Answer:
Violet only
Explination:
Violet is the only color that will eject electrons when it strikes sodium.
The colors that will eject electrons when there's a strike with sodium from the chart will be A. Violet and green.
ElectronsFrom the complete information, William made a chart in order to illustrate the result of the experiment that was made with the photoelectric effect.
In this case, the colors that will eject electrons when they strike sodium, with the frequency threshold will be violet and green.
This was gotten from the result that the frequencies of light were lower than the frequency threshold.
Learn more about electrons on:
https://brainly.com/question/860094
PLEASE HURRY WILL GIVE BRAINLEST IF ANSWERED CORRECTLY
which separation method would be most successful in separating the components of a homogeneous mixture
screening
evaporation
centrifugation
magnetic separation
Answer:
Evaporation is a technique used to separate out homogeneous mixtures where there is one or more dissolved salts.
Explanation:
Hope this helps :)
If the net force acting on an object is 0 N, the forces are
Since the forces equal to 0, it's balanced because the object isn't moving.
DO NOT TROLL AND ANSWER WITHOUT THE CORRECT ANSWER! I EXPECT THE CORRECT ANSWER NOT A TROLL SO IF YOU DONT HAVE THE ANSWER DO NOT WRITE ANYTHING. IF YOU TROLL I WILL REPORT YOU
A weather balloon with a volume of 3.40774 L
is released from Earth’s surface at sea level.
What volume will the balloon occupy at an
altitude of 20.0 km, where the air pressure is
10 kPa?
Answer in units of L.
Answer: The volume occupied at an altitude of 20.0 km is 34.5289 L
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
[tex]P\propto \frac{1}{V}[/tex] (At constant temperature and number of moles)
where,
[tex]P_1[/tex] = initial pressure of gas = 101.325 kPa ( sea level)
[tex]P_2[/tex] = final pressure of gas = 10 kPa
[tex]V_1[/tex] = initial volume of gas = 3.40774 L
[tex]V_2[/tex] = final volume of gas = ?
Now put all the given values in the above equation, we get the final pressure of gas.
[tex]101.325\times 3.40774=10\times V_2[/tex]
[tex]V_2=34.5289L[/tex]
Therefore, the volume occupied at an altitude of 20.0 km is 34.5289 L
Suppose the current flowing from a battery is used to electroplate an object with silver. Calculate the mass of silver that would be deposited by a battery that delivers 1.65 A·hr of charge.
Answer:
m = 0.00659 kg = 6.59 g
Explanation:
From Faraday's Law of Electrolysis, we know that:
m = ZQ
where,
m = mass of silver deposited = ?
Q = charge supplied = (1.65 A-hr)(3600 s/1 hr) = 5940 C
Z = electrochemical equivalent of silver = 1.18 x 10⁻⁶ kg/C
Therefore,
m = (1.11 x 10⁻⁶ kg/C)(5940 C)
m = 0.00659 kg = 6.59 g
The mass of silver that would be deposited by a battery is 6.65 grams
The precipitation of Ag requires the removal of one electron. The reduction process for silver electrode at the cathode is as follows:
[tex]\mathbf{Ag^+ + e^- \to Ag(s)}[/tex]
The current flowing in the battery = 1.65 A = 1.65 C/sThe time at which the current is flowing = 1 hr = 3600sec∴
The charge Q = Current (I) × time (t)Charge Q = 1.65 C/s × 3600 sCharge (Q) = 5940 CIn one mole of an electron, the charge carried = 96500 C
Recall that:
The atomic mass of silver (Ag) = 108 g
∴
The mass of silver that would be deposited in a 5940 C can be computed as:
[tex]\mathbf{=5940\ C \times \dfrac{108 \ g }{96500 \ C}}[/tex]
= 6.65 grams
Learn more about electrodes here:
https://brainly.com/question/17060277?referrer=searchResults
Which of these lead (II) salts will dissolve to the greatest extent in water?
a. PbSO4, Ksp = 1.7x10^-8
b. PbI2, Ksp = 6.5x10^-9
c. PbCrO4, Ksp = 1.8x10^-14
d. PbS, Ksp = 2.5x10^-27
e. Pb3(AsO4)2, Ksp = 4.0x10^-36
Answer:
a. PbSO4, Ksp = 1.7x10^-8.
