 1134.8 \ kJ/kg[/tex]

From table A-6 superheated water at state 3 ; the value of the enthalpy relating to the pressure of the turbine at 6000 kPa and temperature of 325° C  is obtained by the interpolating the temperature between 300 ° C and 350 ° C

At 300° C; enthalpy = 2885.6 kJ/kg

At 325° C. enthalpy = 3043.9 kJ/kg

Thus;

[tex]\dfrac{325-300}{350-300}=\dfrac{h_{325^0}-{h_{300^0}}}{{h_{350^0}}- {h_{300^0}}}[/tex]

[tex]\dfrac{325-300}{350-300}=\dfrac{h_{325^0}-2885.6}{3043.9-2885.6 }}[/tex]

[tex]\dfrac{25}{50}=\dfrac{h_{325^0}-2885.6}{3043.9-2885.6 }}[/tex]

[tex]h_{325^0} = 2885.6 + \dfrac{25}{50}({3043.9-2885.6 )[/tex]

[tex]h_{325^0} = 2885.6 + 0.5({3043.9-2885.6 )[/tex]

[tex]h_{325^0} =2964.75 \ kJ/kg[/tex]

At pressure  of 7000 kPa at state 6; we obtain the enthalpies corresponding to the pressure at table A-5 of the saturated water pressure tables.

[tex]h_6 = h_f = 1267.5 \ kJ/kg[/tex]

From state 4 ;we obtain the specific volume corresponding to the pressure of 6000 kPa at table A-5 of the saturated water pressure tables.

[tex]v_4 = v_f = 0.001319\ m^3 /kg[/tex]

However; the specific work pump can be determined by using the formula;

[tex]W_p = v_4 (P_5-P_4)[/tex]

where;

[tex]P_4[/tex] = pressure at state 4

[tex]P_5[/tex] = pressure at state 5

[tex]W_p = 0.001319 (7000-6000)[/tex]

[tex]W_p = 0.001319 (1000)[/tex]

[tex]W_p =1.319 \ kJ/kg[/tex]

Using the energy balance equation of the closed feedwater heater to calculate the amount of bleed steam required to heat 1 kg of feed water ; we have:

[tex]E_{in} = E_{out} \\ \\ m_1h_1 +m_3h_3 + m_3W_p = (m_1+m_3)h_6[/tex]

where;

[tex]m_1 = 1 \ kg[/tex]

Replacing our other value as derived above into the energy balance equation ; we have:

[tex]1 \times 1134.8 +m_3 \times 2964.75 + m_3 \times 1.319 = (1+m_3)\times 1267.5[/tex]

[tex]1134.8 + 2966.069 \ m_3 = 1267.5 + 1267.5m_3[/tex]

Collect like terms

[tex]2966.069 \ m_3- 1267.5m_3 = 1267.5-1134.8[/tex]

[tex]1698.569 \ m_3 =132.7[/tex]

[tex]\ m_3 = \dfrac{132.7}{1698.569}[/tex]

[tex]\mathbf{ m_3 = 0.078 \ kg/s}[/tex]

Hence; the amount of bleed steam required to heat 1 kg of feedwater in this unit is 0.078 kg/s


Related Questions

Determine whether or not it is possible to cold work steel so as to give a minimum Brinell hardness of 225 and at the same time have a ductility of at least 12%EL. Justify your decision

Answers

Answer:

First we determine the tensile strength using the equation;

Tₓ (MPa) = 3.45 × HB

{ Tₓ is tensile strength, HB is Brinell hardness = 225 }

therefore

Tₓ = 3.45 × 225

Tₓ = 775 Mpa

From Conclusions, It is stated that in order to achieve a tensile strength of 775 MPa for a steel, the percentage of the cold work should be 10

When the percentage of cold work for steel is up to 10,the ductility is 16% EL.

And 16% EL is greater than 12% EL

Therefore, it is possible to cold work steel to a given minimum Brinell hardness of 225 and at the same time a ductility of at least 12% EL

For each of the following stacking sequences found in FCC metals, cite the type of planar defect that exists:

a. . . . A B C A B C B A C B A . . .
b. . . . A B C A B C B C A B C . . .

Copy the stacking sequences and indicate the position(s) of planar defect(s) with a vertical dashed line.

Answers

Answer:

a) The planar defect that exists is twin boundary defect.

b) The planar defect that exists is the stacking fault.

Explanation:      

I am using bold and underline instead of a vertical line.

a. A B C A B C B A C B A

In this stacking sequence, the planar defect that occurs is twin boundary defect because the stacking sequence at one side of the bold and underlined part of the sequence is the mirror image or reflection of the stacking sequence on the other side. This shows twinning. Hence it is the twin boundary inter facial defect.

b. A B C A B C  B C A B C

In this stacking sequence the planar defect that occurs is which occurs is stacking fault defect. This underlined region is HCP like sequence. Here BC is the extra plane hence resulting in the stacking fault defect. The fcc stacking sequence with no defects should be A B C A B C A B C A B C. So in the above stacking sequence we can see that A is missing in the sequence. Instead BC is the defect or extra plane. So this disordering of the sequence results in stacking fault defect.

An example of a transient analysis involving the 1st law of thermodynamics and conservation of mass is the filling of a compressed air tank. Assume that an air tank is being filled using a compressor to a pressure of 5 atm, and that it is being fed with air at a temperature of 25°C and 1 atm pressure. The compression process is adiabatic. Will the temperature of the air in the tank when it is done being filled i.e. once the pressure in the tank reaches 5 atm), be greater than, equal to, or less that the temperature of the 25°C air feeding the compressor?
A. Greater than 25°C
B. Unable to determine
C. Same as 25°C
D. Less than 25°C

Answers

Answer:

The temperature will be greater than 25°C

Explanation:

In an adiabatic process, heat is not transferred to or from the boundary of the system. The gain or loss of internal heat energy is solely from the work done on the system, or work done by the system. The work done on the system by the environment adds heat to the system, and work done by the system on its environment takes away heat from the system.

mathematically

Change in the internal energy of a system ΔU = ΔQ + ΔW

in an adiabatic process, ΔQ = 0

therefore

ΔU = ΔW

where ΔQ is the change in heat into the system

ΔW is the work done by or done on the system

when work is done on the system, it is conventionally negative, and vice versa.

also W = pΔv

where p is the pressure, and

Δv = change in volume of the system.

In this case, work is done on the gas by compressing it from an initial volume to the new volume of the cylinder. The result is that the temperature of the gas will rise above the initial temperature of 25°C

A 15.00 mL sample of a solution of H2SO4 of unknown concentration was titrated with 0.3200M NaOH. the titration required 21.30 mL of the base. Assuming complete neutralization of the acid,
1) What was the normality of the acid solution?
2) What was the molarity of the acid solution?

