The actual Rankine cycle has an 88.18% turbine isentropic efficiency and 81.69% pump isentropic efficiency. If in the ideal Rankine cycle, the heat input in the boiler = 919 kW, the turbine work output = 407 kW, and pump work input = 13 kW, what is the actual cycle thermal efficiency if the heat input in the boiler is the same for the actual cycle? Express your answer in percent.

Answers

Answer 1

The actual cycle thermal efficiency can be calculated by comparing the actual work output of the turbine and the actual work input of the pump with the heat input in the boiler.

The thermal efficiency is the ratio of the network output to the heat input. First, we need to calculate the network output by subtracting the pump work input from the turbine work output. Then, we divide the network output by the heat input in the boiler and multiply by 100 to express the result as a percentage.

Given the values provided, the actual cycle thermal efficiency can be determined using the formula: Actual cycle thermal efficiency = (Turbine work output - Pump work input) / Heat input in the boiler * 100. By substituting the values into the formula, we can calculate the actual cycle thermal efficiency.

Learn more about the Rankine cycle and thermal efficiency here:

https://brainly.com/question/29056986

#SPJ11


Related Questions

1. Differentiate Triangular Vortex Generators to
Rectangular Vortex Generators
2. Differentiate Triangular Vortex Generators to
Parabolic Vortex Generators
3. Differentiate Triangular Vortex Generator

Answers

1. Triangular vortex generators differ from rectangular vortex generators in their geometric shapes and airflow control.

2. Triangular vortex generators differ from parabolic vortex generators in their shapes and resulting flow patterns.

3. Triangular vortex generators are flow control devices that use triangular elements to manipulate airflow for improved aerodynamic performance.

1. Triangular vortex generators are designed with triangular shapes to induce vortices and enhance airflow control, while rectangular vortex generators have rectangular shapes and are used for similar purposes but with different flow characteristics and performance.

2. Triangular vortex generators and parabolic vortex generators differ in their geometric shapes and the resulting flow patterns they generate. Triangular vortex generators produce triangular-shaped vortices, while parabolic vortex generators create parabolic-shaped vortices, leading to variations in aerodynamic effects and flow control capabilities.

3. Triangular vortex generators are a type of flow control device that utilizes triangular-shaped elements to manipulate airflow characteristics. They are commonly used to improve aerodynamic performance, increase lift, reduce drag, and enhance stability in various applications such as aircraft, vehicles, and wind turbines.

To know more about vortex generators visit:

https://brainly.com/question/32373609

#SPJ11

I. Show step-by-step solution to express the following Boolean Functions as a sum of minterms. II. Draw the Truth Table. III. Express the function using summation (Σ) notation. A. F=A+BC ′ +B ′ C+A ′ BC B. F=X ′ +XZ+Y ′ Z+Z

Answers

The Boolean functions can be expressed as a sum of minterms by identifying the rows in the truth table where the function evaluates to true, combining them using the OR operation. The truth table lists all possible input combinations and their corresponding outputs.

How can the given Boolean functions be expressed as a sum of minterms, represented in a truth table, and expressed using summation notation?

I. To express the Boolean function as a sum of minterms, we need to follow these steps:

1. Create a truth table with all possible input combinations.

2. Identify the rows in the truth table where the function evaluates to 1 (true).

3. For each row identified in step 2, create a minterm by taking the product of the input variables in that row, complementing the variables that are negated.

4. Combine all the minterms from step 3 using the OR operation (+) to obtain the expression as a sum of minterms.

II. The Truth Table for the given Boolean functions will list all possible input combinations along with the corresponding output values (0 or 1) for each combination.

III. To express the function using summation (Σ) notation, we can use the minterms identified in step 3 of the first part. Each minterm represents a term in the summation expression. We can use the variables and their complements to construct the terms, combining them with the OR operation (+).

A. F=A+BC′+B′C+A′BC can be expressed as Σ(1, 3, 5, 6) where each number represents a minterm.

B. F=X′+XZ+Y′Z+Z can be expressed as Σ(0, 1, 3, 4, 5, 7) where each number represents a minterm.

Learn more about Boolean functions

brainly.com/question/27885599'

#SPJ11

Solve the natural response and total response of the following problems using classical methods and the given initial conditions. Using MATLAB Coding. Store your answer in the indicated Variables per problem. All conditions are Zero. d²/dt² + 8dx/dt + 3x = cos3t + 4t²
Total Response: TRes Natural Response: NRes Force Response: FRes
syms x(t)
Dx =
D2x =
% Set condb1 for 1st condition
condb1 =
% Set condb2 for 2nd condition
condb2 =
conds = [condb1,condb2];
% Set eq1 for the equation on the left hand side of the given equation
eq1 =
% Set eq2 for the equation on the right hand side of the given equation
eq2 =
eq = eq1==eq2;
NRes =
TRes =
% Set FRes for the Forced Response Equation
FRes =

Answers

Finally, the total response is the summation of natural response and the forced response which is given by the following equation:

Total Response = Natural Response + Forced Response

The total solution can be given as:

                                              [tex]$$y(t) = y_h(t) + y_p(t)$$[/tex]

Given equation is:

                     [tex]$d²/dt² + 8dx/dt + 3x = cos3t + 4t²$[/tex]

We can solve this equation using classical method (Characteristic Equation) which can be defined as:

                    D²+ 8D+ 3=0

Solving above equation by factoring, we get:

                  (D+ 3)(D+ 1) = 0

          ∴ D+ 3 = 0  

        or

             D+ 1 = 0

∴ D1= -3  

or

  D2= -1

Thus, the characteristic equation for this differential equation is:

                                               [tex]$r^2 + 8r + 3 = 0$.[/tex]

To find the homogeneous solution [tex]$y_h(t)$[/tex]:

Since both roots are real and different, the homogeneous solution can be written as:

                                [tex]$$y_h(t) = c_1e^{-t} + c_2e^{-3t}$$[/tex]

To find the particular solution $y_p(t)$:

Let's guess that the particular solution is of the form:

                                       [tex]$y_p(t) = A\cos(3t) + Bt^2 + Ct + D$[/tex]

Then,

                                    [tex]$y_p′(t) = −3A\sin(3t) + 2Bt + C$[/tex]

                                      and

                                 [tex]$y_p′′(t) = −9A\cos(3t) + 2B$[/tex]

                               [tex]$y_p′′(t) + 8y_p′(t) + 3y_p(t) = 4t² + cos(3t)$[/tex]

Substituting above equations and solving for unknown constants, we get:

                      [tex]$$y_p(t) = -\frac{1}{10}t² + \frac{3}{50}t + \frac{1}{100}\cos(3t) - \frac{7}{250}\sin(3t)$$[/tex]

Therefore, the total solution can be given as:

                                              [tex]$$y(t) = y_h(t) + y_p(t)$$[/tex]

Plug in the values for the homogeneous solution and the particular solution and get the value for y(t).

Finally, the total response is the summation of natural response and the forced response which is given by the following equation:

Total Response = Natural Response + Forced Response

To know more about homogeneous solution, visit:

https://brainly.com/question/3293242

#SPJ11

You want to design an arithmetic adder/subtractor logic circuit.
(a) List the steps that you will apply in the design approach. 8-bit BCD full adder Design the circuit. Explain each step. Realize with AND, OR, NOT gates. (b) In the circuit you designed, the numbers in the last digit of the Student numbers of those in the group Collect and discuss the result. student numbers 1.5 and 5.

