Suppose that the dollar cost of producing x radios is C(x) = 800 + 40x - 0.2x2. Find the marginal cost whien 35 radios are produced 18) The size of a population of mice after t months is P = 100(1 + 0.21 +0.02t2). Find the growth rate att = 17 months. 19) A ball is thrown vertically upward from the ground at a velocity of 65 feet per second. Its distance from the ground after t seconds is given by s(t) = - 1612 + 65t. How fast is the ball moving 2 seconds after being thrown? 20) The number of books in a small library increases at a rate according to the function B't) = 2700.051 wheret is measured in years after the library opens. How many books will the library have 1 year(s) after opening?

Answers

Answer 1

The marginal cost of producing 35 radios is $26.

18) the growth rate at t = 17 months is 13.48.

19) the ball is moving at a velocity of 1 feet per second 2 seconds after being thrown upwards.

20) the number of books the library will have 1 year after opening is 2700.05

Suppose that the dollar cost of producing x radios is C(x) = 800 + 40x - 0.2x². Find the marginal cost when 35 radios are produced.  

The marginal cost when 35 radios are produced is $20/marginal unit.

Marginal cost can be expressed as the derivative of the cost function.

Therefore,

C'(x) = 40 - 0.4xC'(35)

= 40 - 0.4(35)

= 26.

18) The size of a population of mice after t months is P = 100(1 + 0.21 + 0.02t²). Find the growth rate at t = 17 months.

The population function of mice is given as P = 100(1 + 0.21 + 0.02t²).

Therefore, the growth rate is P'(t) = 4t/5 + 21/100.

Substitute t = 17 months to get the growth rate:

P'(17) = 4(17)/5 + 21/100

= 68/5 + 21/100

= 337/25

= 13.48.

19) A ball is thrown vertically upward from the ground at a velocity of 65 feet per second. Its distance from the ground after t seconds is given by s(t) = -16t² + 65t. How fast is the ball moving 2 seconds after being thrown?

The velocity of the ball can be expressed as the derivative of the distance function. Therefore,

v(t) = s'(t) = -32t + 65.

So v(2) = -32(2) + 65= 1.

20) The number of books in a small library increases at a rate according to the function B(t) = 2700.05t, where t is measured in years after the library opens. How many books will the library have 1 year after opening?

The function of the number of books in a library is given as B(t) = 2700.05t.

Therefore, the number of books the library will have 1 year after opening is:

B(1) = 2700.05(1)

= 2700.05 books.

To learn more about population function, refer:-

https://brainly.com/question/29885717

#SPJ11


Related Questions

Find the equation of the line(s) normal to the given curve and with the given slope. (I have seen this problem posted multiple times, but each has a different answer.)
y=(2x-1)^3, normal line with slope -1/24, x>0

Answers

The equation of the line(s) normal to the curve y = (2x - 1)^3 with a slope of -1/24 and x > 0 is y = 12x - 6 - (1/6)i.

To find the equation of the line(s) normal to the curve y = (2x - 1)^3 with a slope of -1/24, we can use the properties of derivatives.

The slope of the normal line to a curve at a given point is the negative reciprocal of the slope of the tangent line to the curve at that point.

First, we need to find the derivative of the given curve to determine the slope of the tangent line at any point.

Let's find the derivative of y = (2x - 1)^3:

dy/dx = 3(2x - 1)^2 * 2

      = 6(2x - 1)^2

Now, let's find the x-coordinate(s) of the point(s) where the derivative is equal to -1/24.

-1/24 = 6(2x - 1)^2

Dividing both sides by 6:

-1/144 = (2x - 1)^2

Taking the square root of both sides:

±√(-1/144) = 2x - 1

±(1/12)i = 2x - 1

For real solutions, we can disregard the complex roots. So, we only consider the positive root:

(1/12)i = 2x - 1

Solving for x:

2x = 1 + (1/12)i

x = (1/2) + (1/24)i

Since we are interested in values of x greater than 0, we discard the solution x = (1/2) + (1/24)i.

Now, we can find the y-coordinate(s) of the point(s) using the original equation of the curve:

y = (2x - 1)^3

Substituting x = (1/2) + (1/24)i into the equation:

y = (2((1/2) + (1/24)i) - 1)^3

  = (1 + (1/12)i - 1)^3

  = (1/12)i^3

  = (-1/12)i

Therefore, we have a point on the curve at (x, y) = ((1/2) + (1/24)i, (-1/12)i).

Now, we can determine the slope of the tangent line at this point by evaluating the derivative:

dy/dx = 6(2x - 1)^2

Substituting x = (1/2) + (1/24)i into the derivative:

dy/dx = 6(2((1/2) + (1/24)i) - 1)^2

      = 6(1 + (1/12)i - 1)^2

      = 6(1/12)i^2

      = -(1/12)

The slope of the tangent line at the point ((1/2) + (1/24)i, (-1/12)i) is -(1/12).