Answers

Answer:

a. 0.4544 N

b. [tex]5.112 \times 10^{-5 M}[/tex]

Explanation:

For computing the normality and molarity of the acid solution first we need to do the following calculations

The balanced reaction

[tex]H_2SO_4 + 2NaOH = Na_2SO_4 + 2H_2O[/tex]

[tex]NaOH\ Mass = Normality \times equivalent\ weight \times\ volume[/tex]

[tex]= 0.3200 \times 40 g \times 21.30 mL \times 1L/1000mL[/tex]

= 0.27264 g

[tex]NaOH\ mass = \frac{mass}{molecular\ weight}[/tex]

[tex]= \frac{0.27264\ g}{40g/mol}[/tex]

= 0.006816 mol

Now

Moles of [tex]H_2SO_4[/tex] needed  is

[tex]= \frac{0.006816}{2}[/tex]

= 0.003408 mol

[tex]Mass\ of\ H_2SO_4 = moles \times molecular\ weight[/tex]

[tex]= 0.003408\ mol \times 98g/mol[/tex]

= 0.333984 g

Now based on the above calculation

a. Normality of acid is

[tex]= \frac{acid\ mass}{equivalent\ weight \times volume}[/tex]

[tex]= \frac{0.333984 g}{49 \times 0.015}[/tex]

= 0.4544 N

b. And, the acid solution molarity is

[tex]= \frac{moles}{Volume}[/tex]

[tex]= \frac{0.003408 mol}{15\ mL \times 1L/1000\ mL}[/tex]

= 0.00005112

=[tex]5.112 \times 10^{-5 M}[/tex]

We simply applied the above formulas

The volume of the 0.3200 M, NaOH required to neutralize the H₂SO₄, is

21.30 mL, which gives the following acid solution approximate values;

1) Normality of the acid solution is 0.4544 N

2) The molarity of the acid is 0.2272

How can the normality, molarity of the solution be found?

Molarity of the NaOH = 0.3200 M

Volume of NaOH required = 21.30 mL

1) The normality of the acid solution is found as follows;

The chemical reaction is presented as follows;

H₂SO₄(aq) + 2NaOH (aq) → Na₂SO₄ (aq) + H₂O

Number of moles of NaOH in the reaction is found as follows;

[tex]n = \dfrac{21.30}{1,000} \times 0.3200 \, M = \mathbf{0.006816 \, M}[/tex]

Therefore;

The number of moles of H₂SO₄ = 0.006816 M ÷ 2 = 0.003408 M

[tex]Normality = \mathbf{ \dfrac{Mass \ of \, Acid \ in \ reaction}{Equivalent \ mass \times Volume \ of \ soltute}}[/tex]

Which gives;

[tex]Normality = \dfrac{ 98 \times 0.003408 }{49 \times 0.015} = \mathbf{0.4544}[/tex]

The normality of the acid solution, H₂SO₄(aq), N ≈ 0.4544

2) The molarity is found as follows;

[tex]Molarity = \dfrac{0.003408 \, moles}{0.015 \, L} = \mathbf{0.2272 \, M}[/tex]

The molarity of the acid solution is 0.2272 M

Learn more about the normality and the molarity of a solution here:

https://brainly.com/question/6532653

https://brainly.com/question/14112872

Compute the volume percent of graphite, VGr, in a 3.2 wt% C cast iron, assuming that all the carbon exists as the graphite phase. Assume densities of 7.9 and 2.3 g/cm3 for ferrite and graphite, respectively.

Answers

Answer:

The volume percentage of graphite is 10.197 per cent.

Explanation:

The volume percent of graphite is the ratio of the volume occupied by the graphite phase to the volume occupied by the graphite and ferrite phases. The weight percent in the cast iron is 3.2 wt% (graphite) and 96.8 wt% (ferrite). The volume percentage of graphite is:

[tex]\%V_{gr} = \frac{V_{gr}}{V_{gr}+V_{fe}} \times 100\,\%[/tex]

Where:

[tex]V_{gr}[/tex] - Volume occupied by the graphite phase, measured in cubic centimeters.

[tex]V_{fe}[/tex] - Volume occupied by the graphite phase, measured in cubic centimeters.

The expression is expanded by using the definition of density and subsequently simplified:

[tex]\%V_{gr} = \frac{\frac{m_{gr}}{\rho_{gr}} }{\frac{m_{gr}}{\rho_{gr}}+\frac{m_{fe}}{\rho_{fe}}}\times 100\,\%[/tex]

Where:

[tex]m_{fe}[/tex], [tex]m_{gr}[/tex] - Masses of the ferrite and graphite phases, measured in grams.

[tex]\rho_{fe}, \rho_{gr}[/tex] - Densities of the ferrite and graphite phases, measured in grams per cubic centimeter.

[tex]\%V_{gr} = \frac{1}{1+\frac{\frac{m_{fe}}{\rho_{fe}} }{\frac{m_{gr}}{\rho_{gr}} } }\times 100\,\%[/tex]

[tex]\%V_{gr} = \frac{1}{1 + \left(\frac{\rho_{gr}}{\rho_{fe}} \right)\cdot\left(\frac{m_{fe}}{m_{gr}} \right)} \times 100\,\%[/tex]

If [tex]\rho_{gr} = 2.3\,\frac{g}{cm^{3}}[/tex], [tex]\rho_{fe} = 7.9\,\frac{g}{cm^{3}}[/tex], [tex]m_{gr} = 3.2\,g[/tex] and [tex]m_{fe} = 96.8\,g[/tex], the volume percentage of graphite is:

[tex]\%V_{gr} = \frac{1}{1+\left(\frac{2.3\,\frac{g}{cm^{3}} }{7.9\,\frac{g}{cm^{3}} } \right)\cdot \left(\frac{96.8\,g}{3.2\,g} \right)} \times 100\,\%[/tex]

[tex]\%V_{gr} = 10.197\,\%V[/tex]

The volume percentage of graphite is 10.197 per cent.

Following are the solution to the given points:

[tex]\to C_{Gr} = 100\\\\ \to C_{\alpha}= 0[/tex]From [tex]Fe-F_{\frac{e}{3}} c[/tex] diagram.  