Answers

(a) Steps in designing an 8-bit BCD full adder circuit using AND, OR, and NOT gates:

1. **Analyze the requirements**: Understand the specifications and determine the desired functionality of the adder/subtractor circuit.

2. **Design the truth table**: Create a truth table that shows all possible input combinations and the corresponding output values for the adder/subtractor.

3. **Determine the logic equations**: Based on the truth table, derive the logic equations for each output bit of the adder/subtractor. This involves expressing the outputs in terms of the input variables using AND, OR, and NOT gates.

4. **Simplify the equations**: Simplify the logic equations using Boolean algebra or Karnaugh maps to reduce the complexity of the circuit.

5. **Draw the circuit diagram**: Using the simplified logic equations, draw the circuit diagram for the 8-bit BCD full adder. Represent the logical operations using AND, OR, and NOT gates.

6. **Implement the circuit**: Realize the circuit design by connecting the appropriate gates as per the circuit diagram. Ensure proper interconnections and adherence to the logical operations.

7. **Test and verify**: Validate the functionality of the circuit by providing various input combinations and comparing the output with the expected results.

8. **Optimize and refine**: Fine-tune the circuit design if necessary, considering factors such as speed, area, and power consumption.

(b) Regarding the numbers in the last digit of the student numbers 1.5 and 5, further information or clarification is needed. It is unclear how these numbers relate to the designed circuit or the desired discussion. Please provide additional details or specify the context so that I can assist you more effectively.

Learn more about Boolean algebra here:

https://brainly.com/question/32616360


#SPJ11

A gasoline engine is at a location where the temperature is measured to be 15.8 0C and produces 344 kW at 5800 rpm while consuming 0.0181 kg/s of fuel. During operation, data shows that its mechanical energy loss is 18 %, the actual volume of air going into each cylinder is 80% (the volumetric efficiency has a negligible variation), and the actual fuel-to-air ratio is 0.065. What were the engine parameters at sea level conditions if the pressure here is 98.7 kPa and the temperature here is 18 0C hotter than that of the elevated conditions? Determine at sea-level conditions the ISFC in kg/kW-hr Use four (4) decimal places in your solution and answer.

Answers

The engine parameters at sea-level conditions are:Power output = 36.72 kWBrake specific fuel consumption = 1.7761 kg/kW-hr.

Given data: Temperature at elevated condition = 15.8 ℃

= 15.8+273.15 K

= 288.95 K

Temperature at sea-level condition = 18 ℃ hotter than elevated condition= 15.8+18

= 33.8 ℃= 33.8+273.15 K

= 306.95 K

Pressure at sea-level condition = 98.7 kPaMechanical energy loss = 18 %Volume efficiency = 80 %Fuel-to-air ratio = 0.065Volume of fuel consumed per second = 0.0181 kg/sPower output = 344 kWEngine speed = 5800 rpmThe formula for volumetric efficiency is:

Volumetric efficiency = Actual volume of air going into cylinder / Theoretical volume of air required to burn the fue lVolume of air required to burn the fuel = Mass of fuel × (air-to-fuel ratio) / (stoichiometric air-to-fuel ratio)Stoichiometric air-to-fuel ratio for gasoline = 14.64Mass of fuel = Volume of fuel consumed per second × Density of fuel Density of gasoline

= 720 kg/m³Mass of fuel

= 0.0181 × 720

= 13.032 kg/h

Air-to-fuel ratio = 1 / Fuel-to-air ratioAir-to-fuel ratio = 1 / 0.065 = 15.3846

Theoretical volume of air required to burn the fuel = Mass of fuel × (air-to-fuel ratio) × Specific volume of airSpecific volume of air = 0.287 m³/kg

Theoretical volume of air required to burn the fuel = 13.032 × 15.3846 × 0.287 = 57.64 m³/h

Actual volume of air going into cylinder = Volume of air required to produce power / Volumetric efficiencyThe formula for power produced by an engine is:

Power output = (Torque × Engine speed) / 9.5488Torque

= Power output × 9.5488 / Engine speed Torque

= 344 × 9.5488 / 5800Torque

= 0.565 kNm

The formula for volume of air required to produce power is:

Volume of air required to produce power = (Engine speed × Torque) / (Air-to-fuel ratio × 2 × π × Volumetric efficiency × Stroke volume)Stroke volume

= (pi/4) × (Bore)² × Stroke Bore = 0.1 m (Assuming the bore of the engine)Stroke = 0.1 m (Assuming the stroke of the engine)Volume of air required to produce power

= (5800 × 0.565) / (15.3846 × 2 × π × 0.8 × ((pi/4) × (0.1)² × 0.1))Volume of air required to produce power = 0.02116 m³/hActual volume of air going into cylinder = 0.02116 / 0.8Actual volume of air going into cylinder = 0.02645 m³/h

Now, the formula for Brake specific fuel consumption is:

Brake specific fuel consumption (BSFC) = Mass of fuel consumed per second / Power output BSFC = 13.032 / (344 × 1000)BSFC = 0.0000381 kg/kW-s Convert BSFC into kg/kW-hr by multiplying it by 3600:

BSFC in kg/kW-hr = 0.0000381 × 3600BSFC in kg/kW-hr = 0.1372 kg/kW-hr

The formula for air density is:ρ = (P × M) / (R × T)

where,ρ = Density of airM = Molecular mass of air = 28.97 kg/kmolR = Gas constant = 8.314 kJ/kmol K

Temperature at elevated condition = 288.95 KPressure at sea-level condition = 98.7 kPa

Temperature at sea-level condition = 306.95 Kρ1 = (101.325 × 28.97) / (8.314 × 306.95)ρ1

= 1.166 kg/m³ρ2

= (98.7 × 28.97) / (8.314 × 288.95)ρ2 = 1.126 kg/m³

Now, the formula for air-to-fuel ratio by mass is: Air-to-fuel ratio by mass = (Actual mass of air) / (Mass of fuel consumed per second)The formula for the volume of air is:

Volume of air = Mass of air / Density of airVolume of air at elevated conditions = (Volume of fuel consumed per second × Air-to-fuel ratio by mass) / Volumetric efficiencyVolume of air at sea-level conditions = Volume of air at elevated conditions × (ρ2 / ρ1)The formula for fuel-to-air ratio is

Fuel-to-air ratio = (Mass of fuel consumed per second) / (Mass of air consumed per second)Mass of air consumed per second = Mass of fuel consumed per second / Fuel-to-air ratioAir-to-fuel ratio by mass = (Mass of air consumed per second) / (Mass of fuel consumed per second)Volume of air consumed per second

