Answer:yeah it A
Explanation:
You want to produce a magnetic field of magnitude 5.50 x 10¹ T at a distance of 0.0 6 m from a long, straight wire's center. (a) What current is required to produce this field? (b) With the current found in part (a), how strong is the magnetic field 8.00 cm from the wire's center?
Answer:
(a) I = 1650000 A
(b) 4.125 T
Explanation:
Magnetic field, B = 5.5 T
distance, r = 0.06 m
(a) Let the current is I.
The magnetic field due to a long wire is given by
[tex]B =\frac{\mu o}{4\pi }\frac{2 I}{r}\\5.5= 10^{-7}\times \frac{2\times I}{0.06}\\I =1650000 A[/tex]
(b) Let the magnetic field is B' at distance r = 0.08 m.
[tex]B =\frac{\mu o}{4\pi }\frac{2 I}{r}\\B = 10^{-7}\times \frac{2\times 1650000}{0.08}\\B'= 4.125 T[/tex]
an object moves clockwise around a circle centered at the origin with radius m beginning at the point (0,). a. find a position function r that describes the motion of the object moves with a constant speed, completing 1 lap every s. b. find a position function r that describes the motion if it occurs with speed .
Answer:
Answer to An object moves clockwise around a circle centered at the origin with radius 6 m beginning at ... 6 M Beginning At The Point (0,6) B. Find A Position Function R That Describes The Motion If It Occurs With Speed E T A. R(t)= S The Motion Of The Object Moves With A Constant Speed, Completing 1 Lap Every 12 S.
Explanation:
Please help! ❤️
I’ll make you the Brainlyest, I can’t get this one wrong.
5N
5 N
19 N
19 N
Pls help look at the pic
Answer:
b. is the correct answer ....
HELP ME PLEASE !!!!!!!!!!!!
Answer:
D
Explanation:
Because the y axis is meter. If it is straight line at time and meter graph then it velocity and speed is 0
Astronauts use a centrifuge to simulate the acceleration of a rocket launch. The centrifuge takes 40.0 ss to speed up from rest to its top speed of 1 rotation every 1.30 ss . The astronaut is strapped into a seat 5.90 mm from the axis. What is the astronaut's tangential acceleration during the first 40.0 s?
How many g's of acceleration does the astronaut experience when the device is rotating at top speed? Each 9.80 m/s^2 of acceleration is 1 g.
Answer:
speed = 0.9 mm/s
Explanation:
time, t = 40 s
initial angular speed, wo = 0 rad/s
final frequency, f = 1/1.03 rps = 0.97 rps
final angular speed, w = 2 x 3.14 x 0.97 = 6.1 rad/s
time, t = 40 s
distance, r = 5.9 mm
The angular acceleration is given y the first equation of motion.
[tex]w =wo + \alpha t\\6.1 = 0 +\alpha \times 40\\\alpha = 0.1525 rad/s^{2}[/tex]
The linear velocity is
[tex]v =5.9\times 10^{-3}\times 0.1525 = 9\times 10^{-4} m/s[/tex]
speed, v = 0.9 mm/s
Walking at a brisk pace, you cover 10 m in 5.0 s . How many seconds will you need to cover 50 m ?
What are impact and non-impact printers?
Impact printers involve mechanical components for conducting printing. It is a type of printer that works by direct contact of an ink ribbon with paper.
In Non-Impact printers, no mechanical moving component is used.
mark me brainliesttt :)))
what is the magnitude of an electric field (in 106 n/c) that balances the weight of a plastic sphere of mass 2.1 g that has been charged to 3.0 nc
Answer:
[tex]E=6.86\times 10^6\ N/C[/tex]
Explanation:
Given that,
Mass of the sphere, m = 2.1 g = 0.0021 kg
Charge, q = 3 nC
We need to find the magnitude of the electric field that balanced the weight of sphere. Let it is E. So,
qE = mg
[tex]E=\dfrac{mg}{q}[/tex]
Put all the values,
[tex]E=\dfrac{0.0021\times 9.8}{3\times 10^{-9}}\\\\E=6.86\times 10^6\ N/C[/tex]
So, the magnitude of the elecric field is [tex]6.86\times 10^6\ N/C[/tex].