[tex]\to W_{\alpha} =\frac{C_{Gr}-C_{o}}{C_{Gr}-C_{\alpha}}[/tex]

           [tex]= \frac{100-3.6}{100-0} \\\\= \frac{100-3.6}{100} \\\\= \frac{96.4}{100} \\\\=0.964[/tex]

Calculating the weight fraction of graphite:  

[tex]\to W_{Gr}=\frac{C_0 - c_d}{C_{Gr} -c_d}[/tex]

            [tex]= \frac{3.6-0}{100-0} \\\\ = \frac{3.6}{100} \\\\= 0.036[/tex]

Calculating the volume percent of graphite:

[tex]\to V_{Gr}=\frac{\frac{W_{Gr}}{P_{Gr}}}{\frac{w_{\alpha}}{P_{\alpha}}+ \frac{W_{Gr}}{P_{Gr}}}[/tex]

           [tex]=\frac{\frac{0.036}{2.3}}{\frac{0.964}{7.9}+\frac{0.036}{2.3}}\\\\=0.11368 \times 100\%\\\\=11.368\%[/tex]

Therefore, the final answer is "0.964, 0.036, and 11.368%"

Learn more Graphite:

brainly.com/question/4770832

10 kg/s Propane at 10 bar and 20 C is directed to an adiabatic rigid mixer and is mixed with 20 kg/s Propane at 10 bar and 40 C. What is the final volumetric flow rate in (m3/s) of the resulting mixture.

Answers

Answer:

The final volumetric flow rate will be "76.4 m³/s".

Explanation:

The given values are:

[tex]\dot{m_{1}}=10 \ kg/s[/tex]

[tex]\dot{m_{2}}=20 \ Kg/s[/tex]

[tex]T_{1}=293 \ K[/tex]

[tex]T_{2}=313 \ K[/tex]

[tex]P_{1}=P_{2}=P_{3}=10 \ bar[/tex]

As we know,

⇒  [tex]E_{in}=E_{out}[/tex]

[tex]\dot{m_{1}}h_{1}+\dot{m_{2}}h_{2}=\dot{m_{3}}h_{3}[/tex]

[tex]e_{1}\dot{v_{1}}h_{1}+e_{2}\dot{v_{2}}h_{2}=e_{3}\dot{v_{3}}h_{3}[/tex]

[tex]\frac{P_{1}}{RP_{1}}\dot{v_{1}} \ C_{p}T_{1}+ \frac{P_{2}}{RP_{2}}\dot{v_{2}} \ C_{p}T_{1}=\frac{P_{3}}{RP_{3}}\dot{v_{3}} \ C_{p}T_{3}[/tex]

⇒  [tex]\dot{v_{3}}=\dot{v_{1}}+\dot{v_{2}}[/tex]

         [tex]=\frac{\dot{m_{1}}}{e_{1}}+\frac{\dot{m_{2}}}{e_{2}}[/tex]

On substituting the values, we get

         [tex]=\frac{10}{10\times 10^5}\times 8314\times 293+\frac{20\times 8314\times 313}{10\times 10^5}[/tex]

         [tex]=76.4 \ m^3/s[/tex]

which solution causes cells to shrink

Answers

Answer: Hypertonic

Explain: a hypertonic solution has increased solute and a net movement of water outside causing the cell to shrink. A hypotonic has decreased solute concentration, and a net movement of water inside the cell, causing swelling or breakage.

It is to be noted that a hypertonic solution have the capacity to make cells to shrink.

What happens in a hypertonic solution?

In a hypertonic solution, the concentration of solutes (e.g., salts, sugars) outside the cell is higher than inside the cell.

As a result, water moves out of the cell through osmosis, trying to equalize the concentration, causing the cell to lose water and shrink.

This process is commonly observed in biology when examining the effect of different solutions on cells, such as in red blood cells or plant cells.

Learn more about hypertonic solution at:

https://brainly.com/question/4237735

#SPJ6

For a bolted assembly with six bolts, the stiffness of each bolt is kb=Mlbf/in and the stiffness of the members is km=12Mlbf/in. An external load of 80 kips is applied to the entire joint. Assume the load is equally distributed to all the bolts. It has been determined to use 1/2 in- 13 UNC grade 8 bolts with rolled threads. Assume the bolts are preloaded to 75% of the proof load. Clearly state any assumptions.
(a) Determine the yielding factor of safety,
(b) Determine the overload factor of safety,
(c) Determine the factor of safety baserd on joint seperation.

Answers

Answer:

nP  ≈ 4.9 nL =  1.50

Explanation:

GIVEN DATA

external load applied (p) = 85 kips

bolt stiffness ( Kb ) = 3(10^6) Ibf / in

Member stiffness (Km) = 12(10^6) Ibf / in

Diameter of bolts ( d ) = 1/2 in - 13 UNC grade 8

Number of bolts = 6

assumptions

for unified screw threads UNC and UNF

tensile stress area ( A ) = 0.1419 in^2

SAE specifications for steel bolts for grade 8

we have

Minimum proff strength ( Sp) = 120 kpsi

Minimum tensile strength (St) = 150 Kpsi

Load Bolt (p) = external load / number of bolts = 85 / 6 = 14.17 kips

Given the following values

Fi = 75%* Sp*At = (0.75*120*0.1419 ) = 12.771 kip

Preload stress

αi = 0.75Sp = 0.75 * 120 = 90 kpsi

stiffness constant

C = [tex]\frac{Kb}{Kb + Km}[/tex]  = [tex]\frac{3}{3+2}[/tex] = 0.2

A) yielding factor of safety

nP = [tex]\frac{sPAt}{Cp + Fi}[/tex] = [tex]\frac{120* 0.1419}{0.2*14.17 + 12.771}[/tex]

nP = 77.028 / 15.605 = 4.94 ≈ 4.9

B) Determine the overload factor safety

[tex]nL = \frac{SpAt - Fi}{CP}[/tex] = ( 120 * 0.1419) - 12.771 / 0.2 * 14.17

= 17.028 - 12.771 / 2.834

= 1.50

Commutation is the process of converting the ac voltages and currents in the rotor of a dc machine to dc voltages and currents at its terminals. True False

Answers

Answer:

false

Explanation:

the changing of a prisoner sentence or another penalty to another less severe

why is the peak value of the rectified output less than the peak value of the ac input and by how much g

Answers

Answer:

The Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.

Explanation:

This is what we called HALF WAVE RECTIFIER in which the Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.

Therefore this is the formula for Half wave rectifier

Vrms = Vm/2 and Vdc

= Vm/π:

Where,

Vrms = rms value of input

Vdc = Average value of input

Vm = peak value of output

Hence, half wave rectifier is a rectifier which allows one half-cycle of an AC voltage waveform to pass which inturn block the other half-cycle which is why this type of rectifiers are often been used to help convert AC voltage to a DC voltage, because they only require a single diode to inorder to construct.

1. The sine rule is used when we are given either a) two angles and one side, or b) two sides and a non-included angle.

i. True
ii. False

2. The cosine rule is used when we are given either a) three sides or b) two sides and the included angle.

i. True
ii. False

Answers

Answer:

A. Yes

B. Yes

Explanation:

We want to evaluate the validity of the given assertions.