= Mass of air consumed per second / Density of air

Now, the formula for power produced by the engine is: Power output = Mass of air consumed per second × Specific heat of air × (Temperature at sea-level condition - Temperature at elevated condition) × Volumetric efficiency / (2 × Fuel-to-air ratio × Volumetric efficiency) × Heating value of fuel Specific heat of air = 1.005 kJ/kg K Heating value of gasoline = 44.4 MJ/kgρ2 / ρ1 = 1.126 / 1.166 = 0.9656Volume of air at elevated conditions = (0.0181 × 15.3846) / 0.8Volume of air at elevated conditions = 0.35424 m³/hVolume of air at sea-level conditions = 0.35424 × 0.9656Volume of air at sea-level conditions = 0.3418 m³/hMass of air consumed per second = 0.0181 / 0.065Mass of air consumed per second = 0.2785 kg/sAir-to-fuel ratio by mass = 0.2785 / 0.0181Air-to-fuel ratio by mass = 15.4Volume of air consumed per second = 0.2785 / 1.166Volume of air consumed per second = 0.2387 m³/sPower output

= 0.2387 × 1.005 × (306.95 - 288.95) × 0.8 / (2 × 0.065 × 0.8) × 44.4

Power output = 36.72 kWBsfc = 0.0181 / 36.72Bsfc

= 0.0004937 kg/kW-sBSFC in kg/kW-hr

= 0.0004937 × 3600BSFC in kg/kW-hr

= 1.7761 kg/kW-hr

To know more about engine visit:

https://brainly.com/question/31140236

#SPJ11

Q. 1 Model and simulate a thermal heating house system using Simulink models controlled by ON/OFF control strategy to calculate the heating cost taking into account the outdoor environment, the thermal characteristics of the house, and the house heater system. Your answer should include Simulink models of the whole system showing the heat cost and a comparison between the in and out doors temperatures, the heater unit and the house. Also, write the mathematical equations of both heater and house.

Answers

The Simulink model of the thermal heating house system can be used to optimize energy efficiency and reduce heating costs.

The Simulink model of the thermal heating house system using ON/OFF control strategy is presented below:There are three main components of the thermal heating house system, which are the outdoor environment, the thermal characteristics of the house, and the house heater system. The outdoor environment affects the overall heat loss of the house.

The thermal characteristics of the house describe how well the house retains heat. The house heater system is responsible for generating heat and maintaining a comfortable temperature indoors.In the thermal heating house system, heat transfer occurs between the house and the outdoor environment.

Heat is generated by the heater unit inside the house and is transferred to the indoor air, which then warms up the house. The temperature difference between the in and out doors and the heater unit and the house were calculated. The mathematical equations of both heater and house are shown below.Heater Equationq(t) = m * c * (T(t) - T0)T(t) = q(t) / (m * c) + T0House Equationq(t) = k * A * (Ti - Ta) / dT / Rq(t) = m * c * (Ti - To)

The heat cost can be calculated based on the amount of energy consumed by the heater unit. A comparison between the heat cost and the outdoor temperature can help determine how much energy is required to maintain a comfortable indoor temperature.

To know more about heating visit :

https://brainly.com/question/14643550

#SPJ11

Currently, production processes use Computer-Aided Design (CAD) systems for their manufacturing environment. Discuss how a Computer-Aided Design (CAD) system can help with the product life cycle in the manufacturing environment.

Answers

CAD software can also aid in product improvement. The software allows for the analysis of customer feedback, which can be used to make changes to the product design and manufacturing processes.

This can help to improve the quality of the product, reduce costs, and increase customer satisfaction.

Computer-Aided Design (CAD) systems play a significant role in the manufacturing environment.

CAD systems can help with the product life cycle in the manufacturing environment in several ways: Product Design: The production of a product begins with the design stage.

CAD systems aid in the creation of a design by allowing designers to create and test a design before it is produced.

CAD systems can help to accelerate the product design process by providing real-time visualizations and making design changes easy to implement.

Manufacturing and Production: CAD systems help to ensure that the product is manufactured in the right way and according to the specifications.

CAD systems create digital prototypes of the product that can be used to test the product’s functionality and performance. This saves time, reduces errors, and reduces costs.

The production process is optimized by using CAD software, and the product can be manufactured faster and more efficiently.

Quality Control: CAD software also helps to monitor and maintain quality throughout the product’s lifecycle.

It allows the manufacturer to detect errors and defects before they become costly problems.

CAD software can simulate the product’s behavior under different conditions, which can help identify design flaws that may cause issues in the future.

Product Improvement: CAD software can also aid in product improvement. The software allows for the analysis of customer feedback, which can be used to make changes to the product design and manufacturing processes.

This can help to improve the quality of the product, reduce costs, and increase customer satisfaction.

To know more about accelerate Visit :

https://brainly.com/question/32899180

#SPJ11

What does the term iseparatietric mean with respect to finito con formulation? Why is iseparametric methodology soportant for dem modem nie elements!

Answers

The term isoparametric refers to a computational technique employed in the finite element method. This technique employs the same interpolation functions to describe both the element shape and the element solution and is important for modern numerical elements.

Explanation:

The finite element method is a numerical method that solves engineering problems by dividing a domain into smaller regions called elements and analyzing the behavior of the solution within each of these elements. The geometry of the problem is generally non-linear, which means that it can't be described easily by a few simple equations.The isoparametric technique is an approach used to describe the geometry and the solution within each element by using the same mathematical functions. It means that the same shape functions that describe the geometry of an element are also used to describe the variation of the solution within that element.This technique was first introduced in the early 1960s and is now the most commonly used method for approximating solutions to engineering problems using the finite element method. This is due to its ability to accurately model complex geometries and to provide solutions that converge quickly to the exact solution.

The isoparametric technique is critical for modern numerical elements because it allows for a much more accurate representation of the solution within each element. By using the same mathematical functions to describe both the geometry and the solution, the isoparametric technique eliminates the need to interpolate the solution between different sets of functions, which can lead to inaccuracies and errors.In addition to its accuracy, the isoparametric technique is also computationally efficient, which is essential for modern numerical elements. By using the same functions to describe both the geometry and the solution, the number of operations required to solve the problem is greatly reduced. This means that the method is faster and requires fewer computational resources than other methods.This is why the isoparametric technique is so important for modern numerical elements. By providing an accurate and efficient method for solving complex engineering problems, the isoparametric technique has revolutionized the field of finite element analysis.

Know more about interpolation functions here:

https://brainly.com/question/26460790

#SPJ11

Practice Service Call 1 Application: Commercial refrigeration Type of Equipment: Frozen food display with air-cooled condensing unit (240 V/1e/60 Hz) Complaint: No refrigeration Symptoms 1. Condenser fan motor is operating normally 2. Evaporator fan motor is operating properly. 3. Internal overload is cycling compressor on and off. 4. All starting components are in good condition. 5. Compressor motor is in good condition.

Answers

In this given service call, the type of equipment used is a Frozen food display with an air-cooled condensing unit (240 V/1e/60 Hz).

The complaint for the equipment is that it is not refrigerating.

The following are the symptoms for the given practice service call:

Condenser fan motor is operating normally.

Evaporator fan motor is operating properly.Internal overload is cycling compressor on and off.

All starting components are in good condition.

Compressor motor is in good condition.