Explanation:
Hello!
In this case, since the solubility product indicates how likely a solid is able to ionize and consequently dissolve in water, we can infer that the larger the solubility product Ksp, the more ions are able dissolve in water; therefore the proper answer goes with the largest Ksp, which is a. PbSO4, Ksp = 1.7x10^-8 since the power goes closer to 1 than the other options.
Best regards!
in which beakers are the particles moving the most slowly
Answer:
A and D
Explanation:
ONLY ANSWER IF YOU PLAY ADOPT ME ON ROB.LOX!!! tell me your best pet and user name in your answer plz.
READ!!!!! p.s. i have a fly ride T rex and more! also, STAY ON THE PAGE SO I COULD RESPOND AND WE COULD PLAY! yay!! :) :)
Answer:
I play!!!!!!!!
Explanation:
Which statement describes how phase changes can be diagrammed as a substance is heated?
The phase is on the y-axis and the temperature is on the x-axis.
The temperature is on the y-axis and the phase is on the x-axis.
The time is on the y-axis and the temperature is on the x-axis.
The temperature is on the y-axis and the time is on the x-axis.
Answer:
The temperature is on the y-axis and the time is on the x-axis.
Explanation:
Which statement describes how phase changes can be diagrammed as a substance is heated? (D is the answer)
The phase is on the y-axis and the temperature is on the x-axis.
The temperature is on the y-axis and the phase is on the x-axis.
The time is on the y-axis and the temperature is on the x-axis.
The temperature is on the y-axis and the time is on the x-axis.
Which statement describes the appearance of a temperature-vs.-time graph? (C is the answer)
A horizontal line shows that the temperature increases at a constant rate over time.
A vertical line shows that the temperature decreases at a constant rate over time.
Horizontal lines where the temperature is constant during phase changes connect upward-sloping lines where the temperature increases.
Horizontal lines where the temperature increases are connected by upward-sloping lines where the temperature is constant for each phase.
Which of these mixtures would NOT be separated by using simple distillation?
Ink and water
Salt and water
Sand and water
There is a golden role of solubility, polar solute dissolve in polar solvent and non polar solute dissolve in non polar solvent. Therefore, the correct option is option B that is Salt and water.
What is solution?Solutions are a homogeneous mixture of two or more substances. A solution is a homogeneous mixture of solvent and solute molecules. Solvent is a substance that is in large amount in solution. solute is the substance which is in small amount in a solution. There are two types of mixture that is homogeneous and heterogeneous. Solution is a homogeneous solution.
Salt and water because salt is transparent and will dissolve into the water among given solute, salt NaCl is a polar solute which will dissolve in polar solvent that is water.
Therefore, the correct option is option B that is Salt and water.
To know more about solution, here:
https://brainly.com/question/13812915
#SPJ2
0.1400 mole of sucrose, C12H22O11, contains ________ moles of C.
can you show me the formula and the correct format
Answer:
it has 12 carbon atoms and 22 hydrogen atoms and 11 oxygen atoms
Explanation:
How does the density and distribution of your “stars” change as the balloon expands?
Answer:
The Universe is constantly expanding and as it expands the stars and objects in space move farther apart, just like the points on the balloon when air is blown into it. Density and distribution of "stars" as the balloon expands because when volume increases the density will increase.
Hope this Helps
If 75J of heat are applied to 8.4 L of a gas at 732 mmHg and 298K, what is the final temperature, in K, of the gas? Cp for an ideal gas is 20.79 J/mol*K.
Answer:
309 K
Explanation:
Step 1: Convert the pressure to atm
We will use the conversion factor 1 atm = 760 mmHg.
732 mmHg × 1 atm/760 mmHg = 0.963 atm
Step 2: Calculate the moles (n) of the ideal gas
We will use the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 0.963 atm × 8.4 L/0.0821 atm.L/mol.K × 298 K
n = 0.33 mol
Step 3: Calculate the temperature change
We will use the following expression.
Q = n × Cp × ΔT
ΔT = Q/n × Cp
ΔT = 75 J/0.33 mol × 20.79 J/mol.K
ΔT = 11 K
Step 4: Calculate the final temperature
T = 298 K + 11 K = 309 K