One of the earliest vertebrate animal groups that evolved in the early Paleozoic Era
are
A car travels at a constant speed around a circular track whose radiu is 2.6 km. The goes once arond the track in 360s . What is the magnitude
Answer:
Centripetal acceleration = 0.79 m/s²
Explanation:
Given the following data;
Radius, r = 2.6 km
Time = 360 seconds
Conversion:
2.6 km to meters = 2.6 * 1000 = 2600 meters
To find the magnitude of centripetal acceleration;
First of all, we would determine the circular speed of the car using the formula;
[tex] Circular \; speed (V) = \frac {2 \pi r}{t}[/tex]
Where;
r represents the radius and t is the time.Substituting into the formula, we have;
[tex] Circular \; speed (V) = \frac {2*3.142*2600}{360} [/tex]
[tex] Circular \; speed (V) = \frac {16338.4}{360} [/tex]
Circular speed, V = 45.38 m/s
Next, we find the centripetal acceleration;
Mathematically, centripetal acceleration is given by the formula;
[tex] Centripetal \; acceleration = \frac {V^{2}}{r}[/tex]
Where;
V is the circular speed (velocity) of an object.r is the radius of circular path.Substituting into the formula, we have;
[tex] Centripetal \; acceleration = \frac {45.38^{2}}{2.6}[/tex]
[tex] Centripetal \; acceleration = \frac {2059.34}{2600}[/tex]
Centripetal acceleration = 0.79 m/s²
Which statement is true?
a particle of violet light has less energy than a particle of red light
a particle of violet light has more energy than a particle of red light
a particle of violet light has exactly the same energy as a particle of red light
particles of light do not have any energy, regardless of what color the light is
a particle of violet light has exactly the same energy as a particle of red light
One solenoid is centered inside another. The outer one has a length of 50.0 cm and contains 6750 coils, while the coaxial inner solenoid is 3.0 cm long and 0.120 cm in diameter and contains 15 coils. The current in the outer solenoid is changing at 49.2 A>s. (a) What is the mutual inductance of these solenoids
Answer: The mutual inductance of these solenoids is [tex]2.88 \times 10^{-7} H[/tex].
Explanation:
Given: Length = 50.0 cm (1 cm = 0.01 m) = 0.50 m
[tex]N_{1}[/tex] = 6750
[tex]N_{2}[/tex] = 15
Radius = [tex]\frac{0.120 cm}{2} = 0.6 cm = 6 \times 10^{-4} m[/tex]
As inner of a solenoid resembles the shape of a circle. So, its area is calculated as follows.
[tex]Area = \pi \times r^{2} = \pi \times (6 \times 10^{-4})^{2}[/tex]
Formula used to calculate mutual conductance of two solenoids is as follows.
[tex]M = \frac{\mu_{o} \times A \times N_{1} \times N_{2}}{l}[/tex]
where,
M = mutual conductance
A = area
[tex]\mu_{o}[/tex] = relative permeability = [tex]4 \pi \times 10^{-7} Tm/A[/tex]
[tex]N_{1}[/tex] = no. of coils in outer solenoid
[tex]N_{2}[/tex] = no. of coils in inner solenoid
l = length
Substitute the values into above formula as follows.
[tex]M = \frac{\mu_{o} \times A \times N_{1} \times N_{2}}{l}\\= \frac{4 \pi \times 10^{-7} Tm/A \times \pi (6 \times 10^{-4})^{2} \times 6750 \times 15}{0.5 m}\\= 2.88 \times 10^{-7} H[/tex]
Thus, we can conclude that the mutual inductance of these solenoids is [tex]2.88 \times 10^{-7} H[/tex].
In an experiment, a student brings up the rotational speed of a piece of laboratory apparatus to 24 rpm. She then allows the apparatus to slow down uniformly on its own, and counts 236 revolutions before the apparatus comes to a stop. The moment of inertia of the apparatus is known to be 0.076 kg m2. What is the magnitude of the torque on the apparatus
Answer:
T = 6.43 x 10⁻⁵ N.m
Explanation:
First, we will calculate the deceleration of the apparatus by using the third equation of motion:
[tex]2\alpha \theta = \omega_f^2-\omega_i^2[/tex]
where,
α = angular decelration = ?