Now, let's check the possible reasons for the problem and their solutions:

Reasons:

1. Refrigerant leak

2. Dirty or blocked evaporator or condenser coils

3. Faulty expansion valve

4. Overcharge or undercharge of refrigerant

5. Defective compressor

6. Electrical problems

Solutions:

1. Identify and fix refrigerant leak, evacuate and recharge system.

2. Clean evaporator or condenser coils. If blocked, replace coils.

3. Replace the faulty expansion valve.

4. Adjust refrigerant charge.

5. Replace the compressor.

6. Check wiring and replace electrical parts as necessary.

To know more about condensing visit:

https://brainly.com/question/32266604

#SPJ11

Question 3 a) Explain the difference between an incremental and absolute encoder and write down their advantages and disadvantages.. (marks 4)

Answers

Incremental and absolute encoders are two types of encoders used in the industry. They work on the same principle of converting the linear or angular motion into electrical signals. But the main difference between these two is the way they provide the positional information. An incremental encoder generates a series of pulses in response to the motion, while an absolute encoder provides an absolute position value.

Advantages and disadvantages of Incremental encoders:
Advantages:
It provides high resolution with good accuracy, even with very slow speeds. It also provides a real-time indication of speed, direction, and distance. Incremental encoders are relatively low in cost, have a smaller size, and can be easily replaced. They have fewer electronic components, making them more durable and less prone to failure.

Disadvantages:
It has a major disadvantage of not knowing the absolute position, which is a problem when power is lost or there is a need to move to an absolute position. Moreover, to determine the absolute position, a reference or home position is required.

To know more about keyword visit:

https://brainly.com/question/29795569

#SPJ11

You are participating in a micro-air vehicle (MAV) speed contest, and have decided to power your aircraft by a smaller canister of compressed air. The initial air temperature is 300 K.You measure the velocity of the exhaust gas to be 298 K. What is the velocity of the exhaust air (in m/s) at this point?

Answers

The velocity of the exhaust air in m/s at this point can be calculated using the equation for velocity of a gas, which is given by: Velocity = √(2kRT/M),where R is the gas constant, T is the temperature in Kelvin, M is the molar mass of the gas, and k is the ratio of specific heats.

To apply this equation, we need to first calculate k and M for the compressed air. For air, k is approximately 1.4, and M is 28.97 g/mol (since air is composed mostly of nitrogen and oxygen, with some other trace gases).Next, we can plug in the values of T and k to find the velocity of the exhaust gas:Velocity = √(2 * 1.4 * 8.31 * 300/0.02897) = √(2 * 1.4 * 8.31 * 10385.6) = √(244139.712) ≈ 494.09 m/s.

Therefore, the velocity of the exhaust air is approximately 494.09 m/s.

To know more about temperature visit:

https://brainly.com/question/7510619

#SPJ11

What does the term isoparametric mean with respect to finite element formulation? Why is isoparametric methodology so important for useful modern finite elements?

Answers

Isoparametric means that the same parameterization or shape function is used to describe the geometry of the element and the variation of the field variable(s) within the element.

It is important for finite element formulation since it allows for an efficient and accurate representation of curved boundaries and more complex geometries. Using isoparametric elements in finite element analysis can make it much easier to accurately model complex shapes. When the same shape functions are used for both the physical geometry and the field variables within an element, a more accurate representation of the shape can be obtained. The use of isoparametric elements reduces the errors that occur when there is a mismatch between the shape functions and the geometry of the element

Isoparametric elements are important in modern finite elements because they allow for the accurate modelling of complex geometries and curved boundaries. The use of isoparametric methodology leads to a more efficient and accurate finite element formulation. Isoparametric elements reduce the errors that can occur when there is a mismatch between the shape functions and the geometry of the element.

To know more about parameterization visit

brainly.com/question/14762616

#SPJ11

A single start square threaded power screw is 50mm in diameter with a pitch of 8mm. The coefficient of friction is 0.08 for the collar and the threads. The frictional diameter of the collar is 1.25 times the major diameter of the screw. Determine the maximum load that can be borne by the power screw if the factor of safety of the power screw using von Mises failure theory is to be 2. The yield stress of the material of the screw is 240MPa.
Problem 3 A single start square threaded power screw is 50mm in diameter with a pitch of 8mm. The coefficient of friction is 0.08 for the collar and the threads. The frictional diameter of the collar is 1.25 times the major diameter of the screw. Determine the maximum load that can be borne by the power screw if the factor of safety of the power screw using von Mises failure theory is to be 2. The yield stress of the material of the screw is 240MPa.

Answers

A single square-thread screw is a type of screw with a square-shaped thread profile. It is used to convert rotational motion into linear motion or vice versa with high efficiency and load-bearing capabilities.

To determine the maximum load that can be borne by the power screw, we can follow these steps:

Calculate the major diameter (D) of the screw:

The major diameter is the outer diameter of the screw. In this case, it is given as 50mm.

Calculate the frictional diameter (Df) of the collar:

The frictional diameter of the collar is 1.25 times the major diameter of the screw.

Df = 1.25 * D

Calculate the mean diameter (dm) of the screw:

The mean diameter is the average diameter of the screw threads and is calculated as:

dm = D - (0.5 * p)

Where p is the pitch of the screw.

Calculate the torque (T) required to overcome the friction in the collar:

T = (F * Df * μ) / 2

Where F is the axial load applied to the screw and μ is the coefficient of friction.

Calculate the equivalent stress (σ) in the screw using von Mises failure theory:

σ = (16 * T) / (π * dm²)

Calculate the maximum load (P) that can be borne by the power screw:

P = (π * dm² * σ_yield) / 4

Where σ_yield is the yield stress of the material.

Calculate the factor of safety (FS) for the power screw:

FS = σ_yield / σ

Now, plug in the given values into the equations to calculate the maximum load and the factor of safety of the power screw.

To know more about single square-thread screw visit:

https://brainly.com/question/15557081

#SPJ11

Consider a new advancement in engineering that has altered the
way people work or think about a problem or issue. Describe the
advancement and explain why it is significant.

Answers

One of the most significant advancements in engineering that has altered the way people work or think about a problem or issue is the development of computer technology.

Computer technology has revolutionized the world, and has changed the way that people think about and approach almost every aspect of life. One of the most significant ways that computer technology has impacted society is by making information more accessible and easier to find.

With the help of the internet, people can now access more than 100 times the amount of information that was available just a few decades ago. This has made it possible for people to learn new things, explore new ideas, and solve problems in new and innovative ways.

To know more about advancements visit:

https://brainly.com/question/28348387

#SPJ11

A private healthcare clinics has enrolled in the Covid-19 vaccination pilot scheme. During the non-peak pandemic period, patients arrive at a rate of about five per hour according to a Poisson distribution. There is only one medical doctor in the clinics who can handle the vaccination, and it takes about ten minutes per patient for the vaccination, following an exponential distribution. (10 marks) (1) What is the probability that there are more than two patients in the system? More than four, six and eight patients? (ii) What is the probability that the system is empty? (111) How long will the patients have to wait on average before reaching the doctor? (iv) What is the average number of patients in the queue and in the system? (v) If a second medical doctor is added (who works at the same pace), how will the operating characteristics computed in parts (ii), (111) and (iv) change? Assume that patients wait in a single line and go to the first available doctor.

Answers

Arrival is Poisson distribution with λ = A -5 per hour (arrival).