1. The first statement is true

The sine rule stipulates that the ratio of a side and the sine of the angle facing the side is a constant for all sides of the triangle.

Hence, to use it, it’s either we have two sides and an angle and we are tasked with calculating the value of the non given side

Or

We have two angles and a side and we want to calculate the value of the side provided we have the angle facing this side in question.

For notation purposes;

We can express the it for a triangle having three sides a, b, c and angles A,B, C with each lower case letter being the side that faces its corresponding big letter angles

a/Sin A = b/Sin B = c/Sin C

2. The cosine rule looks like the Pythagoras’s theorem in notation but has a subtraction extension that multiplies two times the product of the other two sides and the cosine of the angle facing the side we want to calculate

So let’s say we want to calculate the side a in a triangle of sides a, b , c and we have the angle facing the side A

That would be;

a^2 = b^2 + c^2 -2bcCosA

So yes, the cosine rule can be used for the scenario above

For a fluid flowing through a pipe assuming that pressure drop per unit length of pipe (P/L) depends on the diameter of the pipe , the velocity of fluid, the density of fluid and the viscosity of the fluid. Show that = ∅ ൬ ൰

Answers

Answer:

Explanation:

La vaca

El pato

One kg of an idea gas is contained in one side of a well-insulated vessel at 800 kPa. The other side of the vessel is under vacuum. The two sides are separated by a piston that is initially held in place by the pins. The pins are removed and the gas suddenly expands until it hits the stops. What happens to the internal energy of the gas?
a. internal energy goes up
b. internal energy goes down
c. internal energy stays the same
d. we need to know the volumes to make the calculation

Answers

Answer:

Option C = internal energy stays the same.

Explanation:

The internal energy will remain the same or unchanged because this question has to do with a concept in physics or classical chemistry (in thermodynamics) known as Free expansion.

So, the internal energy will be equals to the multiplication of the change in temperature, the heat capacity (keeping volume constant) and the number of moles. And in free expansion the internal energy is ZERO/UNCHANGED.

Where, the internal energy, ∆U = 0 =quantity of heat, q - work,w.

The amount of heat,q = Work,w.

In the concept of free expansion the only thing that changes is the volume.

Solid solution strengthening is achieved byGroup of answer choicesstrain hardening restricting the dislocation motion increasing the dislocation motion increasing the grain boundary g

Answers

Answer:

B. restricting the dislocation motion

Explanation:

Solid solution strengthening is a type of alloying that is carried out by the addition of the atoms of the element used for the alloying to the crystallized lattice structure of the base metal, which the metal that would be strengthened. The purpose of this act is to increase the strength of metals. It actually works by impeding or restricting the motion in the crystal lattice structure of metals thus making them more difficult to deform.

The solute atoms used for strengthening could be interstitial or substitutional. The interstitial solute atoms work by moving in between the space in the atoms of the base metal while the substitutional solute atoms make a replacement with the solvent atoms in the base metal.

Consider a double-pipe counter-flow heat exchanger. In order to enhance its heat transfer, the length of the heat exchanger is doubled. Will the effectiveness of the exchanger double?

Answers

Answer:

effectiveness of the heat exchanger will not be double when the length of the heat exchanger is doubled.

Because effectiveness depends on NTU and not necessarily the length of the heat exchanger

I2 + KOH = KIO3 + KI + H2O Marque la(s) respuesta(s) falsas: La suma de coeficientes mínimos del agua y el agente reductor es 6 El KI es la forma reducida El KOH es el agente reductor La suma de electrones transferidos más el coeficiente mínimo del agua suman 16 La relación entre el agente oxidante y el agente reductor es 1

Answers

Answer:

Las declaraciones falsas incluyen

- El KOH es el agente reductor.

- La suma de electrones transferidos más el coeficiente mínimo de agua suman 16.

Todas las otras declaraciones son ciertas.

The false statements include

- The KOH is the reducing agent.

- The sum of transferred electrons plus the minimum coefficient of water add up to 16.

All the other statements are true.

Explanation:

Es evidente que esta es una reacción redox en presencia de medio básico. Entonces, equilibraremos esta reacción redox en pasos. I₂ + KOH → KIO₃ + KI + H₂O

Paso 1 Eliminar los iones espectadores; Estos son los iones que aparecen en ambos lados de la reacción. Es evidente que solo el ion de potasio (K⁺) es el ion espectador de esta reacción.

I₂ + OH⁻ → IO₃⁻ + I⁻ + H₂O

Paso 2

Separamos la reacción en las medias reacciones de oxidación y reductina. La oxidación es la pérdida de electrones que conduce a un aumento del número de oxidación del ion, mientras que la reducción es la ganancia de elecrones que conduce a una disminución en el número de oxidación del ion. También es evidente que es el gas de yodo el que se reduce y oxida para esta reacción.

El gas de yodo se reduce a I⁻ (el número de oxidación se reduce de 0 a -1) y el gas de yodo se oxida a IO₃⁻ (el número de oxidación de yodo aumenta de 0 en gas de yodo a +5 en IO₃⁻)

Reducción media reacción

I₂ → I⁻

Media reacción de oxidación

I₂ + OH⁻ → IO₃⁻ + H₂O

Paso 3

Equilibramos las medias reacciones y agregamos los respectivos electrones transferidos

Reducción media reacción

I₂ → 2I⁻

I₂ + 2e⁻ → 2I⁻

Media reacción de oxidación

I₂ + 12OH⁻ → 2IO₃⁻ + 6H₂O

I₂ + 12OH⁻ → 2IO₃⁻ + 6H₂O + 10e⁻

Paso 4

Balancee el número de electrones en las dos medias reacciones

[I₂ + 2e⁻ → 2I⁻] × 5

[I₂ + 12OH⁻ → 2IO₃⁻ + 6H₂O + 10e⁻] × 1

5I₂ + 10e⁻ → 10I⁻

I₂ + 12OH⁻ → 2IO₃⁻ + 6H₂O + 10e⁻

Paso 5

Agregue las dos medias reacciones y elimine cualquier especie que aparezca en ambos lados

5I₂ + 10e⁻ + I₂ + 12OH⁻ → 10I⁻ + 2IO₃⁻ + 6H₂O + 10e⁻

Entonces, eliminamos los 10 electrones que fueron transferidos en la reacción balanceada

6I₂ + 12OH⁻ → 10I⁻ + 2IO₃⁻ + 6H₂O

Paso 6

Reintroducimos la especie eliminada desde el principio (el ion potasio)

6I₂ + 12KOH → 10KI + 2KIO₃ + 6H₂O

Los coeficientes mínimos son entonces

3I₂ + 6KOH → 5KI + KIO₃ + 3H₂O

Luego verificamos cada una de las declaraciones proporcionadas para elegir las falsas.