θ = angular displacement = (236 rev)(2π rad/rev) = 1482.83 rad
ωi = initial angular speed = (24 rpm)(2π rad/1 rev)(1 min/ 60 s) = 2.51 rad/s
ωf = final angular speed = 0 rad/s
Therefore,
[tex]2\alpha(1482.83\ rad) = (0\ rad/s)^2-(2.51\ rad/s)^2\\\\\alpha = -\frac{(2.51\ rad/s)^2}{2965.66\ rad} \\\\\alpha = - 8.46\ x\ 10^{-4}\ rad/s^2[/tex]
negative sign shows deceleration
Now, for torque:
T = Iα
where,
T = Torque = ?
I = moment of inertia = 0.076 kg.m²
Therefore,
T = (0.076 kg.m²)(8.46 x 10⁻⁴ N.m)
T = 6.43 x 10⁻⁵ N.m
An electric field has a positive test charge of 5.00 C placed in it. The force on the test charge is
6.000 N. The magnitude of the electric field at the location of the test charge is
o 30.0 NVC
0 1.20 N/C
0 120, NVC
O 3.00 N/C
01.02 N/C
Answer:
yes
Explanation:
this means the answer is yes
The electric field of a negative infinite line of charge: Group of answer choices Points perpendicularly away from the line of charge and decreases in strength at larger distances from the line charge Points parallel to the line of charge and decreases in strength at larger distances from the line charge Points parallel to the line of charge and increases in strength at larger distances from the line charge Points perpendicularly away from the line of charge and increases in strength at larger distances from the line charge Points perpendicularly toward the line of charge and increases in strength at larger distances from the line charge Points perpendicularly toward the line of charge and decreases in strength at larger distances from the line charge
Answer:
Points perpendicularly toward the line of charge and decreases in strength at larger distances from the line charge
Explanation:
The electric field for a uniform line of charge is given by E = λ/2πε₀r where λ = charge density and r = distance from line of charge.
If λ is negative, E is negative so it points in the negative direction towards the line of charge.
Also, since for negative charges, electric field lines end up in them, the electric field for an infinitely long negative line of charge points towards the charge perpendicular to it.
Also as r increases, E decreases since E ∝ 1/r
So, the electric field decreases at larger distances from the line of charge.
So, the electric field of a negative infinite line of charge Points perpendicularly toward the line of charge and decreases in strength at larger distances from the line charge.
A current is maintained in a simple circuit that consists of a resistor between the terminals of an ideal battery. If the battery supplies energy at a rate of W, how large is the resistance
Answer:
Resistance is as large as 2.8 ohm
Explanation:
Complete question
A 3.0 A current is maintained in a simple circuit that consists of a resistor between the terminals of an ideal battery. If the battery supplies energy at a rate of 25 W, how large is the resistance?
Solution -
The relation between Power and current is as follows
P = I^2*R
R = P/I^2
Were P = Power
R = resistance and
I = current
Given-
P = 25 W
I = 3.0 A
Substituting the given values, in above equation, we get -
R = 25/3.0^2
R = 2.8 ohm
A large, metallic, spherical shell has no net charge. It is supported on an insulating stand and has a small hole at the top. A small tack with charge Q is lowered on a silk thread through the hole into the interior of the shell.
Required:
a. What is the charge on the inner surface of the shell?
b. What is the charge on the outer surface of the shell?
Answer:
(a) Negative Q
(b) Positive Q
Explanation:
Charge is the inherent property of matter due to the transference of electrons.
There are three methods of charging a body.
(i) Charging by friction: When two uncharged bodies rubbed together, then one body gets positive charged and the other is negatively charges it is due to the transference of electrons form one body to another.
(ii) Conduction: when a charged body comes in contact with the another uncharged body, the uncharged body gets the same charge and the charge is distributed equally.