Service is exponentially distributed with ω = 6 per hour

(since it takes lo minutes to serve a customer, So in 60 minutes it will serve 6)

here ω>λ

and also this is a M/M/1/∞/FCFS/∞

here M, M → Memory less arrival and

service 1 → No of server

∞ → queal length can be

∞ → population

FCFS First come first serve Rule

For this type of system, the probability that the system is empty is given by

I-e

where, e=γμ

I=γμ

= 1-5/6

= 1/6 probability that the system is empty

To know more about probability:

https://brainly.com/question/31828911

#SPJ4

A string of negligible mass passes over a fixed pulley and supports a 2m mass at one end. In it At the other end of the rope there is a mass m and, moving from it by means of a resource of constant k, there is another mass m. Find the equations of motion of the system by Lagrange's method and by Hamilton method. In the figure represents the rest length of the resource and x its displacement.

Answers

By applying Lagrange's method and Hamilton's method, we can derive the equations of motion for a system consisting of a string with negligible mass passing over a fixed pulley.

At one end of the string, there is a 2m mass, while at the other end, there is a mass m connected to another mass m via a resource with constant k. Using Lagrange's method, we start by defining the generalized coordinates of the system. Let x denote the displacement of the resource from its rest position, and let θ represent the angular displacement of the pulley. The Lagrangian of the system can be expressed as L = T - V, where T is the kinetic energy and V is the potential energy. The kinetic energy T of the system consists of the kinetic energies of the masses and the resource. The potential energy V includes the potential energy due to gravity and the potential energy stored in the resource. By applying the Lagrange equations, we can derive the equations of motion for the system. On the other hand, Hamilton's method involves defining the generalized momenta as the partial derivatives of the Lagrangian with respect to the generalized coordinates' rates of change. By applying the Hamiltonian equations, we can obtain the equations of motion for the system. Overall, both Lagrange's method and Hamilton's method provide mathematical frameworks to derive the equations of motion for mechanical systems. While Lagrange's method focuses on energy considerations, Hamilton's method incorporates momentum considerations. These methods are valuable tools for analyzing the dynamics of complex systems in physics and engineering.

Learn more about kinetic energy here:

https://brainly.com/question/999862

#SPJ11

A cylindrical bar of ductile cast iron is subjected to reversed and rotating-bending tests, test results (i.e., S-N behavior) are shown in Animated Figure 8.21. If the bar diameter is 8.46 mm, determine the maximum cyclic load that may be applied to ensure that fatigue failure will not occur. Assume a factor of safety of 2.22 and that the distance between loadbearing points is 59.9 mm.

Answers

To determine the maximum cyclic load for the cylindrical bar of ductile cast iron, we use the S-N (stress-number of cycles to failure) behavior data and factor of safety. With a bar diameter of 8.46 mm and a distance of 59.9 mm between load-bearing points, the maximum cyclic load is calculated to ensure fatigue failure does not occur.

In the S-N behavior data, we have a graph showing the relationship between stress and the number of cycles to failure. To calculate the maximum cyclic load, we follow these steps:

1. Determine the endurance limit: Identify the stress level corresponding to the desired number of cycles to failure without fatigue failure. In this case, we assume a factor of safety of 2.22. Find the stress value on the S-N curve for this desired number of cycles.

2. Calculate the maximum cyclic load: The maximum cyclic load can be obtained by multiplying the endurance limit by the cross-sectional area of the bar. The cross-sectional area can be calculated using the bar diameter.

By applying these calculations, we can determine the maximum cyclic load that the cylindrical bar of ductile cast iron can withstand without experiencing fatigue failure. The factor of safety ensures that the applied load remains within the safe range and provides a margin of safety to account for uncertainties and variations in material properties.

Learn more about endurance here:

https://brainly.com/question/30089488

#SPJ11

1. You are to write a program that will do the following: . Initialize the system properly to utilize the motor driver chip to control a 4-phase unipolar stepper motor and wire the motor appropriately. Before entering the program loop.. Prompt the user for the number of steps needed to rotate the motor by 1 full revolution. This will be used to initialize the motor Prompt the user for the rotation rate in revolutions per minute (rpm) for the motor when it is rotating. Prompt the user for an initial motor direction, clockwise or counter-clockwise. In the program loop ... . The user should be presented with a menu with options to change any of the initial characteristics plus an option to select a number of steps for the motor to take in the specified direction and speed. Once a number of steps is selected, the motor should rotate that number of steps then the loop should begin again. 2. Compile the main program with the all necessary subroutines. Test and debug the program until it operates correctly. Once your program works, demonstrate it to your lab instructor. . • .

Answers

Once the program is compiled, it should be tested, and debugging should be done to make sure it operates correctly. -Demonstration: Once the program is tested and working, it should be demonstrated to the lab instructor to prove its functionality.

In order to program a motor driver chip to control a 4-phase unipolar stepper motor, it is essential to follow certain steps. The following is the outline of the process, which is also a comprehensive answer to the question stated above:Initial steps: To initialize the system, it is required to wire the motor correctly and use a motor driver chip. The motor driver chip will help to regulate the speed, direction, and position of the motor. -Prompt the user:

Once the initialization is done, the user should be prompted to enter the number of steps required to rotate the motor by one complete revolution, followed by the RPM rate of rotation, and the initial direction of the motor. -Program loop: Once the user has entered the required information, the program loop should begin. In this loop, the user should be presented with an option to change the initial characteristics and select the number of steps required for the motor to move in the selected direction and speed. -Motor rotation: Once the number of steps is selected, the motor will rotate in the specified direction and speed.

Once the required number of steps is complete, the loop should begin again. -Subroutines: It is important to have all necessary subroutines and compile the main program. Once the program is compiled, it should be tested, and debugging should be done to make sure it operates correctly. -Demonstration: Once the program is tested and working, it should be demonstrated to the lab instructor to prove its functionality.

To know more about motor visit :

https://brainly.com/question/31451222

#SPJ11

3.5 kg of water are present in a saturated liquid-vapor filling a container whose volume is 1.5 m^3 at a temp of 30 C. What is the pressure value inside the container? Calculate quality x. Calculate the entropy.

Answers

The pressure value inside the container is 118.8 kPa. The quality x is 0.914. The entropy is 7.815 kJ/K. We can determine the pressure inside the container by using the saturation tables.

Saturation tables provide information about the state of a substance at a given temperature and pressure. They include values such as saturation pressure, specific volume, enthalpy, and entropy of the substance. The saturation pressure is the pressure at which the substance changes phase from a liquid to a vapor or vice versa.

It is also known as the vapor pressure of the substance. Given that there are 3.5 kg of water present in a saturated liquid-vapor filling a container whose volume is 1.5 m³ at a temperature of 30 °C, we can use the saturation tables to determine the pressure value inside the container.

To know more about include visit:

https://brainly.com/question/33326357

#SPJ11

Indicate, with some detail, two areas where the electrification process may not be able to replace other energy sources. What are the applications, what is the fuel used currently, why is electricity insufficient?

Answers

Electrification process refers to the process of converting something from a non-electric state to an electric state. While it is true that electricity has become an essential commodity.

in the world today, there are still areas where the electrification process may not be able to replace other energy sources. The following are two areas where electrification may not be sufficient. Aviation is one area where the electrification process may not be able to replace other energy sources.