- La suma de los coeficientes mínimos del agua y el agente reductor es 6.

El gas yodo es el agente reductor y oxidante. Coeficiente mínimo de agua y gas de yodo = 3 + 3 = 6 Esta afirmación es cierta.

- El KI es la forma reductora KI resulta de la semirreacción de reducción.

Por lo tanto, es la forma reducida del gas de yodo. Esta afirmación es cierta. - El KOH es el agente reductor. KOH no es el agente reductor. Esta afirmación es falsa.

- La suma de los electrones transferidos más el coeficiente mínimo de agua suman 16.

Electrones transferidos = 10

Coeficiente mínimo de agua = 3

Suma = 13 y no 16.

Esta afirmación es falsa.

- La proporción del agente oxidante y el agente reductor es 1.

Dado que el gas yodo es el agente reductor y oxidante, la proporción de estos dos es verdaderamente 1. Esta afirmación es cierta.

¡¡¡Espero que esto ayude!!!

Which of the following reduces friction in an engine A)wear B)drag C)motor oil D)defractionation

Answers

It is motor oil, as oil is used to reduce friction

A ramp from an expressway with a design speed of 30 mi/h connects with a local road, forming a T intersection. An additional lane is provided on the local road to allow vehicles from the ramp to turn right onto the local road without stopping. The turning roadway has stabilized shoulders on both sides and will provide for a onelane, one-way operation with no provision for passing a stalled vehicle. Determine the width of the turning roadway if the design vehicle is a single-unit truck. Use 0.08 for superelevation.

Answers

Answer:

the width of the turning roadway = 15 ft

Explanation:

Given that:

A ramp from an expressway with a design speed(u) =  30 mi/h connects with a local road

Using 0.08 for superelevation(e)

The minimum radius of the curve on the road can be determined by using the expression:

[tex]R = \dfrac{u^2}{15(e+f_s)}[/tex]

where;

R= radius

[tex]f_s[/tex] = coefficient of friction

From the tables of coefficient of friction for a design speed at 30 mi/h ;

[tex]f_s[/tex] = 0.20

So;

[tex]R = \dfrac{30^2}{15(0.08+0.20)}[/tex]

[tex]R = \dfrac{900}{15(0.28)}[/tex]

[tex]R = \dfrac{900}{4.2}[/tex]

R = 214.29 ft

R ≅ 215 ft

However; given that :

The turning roadway has stabilized shoulders on both sides and will provide for a onelane, one-way operation with no provision for passing a stalled vehicle.

From the tables of "Design widths of pavement for turning roads"

For a One-way operation with no provision for passing a stalled vehicle; this criteria falls under Case 1 operation

Similarly; we are told that the design vehicle is a single-unit truck; so therefore , it falls under traffic condition B.

As such in Case 1 operation that falls under traffic condition B  in accordance with the Design widths of pavement for turning roads;

If the radius = 215 ft; the value for the width of the turning roadway for this conditions = 15ft

Hence; the width of the turning roadway = 15 ft

A long corridor has a single light bulb and two doors with light switch at each door. design logic circuit for the light; assume that the light is off when both switches are in the same position.

Answers

Answer and Explanation:

Let A denote its switch first after that we will assume B which denotes the next switch and then we will assume C stand for both the bulb. we assume 0 mean turn off while 1 mean turn on, too. The light is off, as both switches are in the same place. This may be illustrated with the below table of truth:

A                    B                       C (output)

0                    0                        0

0                    1                          1

1                     0                         1

1                     1                          0

The logic circuit is shown below

C = A'B + AB'

If the switches are in multiple places the bulb outcome will be on on the other hand if another switches are all in the same place, the result of the bulb will be off. This gate is XOR. The gate is shown in the diagram adjoining below.

is used to determine the shear stress at point P over the section supporting a downward shear force in the -y direction. What is Q

Answers

Answer:

Transverse shear stress formula

Explanation:

Transverse shear stress also known as the beam shear, is the shear stress due to bending of a beam.

Generally, when a beam is made to undergo a non-uniform bending, both bending moment (I) and a shear force (V) acts on its cross section or width (t).

Transverse shear stress formula is used to determine the shear stress at point P over the section supporting a downward shear force in the -y direction.

Mathematically, the transverse shear stress is given by the formula below;

[tex]T' = \frac{VQ}{It}[/tex]

Also note, T' is pronounced as tau.

Where;

V is the total shear force with the unit, Newton (N).

I is the Moment of Inertia of the entire cross sectional area with the unit, meters square (m²).

t is the thickness or width of cross sectional area of the material perpendicular to the shear with the unit centimeters (cm).

Q is the statical moment of area.

Mathematically, Q is given by the formula;

[tex]Q = y'P^{*} = ∑y'P^{*}[/tex]

Where [tex]P^{*}[/tex] is the section supporting a downward shear force in the y' direction.

Identify the advantages of using 6 tube passes instead of just 2 of the same diameter in shell-and-tube heat exchanger.What are the advantages and disadvantages of using 6 tube passes instead of just 2 of the same diameter?

Answers

Answer:

Please check explanation for answer

Explanation:

Here, we are concerned with stating the advantages and disadvantages  of using a 6 tube passes instead of a 2 tube passes of the same diameter:

Advantages

* By using a 6 tube passes diameter, we are increasing the surface area of the heat transfer surface

* As a result of increasing the heat transfer surface area, the rate of heat transfer automatically increases too

            Thus, from the above, we can conclude that the heat transfer rate of a 6 tube passes is higher than that of a 2 tube passes of the same diameter.

Disadvantages

* They are larger in size and in weight when compared to a 2 tube passes of the same diameter and therefore does not find use in applications where space conservation is quite necessary.

* They are more expensive than the 2 tube passes of the same diameter and thus are primarily undesirable in terms of  manufacturing costs

Air enters the first compressor stage of a cold-air standard Brayton cycle with regeneration and intercooling at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The overall compressor pressure ratio is 10, and the pressure ratios are the same across each compressor stage. The temperature at the inlet to the second compressor stage is 300 K. The turbine inlet temperature is 1400 K. The compressor stages and turbine each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For k = 1.4, calculate:
a. the thermal efficiency of the cycle
b. the back work ratio
c. the net power developed, in kW
d. the rates of exergy destruction in each compressor stage and the turbine stage as well as the regenerator, in kW, for T 0 = 300 K.