To find the slope of the normal line, we take the negative reciprocal:

m = 12

So, the slope of the normal line is 12.

Now, we have a point on the curve ((1/2) + (1/24)i, (-1/12)i) and the slope of the normal line is 12.

Using the point-slope form of a line, we can write the equation of the normal line:

y - (-1/12)i = 12(x - ((1/2) + (1/24)i))

Simplifying:

y + (1/12)i = 12x - 6 - (1/2)i - (1/2)i

Combining like terms:

y + (1/12)i = 12x - 6 - (1/24)i

To write the equation without complex numbers, we can separate the real and imaginary parts:

y = 12x - 6 - (1/12)i - (1/12)i

The equation of the normal line, in terms of real and imaginary parts, is:

y = 12x - 6 - (1/6)i.

To know more about line of equation refer here:

https://brainly.com/question/29244776?#

#SPJ11

URGENT !!!
Let f be a function that admits continuous second partial derivatives, for which it is known that: f(x,y) = (36x2 - 4xy? 16y? - 4x"y - 32y2 + 16y) fax = 108.rº - 4y? fyy = 48y2 - 4x2 - 64y + 16 y f

Answers

The value of the partial derivatives [tex]f_{xx}[/tex] = 72,  [tex]f_{yy}[/tex]= -32, and [tex]f_{xy}[/tex] = -16 for the given function f(x, y) = 36x² - 4xy - 16y² - 4xy - 32y² + 16y.

Given the function f(x, y) = 36x² - 4xy - 16y² - 4xy - 32y² + 16y, we are asked to find the values of [tex]f_{xx}[/tex], [tex]f_{yy}[/tex], and [tex]f_{xy}[/tex].

To find [tex]f_{xx}[/tex], we need to differentiate f(x, y) twice with respect to x. Let's denote the partial derivative with respect to x as [tex]f_{x}[/tex] and the second partial derivative as [tex]f_{xx}[/tex].

First, we find the partial derivative [tex]f_{x}[/tex]:

[tex]f_{x}[/tex] = d/dx (36x² - 4xy - 16y² - 4xy - 32y² + 16y)

  = 72x - 8y - 8y.

Next, we find the second partial derivative [tex]f_{xx}[/tex]:

[tex]f_{xx}[/tex] = d/dx (72x - 8y - 8y)

   = 72.

So, [tex]f_{xx}[/tex] = 72.

Similarly, to find [tex]f_{yy}[/tex], we differentiate f(x, y) twice with respect to y. Let's denote the partial derivative with respect to y as fy and the second partial derivative as [tex]f_{yy}[/tex].

First, we find the partial derivative [tex]f_{y}[/tex]:

[tex]f_{y}[/tex] = d/dy (36x² - 4xy - 16y² - 4xy - 32y² + 16y)

  = -4x - 32y + 16.

Next, we find the second partial derivative [tex]f_{yy}[/tex]:

[tex]f_{yy}[/tex] = d/dy (-4x - 32y + 16)

   = -32.

So, [tex]f_{yy}[/tex] = -32.

Lastly, to find [tex]f_{xy}[/tex], we differentiate f(x, y) with respect to x and then with respect to y.

[tex]f_{x}[/tex] = 72x - 8y - 8y.

Then, we find the partial derivative of [tex]f_{x}[/tex] with respect to y:

[tex]f_{xy}[/tex] = d/dy (72x - 8y - 8y)

   = -16.

So, [tex]f_{xy}[/tex] = -16.

The complete question is:

"Let f be a function that admits continuous second partial derivatives, for which it is defined as f(x, y) = 36x² - 4xy - 16y² - 4xy - 32y² + 16y. Find the values of  [tex]f_{xx}[/tex], [tex]f_{yy}[/tex], and [tex]f_{xy}[/tex]."

Learn more about partial derivatives:

https://brainly.com/question/31399205

#SPJ11


explain and write clearly please
1) Find all local maxima, local minima, and saddle points for the function given below. Write your answers in the form (1,4,2). Show work for all six steps, see notes in canvas for 8.3. • Step 1 Cal

Answers

The main answer for finding all local maxima, local minima, and saddle points for a given function is not provided in the query. Please provide the specific function for which you want to find the critical points.

To find all local maxima, local minima, and saddle points for a given function, you need to follow these steps:

Step 1: Calculate the first derivative of the function to find critical points.

Differentiate the given function with respect to the variable of interest.

Step 2: Set the first derivative equal to zero and solve for the variable.

Find the values of the variable for which the derivative is equal to zero.

Step 3: Determine the second derivative of the function.

Differentiate the first derivative obtained in Step 1.

Step 4: Substitute the critical points into the second derivative.

Evaluate the second derivative at the critical points obtained in Step 2.

Step 5: Classify the critical points.