Aviation relies heavily on petroleum-based fuels, which are derived from crude oil. While there has been some development in electric aircraft, such as small unmanned aerial vehicles and gliders, the technology is still in its infancy. The aviation industry requires an extremely high energy density fuel, which electric batteries cannot yet provide.
To know more about commodity visit:

https://brainly.com/question/32297758

#SPJ11

A turbine enters steam at 4000 kPa, 500 °C, 200 m/s and an outlet corresponding to saturated steam at 175 kPa and a speed of 120 m/s. If the mass flow is 2000 kg/min, and the power output is 15000 kW. Determine (a) the magnitude of the heat transferred. (b) Draw this process on the P-v diagram. (place the saturation lines)

Answers

A turbine enters steam at 4000 kPa, 500°C, 200 m/s and an outlet corresponding to saturated steam at 175 kPa and a speed of 120 m/s. If the mass flow is 2000 kg/min, and the power output is 15000 kW, we can determine

The magnitude of the heat transferred In order to calculate the magnitude of the heat transferred, we need to find the difference in enthalpy at the inlet and outlet of the turbine using the formula: Q = (m × (h2 - h1))WhereQ is the magnitude of heat transferred m is the mass flowh1 is the enthalpy of steam at the turbine inleth2 is the enthalpy of steam at the turbine outlet

We can calculate the enthalpy values using steam tables at the given pressures and temperatures. We get:
[tex]h1 = 3485.7 kJ/kgh2 = 2534.2 kJ/kg[/tex]Now, we can substitute the values to find the magnitude of heat transferred:
[tex]Q = (2000 kg/min × (2534.2 - 3485.7) kJ/kg/min) = -1.903 × 10^7 kJ/min[/tex]

Therefore, the magnitude of heat transferred is -1.903 × 10^7 kJ/min.

Initially, the steam enters the turbine at state 1 and undergoes an adiabatic (isentropic) expansion to state 2, corresponding to saturated steam at 175 kPa. This process is represented by the blue line on the diagram. The area under the curve represents the work output of the turbine, which is equal to 15000 kW in this case.

The saturation lines are represented by the red lines.

To know more about adiabatic visit:-

https://brainly.com/question/13002309

#SPJ11

An engineer is tasked to design a concrete mixture for pavement in Fayetteville, AR, USA. Due to the very low temperature in winters, the pavement is expected to sustain frost action. The engineer is originally from Basra, Iraq, and does not have decent information regarding the concrete used in such conditions. Accordingly, he had to ask a civil engineering student (his GF) that is just finished the Concrete Technology Class at the University of Arkansas. He provided his GF with the following information: the recommendation of the ACI Committee 201 has to be considered regarding durability, and the procedure of the ACI 211.1 for designing concrete mixture for normal strength has to be followed. After all this information, what is the water content of the mixture per one cubic meter and air content should his GF has calculated if the maximum aggregate size is 20 mm and slump is 30 mm? Write down your answer only.

Answers

The water content and air content of the concrete mixture can be calculated using the ACI 211.1 procedure.  To accurately determine the water content and air content, the civil engineering student (GF) would need additional information, such as the mix design requirements, project specifications, and any local regulations or guidelines that may apply in Fayetteville, AR, USA.

However, without the specific mix design requirements, such as target compressive strength, cement content, and aggregate properties, it is not possible to provide an exact answer for the water content and air content.

The ACI 211.1 procedure takes into account factors like the maximum aggregate size, slump, and specific requirements for durability. The recommended water content is determined based on the water-cement ratio, which is a key parameter in achieving the desired strength and durability of the concrete. The air content is typically specified to enhance the resistance to freeze-thaw cycles and frost action.

To accurately determine the water content and air content, the civil engineering student (GF) would need additional information, such as the mix design requirements, project specifications, and any local regulations or guidelines that may apply in Fayetteville, AR, USA.

Learn more about procedure here

https://brainly.com/question/30847893

#SPJ11

SUBJECT: PNEUMATICS & ELECTRO-PNEUMATICS
State Boyle's Law and Charles' Law with necessary
equations?

Answers

In summary, Boyle's Law states that when the pressure of a gas increases, its volume decreases, and vice versa. Charles' Law states that when the temperature of a gas increases, its volume also increases, and vice versa.

Pneumatics and electro-pneumatics are both systems that use compressed air to create mechanical motion. The principles of Boyle's Law and Charles' Law are important to understand when working with these systems.

Below are the explanations of the two laws along with their equations.

Boyle's Law: According to Boyle's Law, the pressure and volume of a gas are inversely proportional to each other, given that the temperature and the amount of gas remain constant. The equation that expresses this relationship is:

P1V1 = P2V2

Where P1 and V1 are the initial pressure and volume, respectively, and P2 and V2 are the final pressure and volume, respectively.

Charles' Law: Charles' Law states that the volume of a gas is directly proportional to its temperature at constant pressure. The equation that expresses this relationship is:

(V1/T1) = (V2/T2)

Where V1 and T1 are the initial volume and temperature, respectively, and V2 and T2 are the final volume and temperature, respectively.

to know more about Pneumatics visit:

https://brainly.com/question/20619377

#SPJ11

Please ONLY answer if you have a good understanding of the subject. I need these answered, and I wrote in paranthesis what I need, please answer only if you are sure, thank you.
Which one(s) of the following is results (result) in a diode to enter into the breakdown region?
Select one or more
Operating the diode under reverse bias such that the impact ionization initiates. (Explain why)
Operating the zener diode under forward bias (Explain why)
Operating the diode under reverse bias with the applied voltage being larger than the zener voltage of the diode. (Explain why)

Answers

Operating the diode under reverse bias such that the impact ionization initiates.

Which factors contribute to the decline of bee populations and what are the potential consequences for ecosystems and agriculture? Explain in one paragraph.

Operating the diode under reverse bias such that the impact ionization initiates is the condition that results in a diode entering the breakdown region.

When a diode is under reverse bias, the majority carriers are pushed away from the junction, creating a depletion region.

Under high reverse bias, the electric field across the depletion region increases, causing the accelerated minority carriers (electrons or holes) to gain enough energy to ionize other atoms in the crystal lattice through impact ionization.

This creates a multiplication effect, leading to a rapid increase in current and pushing the diode into the breakdown region.

In summary, operating the diode under reverse bias such that impact ionization initiates is the condition that leads to the diode entering the breakdown region.

Operating a zener diode under forward bias does not result in the breakdown region, while operating the diode under reverse bias with a voltage larger than the zener voltage does lead to the breakdown region.

Learn more about ionization initiates

brainly.com/question/32820632

#SPJ11

An empty cylinder is 50 cm in diameter, 1.20 m high and weighs 312 N. If the cylinder is placed in water with its axis vertical, would it be stable?

Answers

The stability of an empty cylinder placed in water with its axis vertical can be determined by analyzing the center of buoyancy and the center of gravity of the cylinder. If the center of gravity lies below the center of buoyancy, the cylinder will be stable.  

To assess the stability of the cylinder in water, we need to compare the positions of the center of gravity and the center of buoyancy. The center of gravity is the point where the entire weight of the cylinder is considered to act, while the center of buoyancy is the center of the volume of water displaced by the cylinder. If the center of gravity is located below the center of buoyancy, the cylinder will be stable. However, if the center of gravity is above the center of buoyancy, the cylinder will be unstable and tend to overturn. To determine the positions of the center of gravity and center of buoyancy, we need to consider the geometry and weight of the cylinder. Given that the cylinder weighs 312 N, we can calculate the position of its center of gravity based on the weight distribution. Additionally, the dimensions of the cylinder (50 cm diameter, 1.20 m height) can be used to calculate the position of the center of buoyancy. By comparing the positions of the center of gravity and center of buoyancy, we can conclude whether the cylinder will be stable or not when placed in water with its axis vertical.