Answers

Answer:

a. [tex]\eta _{th}[/tex] = 77.65%

b. bwr = 6.5%

c. 3538.986 kW

d. -163.169 kJ

Explanation:

a. The given property  are;

P₂/P₁ = 10, P₂ = 10 * 100 kPa = 1000 kPa

p₄/p₁ = 10

P₂/P₁ = p₄/p₃ = √10

p₂ = 100·√10

[tex]T_{2s}[/tex] = T₁×(√10)^(0.4/1.4) = 300 × (√10)^(0.4/1.4) = 416.85 K

T₂ = T₁ + ([tex]T_{2s}[/tex] - T₁)/[tex]\eta _c[/tex] = 300 + (416.85 - 300)/0.8 = 446.0625 K

p₄ = 10×p₁ = 10×100 = 1000 kPa

p₄/p₃ = √10 =

p₃ = 100·√10

T₃ = 300 K

T₃/[tex]T_{4s}[/tex] = (P₂/P₁)^((k - 1)/k) = (√10)^(0.4/1.4)

[tex]T_{4s}[/tex] = T₃/((√10)^(0.4/1.4) ) = 300/((√10)^(0.4/1.4)) = 215.905 K

T₄ = T₃ + ([tex]T_{4s}[/tex] - T₃)/[tex]\eta _c[/tex] = 300 + (215.905- 300)/0.8 = 194.881 K

The efficiency = 1 - (T₄ - T₁)/(T₃ - T₂) = 1 - (194.881 -300)/(300 -446.0625 ) = 0.28

T₄ = 446.0625 K

T₆ = 1400 K

[tex]T_{7s}[/tex]/T₆ = (1/√10)^(0.4/1.4)

[tex]T_{7s}[/tex] = 1400×(1/√10)^(0.4/1.4)  = 1007.6 K

T₇ = T₆ - [tex]\eta _t[/tex](T₆ - [tex]T_{7s}[/tex]) = 1400 - 0.8*(1400 - 1007.6) = 1086.08 K

T₈ = 1400 K

T₉ = 1086.08 K

T₅ = T₄ + [tex]\epsilon _{regen}[/tex](T₉ - T₄) = 446.0625 +0.8*(1086.08 - 446.0625) = 958.0765 K

[tex]\eta _{th}[/tex] =(((T₆ - T₇) + (T₈ - T₉)) -((T₂ - T₁) + (T₄ - T₃)))/((T₆ - T₅) + (T₈ - T₇))

(((1400 - 1086.08) + (1400 -1086.08 ))-((446.0625 - 300)+(194.881 - 300)))/((1400 -958.0765 ) + (1400 -1086.08 )) = 0.7765

[tex]\eta _{th}[/tex] = 77.65%

b. Back work ratio, bwr = [tex]bwr = \dfrac{w_{c,in}}{w_{t,out}}[/tex]

((446.0625 - 300)+(194.881 - 300))/((1400 - 1086.08) + (1400 -1086.08 ))

40.9435/627.84 = 6.5%

c. [tex]w_{net, out} = c_p[(T_6 -T_7) + (T_8 - T_9)] - [(T_2 - T_1) + (T_4 -T_3)][/tex]

Power developed is given by the relation;

[tex]\dot m \cdot w_{net, out}[/tex]

[tex]\dot m \cdot w_{net, out}[/tex]= 6*1.005*(((1400 - 1086.08) + (1400 -1086.08 ))-((446.0625 - 300)+(194.881 - 300))) = 3538.986 kW

d. Exergy destruction = 6*(1.005*(300-446.0625 ) - 300*1.005*(-0.3966766)

-163.169 kJ

Liquidated damages are intended to represent anticipated losses to the owner based upon circumstances existing at the time the contract was made. List at least five types of potential losses to the owner that would qualify for determination of such potential losses.

Answers

Answer:

1. Loss of income.

2. Rental costs.

3. Utility bills.

4. Loss of rent.

5. Storage costs.

Explanation:

Liquidated damages can be defined as pre-determined damages or clauses that are highlighted or indicated at the time of entering into a contract between a contractor and a client which is mainly based on evaluation of the actual loss the client may incur should the contractor fail to meet the agreed completion date.

Generally, liquidated damages are meant to be fair rather than being a penalty or punitive to the defaulter. It is usually calculated on a daily basis for the loss.

When entering into a contract with another, liquidated damages are intended to represent anticipated losses to the owner based upon circumstances existing at the time the contract was made.

Listed below are five (5) types of potential losses to the owner that would qualify for determination of such potential losses;

1. Loss of income.

2. Rental costs.

3. Utility bills.

4. Loss of rent.

5. Storage costs.

Anytime scaffolds are assembled or __________, a competent person must oversee the operation.

a. Drawn
b. Disassembled
c. Thought
d. Made

Answers

B because of health and safety regulations

When scaffolds are now being construct or deconstruct, a competent person must supervise the work and train everybody who'll be assisting, and the further discussion can be defined as follows:

The competent person is also responsible for proposing whether fall protection is required for each scaffold erected. In constructing a scaffold, there are specific criteria for the ground the scaffold is constructed. On the products and components used to build the scaffold, its height in relation to the foundation. It's platform's design, and whether or not high efficiency is needed to supervise the installation.

Therefore, the final answer is "Option B".

Learn more:

brainly.com/question/16049673

As steam is slowly injected into a turbine, the angular acceleration of the rotor is observed to increase linearly with the time t. Know that the rotor starts from rest at t = 0 and that after 10 s the rotor has completed 20 revolutions.Choose the correct equations of motion for the rotor. (You must provide an answer before moving on to the next part.)
a) a = 2kt, w = 3krº, and 8 = 4kr
b) a = {kt, w = ke?, and 0 = }ke?
c) a = kr?, w = jke', and 0 = krº
d) a = kt, w = jke?, and 0 kr

Answers

Answer:

α = kt

ω = [tex]\frac{kt^2}{2}[/tex]

θ = [tex]\frac{kt^3}{6}[/tex]  

Explanation:

given data

Initial velocity ω = 0

time t = 10 s

Number of revolutions = 20

solution

we will take here first α = kt     .....................1

and as α = [tex]\frac{d\omega}{dt}[/tex]

so that

[tex]\frac{d\omega}{dt}[/tex] = kt      ..................2

now we will integrate it then we will get

∫dω  = [tex]\int_{0}^{t} kt\ dt[/tex]   .......................3

so

ω = [tex]\frac{kt^2}{2}[/tex]

and

ω = [tex]\frac{d\theta}{dt}[/tex]     ..............4

so that

[tex]\frac{d\theta}{dt}[/tex]  = [tex]\frac{kt^2}{2}[/tex]

now we will integrate it then we will get

∫dθ = [tex]\int_{0}^{t}\frac{kt^2}{2} \ dt[/tex]      ...............5

solve it and we get

θ = [tex]\frac{kt^3}{6}[/tex]  

The value of an SMT capacitor is signified by a

Answers

Answer:

Working volttage

Explanation:

SMT electrolytic capacitors are marked with working voltage. The value of these capacitors is measured in micro farads. It is a surface mount capacitor which is used for high volume manufacturers. They are small lead less and are widely used. They are placed on modern circuit boards.