(iii) Induction: When a uncharged body keep near the charged body, the uncharged body gets the same amount of charge but opposite in sign.
(a) When a small tack of charge Q is lowered into the hole, then due to the process of induction, the charge on the inner surface of the shell is - Q.
(b) Due to the process of conduction, the charge on the outer surface of the shell is Q.
The charge on the inner surface of the shell is negative whereas the charge on the outer surface of the shell is positive.
Reasons for change of charge on a body
Due to the process of induction the inner surface of the shell creates negative charge because when a uncharged body bring near to the charged body, the uncharged body gets the same amount of charge but opposite in sign.
While on the other hand, there is no charge interaction with the outer surface so it remains positively charge so we can conclude that the charge on the inner surface of the shell is negative whereas the charge on the outer surface of the shell is positive.
Learn more about charge here: https://brainly.com/question/18102056
How much work can a motor with a power output of 0.70 hp do in 2 s?
Answer:
the work done by the motor is 1,044 J.
Explanation:
Given;
the output power of the motor, P = 0.7 hp
duration of the work, t = 2 s
The relationship between horse-power and watt is given as;
1 hp = 745.7 W
0.7 hp = ?
0.7 hp = 522 W = 522 J/s
The work done by the motor is calculated as;
W = Power x time
W = 522 J/s x 2 s
W = 1,044 J
Therefore, the work done by the motor is 1,044 J.
how can you prove that acceleration is a derived unit
a = (dx / dt)²
Explanation: Unit of distance is m (metres) and unit of time is s (seconds) speed v is first derivative of distance x versus time:
v = dx / dt, unit is m/s. Acceleration is second derivative of
speed versus time a = (dx / dt)² = (dv/dt) , unit is m/s²
Answer:
Explanation:
Acceleration is derived unit because it has two fundamental units involved i.e. meter and second square.
If a second ball were dropped from rest from height ymax, how long would it take to reach the ground
Answer:
[tex](b)\ t_1 - t_0[/tex]
[tex](d)\ t_2 - t_1[/tex]
[tex](e)\ \frac{t_2 - t_0}{2}[/tex]
Explanation:
Given
See attachment for complete question
Required
How long to reach the ground from the maximum height
First, calculate the time of flight (T)
[tex]T =t_2 - t_0[/tex]
The time taken (t) from maximum height to the ground is:
[tex]t = \frac{1}{2}T[/tex]
So, we have:
[tex]t = \frac{t_2 - t_0}{2}[/tex]
Another representation is:
At ymax, the time is: t1
On the ground, the time is t2
The difference between these times is the time taken.
So;
[tex]t = t_2 - t_1[/tex]
Since air resistance is to be ignored, then
[tex]t_2 - t_1 = t_1 - t_0[/tex] --- i.e. time to reach the maximum height from the ground equals time to reach the ground from the maximum height
A cart weighing 40 pounds is placed on a ramp incline 15 degrees to the horizon. The cart is held in place by a rope inclined 60 degrees to the horizontal. find the force that the rope must exert on the cart to keep it from rolling down the ramp.
Answer: [tex]14.64\ N[/tex]
Explanation:
Given
Inclination of ramp is [tex]\theta=15^{\circ}[/tex]
Rope is inclined [tex]\phi=60^{\circ}[/tex] to the horizontal
Weight of cart [tex]W=40\ lb[/tex]
from the diagram, rope is at angle of [tex]45^{\circ}[/tex] w.r.t ramp
Sine component of weight pulls down the cart Cosine component of force applied through rope held it at the position
[tex]\Rightarrow 40\sin 15^{\circ}=F\cos 45^{\circ}\\\\\Rightarrow F=40\cdot \dfrac{\sin 15^{\circ}}{\cos 45^{\circ}}\\\\\Rightarrow F=40\times 0.366\\\Rightarrow F=14.64\ N[/tex]
If the child has a mass of 13.9 kg, calculate the magnitude of the force in newtons the mother exerts on the child under the following conditions. (b) The elevator accelerates upward at 0.898 m/s2. 148.702 N
The elevator accelerates upward at an acceleration, then the magnitude of the force is 148.84 N.