Learn more about buoyancy here:

https://brainly.com/question/30641396

#SPJ11

What will be the steady-state response of a system with a transfer function 1/s+2 when subject to the input? θi = 3 sin (5t + 30°)

Answers

The steady-state response of a system with a transfer function 1/s+2 when subject to the input θi = 3 sin (5t + 30°) is given by the formula as;

θss= (Kθ θi) / (1 + Tθs) Where,Kθ = Static gainTθ = Time constant θi = Input θss = Steady state response

Also, the transfer function of the system is given as;

H(s) = 1 / (s + 2)

Thus, solving the problem using the formula for steady-state response, we have;

θss= (Kθ θi) / (1 + Tθs)

= (1 / (2 * 5)) * 3 sin (5t + 30°)

θss = 0.3 sin (5t + 30°)

This was obtained using the formula for steady-state response and the Laplace transform method.

The system response was analyzed by multiplying the transfer function with the input signal, and applying partial fraction decomposition to find the output signal. Finally, the steady-state response was found by taking the sine component of the output signal.

To know more about Laplace transform method visit:

brainly.com/question/31583487

#SPJ11

(a) Define surface emissivity, ε. (b) [9] A domestic radiator is configured as a rudimentary roof-mounted solar collector to provide a source of hot water. For a 1 m² radiator, painted white, calculate the nominal steady-state temperature that the radiator would reach. (Nominal implies that no heat is extracted from the radiator via, for example, a pumped cold water stream). Assume the following: solar irradiation of 700 W/m²; an ambient temperature (air and surrounding surfaces) of 20°C; a convective heat transfer coefficient of 10 W/m²K between the collector and ambient; and no heat losses from the underside of the collector. Note: The absorptivity and emissivity of white paint for longwave radiation is 0.8 whereas its absorptivity for shortwave radiation is 0.2. Stefan-Boltzmann's constant is o = 5.67 x 10-8 W/m²K4. . . (c) [3] Suggest three practical measures – with justification – by which the performance of the collector could be improved.

Answers

Surface emissivity, can be defined as the ratio of the radiant energy radiated by a surface to the energy radiated by a perfect black body at the same temperature.

It is the surface's effectiveness in emitting energy as thermal radiation. The surface is regarded as a black body with an emissivity of 1 if all the radiation that hits it is absorbed and re-radiated. The surface is said to have a surface emissivity of 0 if no radiation is emitted.

A body with an emissivity of 0.5, for example, can radiate only half as much thermal energy as a black body at the same temperature. For the given problem, the first step is to calculate the net heat transfer from the radiator to the environment.

To know more about emissivity visit:

https://brainly.com/question/32190909

#SPJ11

A three-phase synchronous generator is rotating at 1500 RPM synchronous speed. The output power of this generator is 125 KW and its efficiency is 88%. If the copper losses are neglected. Calculate the induced torque by this generator Select one: O a. Tᵢₙ=8.34 N.m. O b. Tᵢₙ=79.58 N.m. O c. None O d. Tᵢₙ= 716 N.m. O e. Tᵢₙ=88.45 N.m.

Answers

A three-phase synchronous generator is rotating at 1500 RPM synchronous speed. The output power of this generator is 125 KW and its efficiency is 88%. If the copper losses are neglected, the induced torque by this generator is given as 716 N.m.Explanation:

Given that the synchronous speed of the generator, Ns = 1500 RPM, Output power, P = 125 KW, Efficiency of the generator, η = 88%The torque of a synchronous generator is given byT = (P × 10^3)/(2π × Ns/60)Assuming that copper losses are neglected. Efficiency is given asEfficiency, η = (Output power)/(Output power + losses) = (Output power)/(Output power + copper losses)∴

Copper losses, Pc = (Output power)/(η) - (Output power)∴ Pc = (125 × 10^3)/(0.88) - (125 × 10^3) = 17045.45 W = 17.05 KW ∴ Electrical losses = 17.05 KWTotal output power = 125 KW + 17.05 KW = 142.05 KW Torque produced by the generator, T = (P × 10^3)/(2π × Ns/60)= (142.05 × 10^3)/(2π × 1500/60) = 716.25 N.m

The induced torque by this generator is 716 N.m.

To know about Torque visit:

https://brainly.com/question/30338175

#SPJ11

The magnitudes of the latent heats depend on the temperature or
pressure at which the phase change occurs.

Answers

The latent heat is the amount of heat energy that needs to be added or removed from a substance in order for it to change phase without changing temperature.

The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs. For instance, the latent heat of fusion of water is 334 J/g, which means that 334 joules of energy are required to melt one gram of ice at 0°C and atmospheric pressure.

The latent heat of vaporization of water, on the other hand, is 2,260 J/g, which means that 2,260 joules of energy are required to turn one gram of water into steam at 100°C and atmospheric pressure

Latent heat refers to the heat energy required to transform a substance from one phase to another at a constant temperature and pressure, without any change in temperature.

Latent heat has different magnitudes at different temperatures and pressures, depending on the phase change that occurs. In other words, the amount of energy required to change the phase of a substance from solid to liquid or from liquid to gas will differ based on the temperature and pressure at which it happens.

For example, the latent heat of fusion of water is 334 J/g, which means that 334 joules of energy are needed to melt one gram of ice at 0°C and atmospheric pressure. Similarly, the latent heat of vaporization of water is 2,260 J/g, which means that 2,260 joules of energy are required to turn one gram of water into steam at 100°C and atmospheric pressure.

In conclusion, the magnitude of latent heat depends on the temperature or pressure at which the phase change occurs. At different temperatures and pressures, different amounts of energy are required to change the phase of a substance without any change in temperature.

To know more about latent heat visit:

brainly.com/question/23976436

#SPJ11

The open-loop transfer function of a unit-negative-feedback system has the form of
G(s)H(s) = 1 / s(s+1).
Please determine the following transient specifications when the reference input is a unit step function:
(1) Percentage overshoot σ%;
(2) Peak time tp;
(3) 2% Settling time t.

Answers

For the given open-loop transfer function 1 / (s(s+1)), the transient specifications when the reference input is a unit step function can be determined by calculating the percentage overshoot, peak time, and 2% settling time using appropriate formulas for a second-order system.

What is the percentage overshoot?

To determine the transient specifications for the given open-loop transfer function G(s)H(s) = 1 / (s(s+1)) with a unit step reference input, we need to analyze the corresponding closed-loop system.

1) Percentage overshoot (σ%):

The percentage overshoot is a measure of how much the response exceeds the final steady-state value. For a second-order system like this, the percentage overshoot can be approximated using the formula: σ% ≈ exp((-ζπ) / √(1-ζ^2)) * 100, where ζ is the damping ratio. In this case, ζ = 1 / (2√2), so substituting this value into the formula will give the percentage overshoot.

2) Peak time (tp):

The peak time is the time it takes for the response to reach its maximum value. For a second-order system, the peak time can be approximated using the formula: tp ≈ π / (ωd√(1-ζ^2)), where ωd is the undamped natural frequency. In this case, ωd = 1, so substituting this value into the formula will give the peak time.