For this given problem, if the yield strength is now 45 ksi, using Distortion Energy Theory the material will _______ and using the Maximum Shear Stress Theory the material will __________
a. fail / not fail
b. fail /fail
c. not fail/fail
d. not fail/not fail

Answers

Answer:

Option A - fail/ not fail

Explanation:

For this given problem, if the yield strength is now 45 ksi, using Distortion Energy Theory the material will _fail______ and using the Maximum Shear Stress Theory the material will ___not fail_______

The effectiveness of a heat exchanger is defined as the ratio of the maximum possible heat transfer rate to the actual heat transfer rate.

a. True
b. False

Answers

Answer:

False

Explanation:

Because

The effectiveness (ϵ) of a heat exchanger is defined as the ratio of the actual heat transfer to the maximum possible heat transfer.

. The job of applications engineer for which Maria was applying requires (a) excellent technical skills with respect to mechanical engineering, (b) a commitment to working in the area of pollution control, (c) the ability to deal well and confidently with customers who have engineering problems, (d) a willingness to travel worldwide, and (e) a very intelligent and well-balanced personality. List 10 questions you would ask when interviewing applicants for the job.

Answers

Answer:

Tell us about your self Are your confident that you are the right candidate for this positionwhy should i hire youDo you like working under supervisionHow do you like to work ( in a group or individually )What is your ultimate workplace goalwhat are your future plansWhat do you expect from the Organization when given the jobDo you like taking on critical problemsHow long can you work in this position

Explanation:

For a job of applications engineer which require excellent technical skills, commitment  to working , ability to deal well and confidently with customers a willingness to travel and very intelligent and well-balanced personality.

The ten questions you should ask Maria to determine if she is qualified for the job are :

Tell us about your self ( functions you have )Are your confident that you are the right candidate for this positionwhy should i hire youDo you like working under supervisionHow do you like to work ( in a group or individually )What is your ultimate workplace goalwhat are your future plansWhat do you expect from the Organization when given the jobDo you like taking on critical problemsHow long can you work in this position

Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The compressor pressure ratio is 10, and the turbine inlet temperature is 1400 K. For k 5 1.4, calculate (a) the thermal efficiency of the cycle. (b) the back work ratio. (c) the net power developed, in kW.

Answers

Answer:

(a) 48.2 %

(b) 0.4137

(c) 2385.9 kW

Explanation:

The given values are:

Initial pressure,

p₁ = 100 kPa

Initial temperature,

T₁ = 300 K

Mass,

M = 6 kg/s

Pressure ration,

r = 10

Inlent temperature,

T₃ = 1400 K

Specific heat ratio,

k = 1.4

At T₁ and p₁,

⇒  [tex]c_{p}=1.005 \ KJ/Kg.K[/tex]

Process 1-2 in isentropic compression, we get

⇒  [tex]\frac{T_{2}}{T_{1}}=(\frac{p_{2}}{p_{1}})^{\frac{k-1}{k}}[/tex]

    [tex]T_{2}=(\frac{p_{2}}{p_{1}})^{\frac{k-1}{k}}. T_{1}[/tex]

On putting the estimated values, we get

         [tex]=(10)^{\frac{1.4-1}{1.4}}(300)[/tex]

         [tex]=579.2 \ K[/tex]

Process 3-4,

⇒  [tex]\frac{T_{4}}{T_{3}}=(\frac{p_{4}}{p_{3}})^{\frac{k-1}{k}}[/tex]

    [tex]T_{4}=(\frac{1}{10})^{\frac{1.4-1}{1.4}}(1400)[/tex]

         [tex]=725.13 \ K[/tex]

(a)...

The thermal efficiency will be:

⇒  [tex]\eta =\frac{\dot{W_{t}}-\dot{W_{e}}}{\dot{Q_{in}}}[/tex]

    [tex]\eta=1-\frac{\dot{Q_{out}}}{\dot{Q_{in}}}[/tex]

⇒  [tex]\dot{Q_{in}}=\dot{m}(h_{1}-h_{2})[/tex]

           [tex]=\dot{mc_{p}}(T_{3}-T_{2})[/tex]

           [tex]=6\times 1005\times (1400-579.2)[/tex]

           [tex]=4949.4 \ kJ/s[/tex]

⇒  [tex]\dot{Q_{out}}=\dot{m}(h_{4}-h_{1})[/tex]

             [tex]=6\times 1.005\times (725.13-300)[/tex]

             [tex]=2563.5 \ KJ/S[/tex]

As we know,

⇒  [tex]\eta=1-\frac{\dot{Q_{out}}}{\dot{Q_{in}}}[/tex]

On putting the values, we get

       [tex]=1-\frac{2563.5}{4949.4}[/tex]

       [tex]=0.482 \ i.e., \ 48.2 \ Percent[/tex]

(b)...

Back work ratio will be:

⇒  [tex]bwr=\frac{\dot{W_{e}}}{\dot{W_{t}}}[/tex]

Now,

⇒  [tex]\dot{W_{e}}=\dot{mc_{p}}(T_{2}-T_{1})[/tex]

On putting values, we get

          [tex]=6\times 1.005\times (579.2-300)[/tex]

          [tex]=1683.6 \ kJ/s[/tex]

⇒  [tex]\dot{W_{t}}=\dot{mc_{p}}(T_{3}-T_{4})[/tex]

          [tex]=6\times 1.005\times (1400-725.13)[/tex]

          [tex]=4069.5 \ kJ/s[/tex]

So that,

⇒  [tex]bwr=\frac{1683.6}{4069.5}=0.4137[/tex]

(c)...