What is Force?The force is the action of push or pull which makes an object to move or stop.
Given the mass of child m =13.9 kg, acceleration a =0.898 m/s², then the force will be given by
F = m(g-a)
F = 13.9 x (9.81 - (-0.898))
F = 148.84 N
Thus, the magnitude of the force is 148.84 N.
Learn more about force.
https://brainly.com/question/13191643
#SPJ2
what is the light synthesis ?
Answer:
Photosynthesis, the process by which green plants and certain other organisms transform light energy into chemical energy. ... During photosynthesis in green plants, light energy is captured and used to convert water, carbon dioxide, and minerals into oxygen and energy-rich organic compounds.
Explanation:
thank me later
What is the speed acquired by a freely falling object 4 seconds after being dropped from a rest position? Use units of meter per second (m/s) and assume acceleration from gravity is 10 m/s2.
speed = 40 m/s
Explanation:
Since the object is dropped, V0y = 0.
Vy = V0y - gt
= -(10 m/s^2)(4 s)
= -40 m/s
This means that its velocity is 40 m/s downwards. Its speed is simply 40 m/s.
The speed acquired by a freely falling object 4 seconds after being dropped from a rest position would be 40 meters/seconds.
What are the three equations of motion?There are three equations of motion given by Newton
The first equation is given as follows
v = u + at
the second equation is given as follows
S = ut + 1/2×a×t²
the third equation is given as follows
v² - u² = 2×a×s
Keep in mind that these calculations only apply to uniform acceleration.
As given in the problem, we have to find the speed acquired by a freely falling object 4 seconds after being dropped from a rest position,
By using the first equation of motion,
v = u + at
initial velocity(u) = 0 m/s
acceleration(a) = 10 m/s²
v = 0 + 10×4
v = 40 meters/seconds
Thus, the speed acquired by a freely falling object 4 seconds after being dropped from a rest position would be 40 meters/seconds.
Learn more about equations of motion from here,
brainly.com/question/5955789
#SPJ2
compare the time period of two pendulums of length 4m and 9m
area= length × length
area = 4m × 9m
ans 36
as a mercury atom absorbs a photon of energy as electron in the atom changes from energy level B to energy level E. calculate the frequency of the absorb photon.
Answer:
2.00x 10 14th Hz
Explanation:
Answer:
2.99 x 10^14 Hz
Explanation:
E photon= hf (you have to solve for f)
f= E photon/h
f= 1.98 x 10^-19 J / 6.63 x 10^-34 J x s
f=2.99 x 10^14 Hz
Which of these is NOT an effect of humor?
strengthened immune system
reduced stress levels
reduced feelings of anxiety
feelings of jealousy and envy
Given this relationship, if you and your twin sibling (assuming you have the same mass) were to be separated by three times your original distance, what is the new gravitational force between you?
Answer:
The new force becomes (1/9)th of the original force.
Explanation:
The gravitational force between two masses is given by :
[tex]F=G\dfrac{m_1m_2}{r^2}[/tex]
Where
r is the distance between masses,
If the new distance is, r' = 3r
The new force is given by :
[tex]F'=G\dfrac{m_1m_2}{r'^2}\\\\F'=G\dfrac{m_1m_2}{(3r)^2}\\\\F'=\dfrac{1}{9}\times G\dfrac{m_1m_2}{r^2}\\\\F'=\dfrac{F}{9}[/tex]
So, the new force becomes (1/9)th of the original force.
HELP ME PLEASEEEEEEEEEEEEEE
Answer: The correct statements are:
The atoms are very attracted to one another.The atoms are held tightly together.Explanation:
Solid state: In this state, the molecules are closely packed and cannot move freely from one place to another that means no space between them and the intermolecular force of attraction between the molecules are strong.
In solid substance, the particles are very close to each other due to this the intermolecular forces of attraction are strongest.
The key point about solid are:
The atoms are very attracted to one another.The atoms are not moving freely.It will not spread out evenly to fill any container.The atoms are held tightly together.The forces of attraction are strong to bring molecules together.The atoms are close and in fixed positions.