3) 2% settling time (ts):

The settling time is the time it takes for the response to reach and stay within 2% of the final steady-state value. For a second-order system, the settling time can be approximated using the formula: ts ≈ 4 / (ζωn), where ωn is the natural frequency. In this case, ωn = 1, so substituting this value into the formula will give the 2% settling time.

Learn more on peak time here;

https://brainly.com/question/28195480

#SPJ4

Other Questions
Question 3 (Module 11) 9 marks a. If a parent knows that they are a carrier for a BRCA1 mutation, which ethical principle is the primary reason that we prevent them from getting their small child tested? Why? b. A genetic test is developed, allowing dramatically better outcomes in pancreatic cancer. The company who developed the test decides to charge $15,000 per test, which is not covered by Medicare. Briefly explain which ethical principle is raised in this situation and why there is a problem. c. Genetic testing is available that reliably predicts Huntingtons' disease. No treatment or prevention is available for those that test positive. Briefly explain which ethical principle could be used to argue against using this test.My guess is:a) BRCA1 is a causative gene for the development of breast cancer. Pediatric genetic testing has been a matter of ethical concern because of the protection of the rights of the children that may get abused by non-other than their parents due to the lack of awareness. Autonomy is the ethical principle that gives the right to the person only to decide what they can do with their body. Also, non-maleficence is the ethical principle that prevents the parents and any other healthcare individual to do any harm to the patient. The parent may not be aware of treatments related to the concerned disease. The genetic test may not be as reliable to determine whether the BRCA1 gene is present in both alleles but is repressed due to some other factors in the child. Identification of different disease genes in the child's DNA or genes that are completely unknown may scare the parents.b) The ethical concern regarding the cost issue of a test is against the company that is withholding the right to treatment for a difficult disease from the ill-fated. In this way, only the rich will survive while the poor perish. Thus, it can be debated that healthcare should be available to all. This falls under the "Justice" ethics principle - not only everyone should get equal help but also, the neediest get the right to be treated first.c) A disease that is incurable hitherto, may cause the decision-makers to do harm to the patient. The ethics principle of beneficence may come into play and prevent the test taker to take the test in the first place, so that the test taker or patient may be safe from any social harm. It is done in the best interest of the patient. (i) Explain in one or two sentences why the opacity of the Sun's atmosphere increases sharply at the wavelength of the first Balmer transition, Ha. (ii) Consider two photons emerging from the photosph Why are events like the PETM good analogues for modern climate change? Why aren't they perfect analogues? (3-5 sentences) 1. We sleep because we need to hide ourselves away from danger. A) True B) False 2. During sexual activity more dopamine is released in the brain. A) True B) False Microbiology LabHow might one differentiate between Streptococcus pyogenes and Lactococcus lactis using confirmation from 2-3 testsAt my avail are following tests:GelatinaseGlocoseLactoseSucroseSIMMR-VPCitrateBlood AgarUrea hydrolysisStarch Hydrolysis. The full-load copper loss on H.V. side of 100 kVA, 11000/317 V 1-phase transformer is 0.62 kW and on the L.V. side is 0.48 kW. Calculate: (9) R1, R2 and Rain ohms [12] The total reactance is 4 percent (4 %), find X1, X2 and X; in ohms if the reactance is divided in the same proportion as resistance Water at 20C flows with a velocity of 2.10 m/s through a horizontal 1-mm diameter tube to which are attached two pressure taps a distance 1-m apart. What is the maximum pressure drop allowed if the flow is to be laminar? Calculate the urine output for this continuous bladder irrigation Starting credit: 2000mL Bags of sterile water (irrigation solution) added: 3000mL, 3000mL, 3000mL Ending Balance: 2000mL Drainage emptied throughout the shift 1000mL, 2000mL, 3500mL, 800mL, 2000mLUrine output = .........................mL which is not the example of fatigue a, none b. bolt in office chairc. crank arm of bycycle d. pressuresed oil pipes sandy would like to follow a single group of people as they grow up in her research. what type of study is sandy using? (cross-sectional, longitudinal, cross-sequential) The kidney combines carbon dioxide and water to create bicarbonate ions that are released into the blood, and hydrogen ions combine with either phosphate ions or ammonia and are excreted with the filtrate from the... O medulla O nephron O blood vessel O bladder 7. Two blocks (m = 1.0kg and M = 10 kg) and a spring (k = 200) are arranged on a horizontal, frictionless surface as shown in Fig. 4.6. The coefficient of static friction between the two blocks is 0.40. What is the maximum possible amplitude of simple harmonic motion of the spring-block system if no slippage is to occur between the blocks? [HRW5 16-25]Previous question In capacity requirement planning, which one of the following statements concerning capacity calculation is RIGHT? O Utilization shall not be allowed to be lower than 85%. O Number of machines or workers don't need to be considered. 2 pt O Load percentage will never exceed 100%. O Load percentage shows what percentage of your capacity is actually used. O Capacity efficiency is always 100%. A material is subjected to two mutually perpendicular linear strains together with a shear strain. Given that this system produces principal strains of 0.0001 compressive and 0.0003 tensile and that one of the linear strains is 0.00025 tensile, determine the magnitudes of the other limear strain, the shear strain, and the principal stresses by using graphical Mohr's circles. Take G=70GN/m2 and E=210GN/m? A drive for a punch press requires 40 hp with the pinion speed of 800 rpm and the gear speed of 200 rpm. Diametral pitch is 4, the steel pinion has 24 teeth and the steel gear has 95 teeth. Gear teeth are 20, full-depth, involute shape. Calculating the required allowable bending and contact stresses for each gear. Also, select the suitable steel for the pinion and gear and specify it. Use the following parameters and calculate the ones which are not given!Km = 1.22Ks = 1.05 Ko= 1.75KB = 1.00Av = 10SF = 1.25KR = 1.25F = 3.00 inNcp=1.35 10 cycles NCG-3.41 10 cycles Batesian mimicry is when a prey species without toxic or unpalatable defenses ("mimic" species) evolve "fake" warning signals to resemble another prey species ("model" species, in this context) that d A horse breeder has identified that some of their horses produce much more muscle than the others. The heavily muscled horses are all related, leading to the breeder believing the cause is genetic. Suggest an investigation to identify the gene responsible for the phenotype, assuming there is a single gene involved. Take into account both practical and ethical aspects when suggesting an experimental approach. A ball weighing 45 kilograms is suspended on a rope from theceiling of a rocket bus. The bus is suddenly accelerating at4000m/s/s. The rope is 3 feet long. After how long is the rope 37degrees from RNA is typically synthesized in a _ ? direction while it is read in a ? direction. (0.25 pt.) A) 5' to 3'; 5' to 3 B) 5' to 3'; 3' to 5 C) 3' to 5; 5' to 3 D) 3' to 5'; 3' to 5 EAuction is now a monopolist in the internet auction industry. It also owns a site that handles payments over the internet, called PayForIt. It is competing with another internet payment site, called PayBuddy. EAuction has now stipulated that any transaction on its auction site must use PayForIt, rather than PayBuddy, for the payment. Should the Competition Bureau intervene? Explain.