Net power is equivalent to,

⇒  [tex]\dot{W}_{eyele}=\dot{W_{t}}-\dot{W_{e}}[/tex]

On substituting the values, we get

               [tex]= 4069.5-1683.6[/tex]

               [tex]=2385.9 \ kW[/tex]

Following are the solution to the  given points:

Given :  

Initial pressure [tex]p_1 = 100\ kPa \\\\[/tex]

Initial temperature [tex]T_1 = 300\ K \\\\[/tex]

Mass flow rate of air [tex]m= 6\ \frac{kg}{s}\\\\[/tex]  

Compressor pressure ratio [tex]r =10\\\\[/tex]

Turbine inlet temperature [tex]T_3 = 1400\ K\\\\[/tex]

Specific heat ratio [tex]k=1.4\\\\[/tex]

Temperature [tex]\ T_1 = 300\ K[/tex]

pressure [tex]p_1 = 100\ kPa\\\\[/tex]

[tex]\to c_p=1.005\ \frac{kJ}{kg\cdot K}\\\\[/tex]

Process 1-2 is isen tropic compression  

[tex]\to \frac{T_2}{T_1}=(\frac{P_2}{P_1})^{\frac{k-1}{k}} \\\\[/tex]

[tex]\to T_2=(\frac{P_2}{P_1})^{\frac{k-1}{k}} \ T_1 \\\\[/tex]

         [tex]=(10)^{\frac{1.4-1}{1.4}} (300)\\\\ =(10)^{\frac{0.4}{1.4}} (300) \\\\[/tex]

[tex]\to T_2 = 579.2\ K \\\\[/tex]

Process 3-4 is isen tropic expansion  

[tex]\to \frac{T_4}{T_3}=(\frac{P_4}{P_3})^{\frac{k-1}{k}}\\\\ \to T_4=(\frac{1}{10})^{\frac{1.4-1}{1.4}} (1400)\\\\\to T_4= 725.13\ K \\\\[/tex]

For point a:

The thermal efficiency of the cycle:

[tex]\to \eta = \frac{W_i-W_e}{Q_{in}} \\\\\to \eta = \frac{Q_{in}- Q_{out}}{Q_{in}}\\\\\to \eta =1 - \frac{Q_{out}}{Q_{in}} \\\\\to Q_{in}= m(h_3-h_1) = mc_p (T_4-T_1) =(6)(1.005)(725.13-300) = 2563 \ \frac{kJ}{S}\\\\\to \eta =1- \frac{Q_{out}}{Q_{in}}\\\\[/tex]

       [tex]=1-\frac{2563.5}{4949.4}\\\\ = 0.482\\\\[/tex]

 [tex]\eta = 48.2\%\\\\[/tex]

  For point b:  

The back work ratio  

[tex]\to bwr =\frac{W_e}{W_t}[/tex]

Now

[tex]\to W_e =mc_p (T_2 -T_1)[/tex]

          [tex]=(6) (1.005)(579.2 -300)\\\\ =1683.6 \ \frac{kJ}{S}\\\\[/tex]

[tex]\to W_t=mc_p(T_3-T_4)[/tex]

         [tex]=(6)(1.005)(1400 - 725.13)\\\\ = 4069.5 \frac{KJ}{s}[/tex]

[tex]\to bwr =\frac{W_s}{W_t}= \frac{1683.6}{4069.5}=0.4137[/tex]

   For point c:

The net power developed is equal to

 [tex]\to W_{cycle} = W_t-W_e \\\\[/tex]

                [tex]= ( 4069.5-1683.6)\\\\ = 2385.9 \ kW\\[/tex]

Learn more about Air compressors:

brainly.com/question/15181914

Other Questions
Whats an constant in numbers What is the value of a? PLEASE ANSWER QUICK!In Tim OBriens story Where Have You Gone, Charming Billy?, why does Paul Berlin point out the no one gave him lesions for how to have courage?A) because courage isnt something that is learned B) because he missed this important part of training C) because his fear made him forget all he learned D) because he did not understand the training about courage BEST GETS BRAINLIEST Proof for Pythagoras Theorem (Ill take multiple different approaches) Please make it logical/satisfying. Which bone is indicated by the arrow in the diagram below? A diagram showing the appendicular skeleton. An arrow points to the bone in the lower arm closest to the body. humerus ulna radius clavicle Which expression represents the algebraic phrase twelve times the sum of a number and seven-tenths? 12 y + StartFraction 7 over 10 EndFraction 12 (y + StartFraction 7 over 10 EndFraction) StartFraction 7 over 10 EndFraction y + 12 y (StartFraction 7 over 10 EndFraction + 12) At noon, ship A is 120 km west of ship B. Ship A is sailing east at 20 km/h and ship B is sailing north at 15 km/h. How fast is the distance between the ships changing at 4:00 PM? A market maker faces the following demand and supply for widgets. Eleven buyers are willing to buy at the following prices: $15, $14, $13, $12, $11, $10, $9, $8, $7, $6, $5. Eleven sellers are also willing to sell at the same prices. How many transactions must the market maker make if he wants to maximize his profits? A graph is given to the right. a. Explain why the graph has at least one Euler path. b. Use trial and error or Fleury's Algorithm to find one such path starting at Upper A, with Upper D as the fourth and seventh vertex, and with Upper B as the fifth vertex. A C B D E A graph has 5 vertices labeled A through E and 7 edges. The edges are as follows: Upper A Upper C, Upper A Upper B, Upper A Upper D, Upper C Upper D, Upper C Upper E, Upper B Upper D, Upper D Upper E. a. Choose the correct explanation below. A. It has exactly two odd vertices. Your answer is correct.B. It has exactly two even vertices. C. It has more than two odd vertices. D. All graphs have at least one Euler path. b. Drag the letters representing the vertices given above to form the Euler path. How did most people in Latin America respond after facing the damages of Hurricane Mitch? A. People made no changes. B. People moved out of the region. C. People changed their building standards. D. People used foreign aid to educate their citizens about natural disasters The polynomial equation x cubed + x squared = negative 9 x minus 9 has complex roots plus-or-minus 3 i. What is the other root? Use a graphing calculator and a system of equations. What might a cruise ship company do to accompany the needs of a single person? Exam Activity 3-1 Hospitality. Of the following, only ________ has sp2 hybridization of the central atom. Of the following, only ________ has sp2 hybridization of the central atom. ICl3 PBr3 SiH2Br2 HCN BF3 A school has 300 eighth-grade students and 200 ninth-grade students. The secretary randomly selects 12 eighth-grade students and 8 ninth-grade students to obtain a sample of size 20. What kind of sampling is this?Simple random samplingStratified random samplingSystematic samplingConvenience sampling #Write a function called "angry_file_finder" that accepts a #filename as a parameter. The function should open the file, #read it, and return True if the file contains "!" on every #line. Otherwise the function should return False. # #Hint: there are lots of ways to do this. We'd suggest using #either the readline() or readlines() methods. readline() #returns the next line in the file; readlines() returns a #list of all the lines in the file. #Write your function here! A 0.1-L unbuffered solution needs the pH adjusted from 3.5 to 1. How many microliters of a 6 molar HCl solution need to be added to adjust the pH Read and choose the correct option to complete the sentence. Which number is a solution of the inequality: B > 2.1 A: -8 B: -12C:5D: 1 Need help with trig question To configure a router / modem, what type of IP interface configuration should you apply to the computer you are using?