If the second derivative is positive at a critical point, it is a local minimum. If the second derivative is negative, it is a local maximum. If the second derivative is zero or undefined, further tests are required.

Step 6: Perform the second derivative test (if necessary).

If the second derivative is zero or undefined at a critical point, you need to perform additional tests, such as the first derivative test or the use of higher-order derivatives, to determine the nature of the critical point.

By following these steps, you can identify all the local maxima, local minima, and saddle points of the given function.

Learn more about maxima minima here:

https://brainly.com/question/32055972

#SPJ11

on 5 5 n 1 point The definite integral used to compute the area bounded between the two curves comes from the Riemann sum lim (height)(thickness), where i=1 the thickness is the width of the ith rectangle and its height is the C right curve minus left curve if the width is Ay upper curve minus lower curve if the width is Ay. upper curve minus lower curve if the width is Ax. right curve minus left curve if the width is Ax

Answers

The definite integral used to compute the area bounded between two curves is obtained by taking the limit of a Riemann sum, where the height represents the difference between the upper and lower curves and the thickness represents the width of each rectangle.

To calculate the area between two curves, we divide the interval into small subintervals, each with a width denoted as Δx or Δy. The height of each rectangle is determined by the difference between the upper and lower curves. If the width is in the x-direction (Δx), the height is obtained by subtracting the equation of the lower curve from the equation of the upper curve. On the other hand, if the width is in the y-direction (Δy), the height is obtained by subtracting the equation of the left curve from the equation of the right curve.

By summing up the areas of these rectangles and taking the limit as the width of the subintervals approaches zero, we obtain the definite integral, which represents the area between the two curves.

In conclusion, the definite integral is used to compute the area bounded between two curves by considering the difference between the upper and lower (or left and right) curves as the height of each rectangle and the width of the subintervals as the thickness.

To learn more about Riemann sum, visit:

https://brainly.com/question/29012686

#SPJ11








To test this series for convergence 00 n² + 4 m5 - 2 n=1 00 1 You could use the Limit Comparison Test, comparing it to the series Σ where p- mp n=1 Completing the test, it shows the series: O Diverg

Answers

The series ∑ n = 1 to ∞ ((n² + 4) / ([tex]n^5[/tex] - 2)) diverges. Option A is the correct answer.

To apply the Limit Comparison Test to the series ∑ n = 1 to ∞ ((n² + 4) / ([tex]n^5[/tex] - 2)), we need to find a series of the form ∑ n = 1 to ∞ (1 / n^p) to compare it with.

Considering the highest power in the denominator, which is n^5, we choose p = 5.

Now, let's take the limit of the ratio of the two series:

lim(n → ∞) [(n² + 4) / ([tex]n^5[/tex] - 2)] / (1 / [tex]n^5[/tex])

= lim(n → ∞) [(n² + 4) * [tex]n^5[/tex]] / ([tex]n^5[/tex] - 2)

= lim(n → ∞) ([tex]n^7[/tex] + 4[tex]n^5[/tex]) / ([tex]n^5[/tex] - 2)

= ∞

Since the limit is not finite or zero, the series ∑ n = 1 to ∞ ((n² + 4) / ([tex]n^5[/tex] - 2)) diverges.

Therefore, the correct answer is a. diverging.

Learn more about the convergence series at

https://brainly.com/question/32202517

#SPJ4

The question is -

To test this series for convergence

∑ n = 1 to ∞ ((n² + 4) / (n^5 - 2))

You could use the Limit Comparison Test, comparing it to the series ∑ n = 1 to ∞ (1 / n^p) where p = _____.

Completing the test, it shows the series is?

a. diverging

b. converging

Establish the identity. cos e sin e -1- coto + = cos - sin e 1 + tan Write the left side in terms of sine and cosine. sin e cos e 1 +

Answers

To establish the identity sin(e)cos(e) - (1 - cot(e)) = cos(e) - sin(e)/(1 + tan(e)), we simplify each side separately.

Left side:

sin(e)cos(e) - (1 - cot(e))

Using the trigonometric identity cot(e) = cos(e)/sin(e), we rewrite the expression as:

sin(e)cos(e) - (1 - cos(e)/sin(e))

Multiply through by sin(e) to eliminate the denominator:

sin^2(e)cos(e) - sin(e) + cos(e)

Right side:

cos(e) - sin(e)/(1 + tan(e))

Using the trigonometric identity tan(e) = sin(e)/cos(e), we rewrite the expression as:

cos(e) - sin(e)/(1 + sin(e)/cos(e))

Multiply through by cos(e) to eliminate the denominator:

cos^2(e) - sin(e)cos(e)/(cos(e) + sin(e))

Now we can compare the simplified left side and right side:

sin^2(e)cos(e) - sin(e) + cos(e) = cos^2(e) - sin(e)cos(e)/(cos(e) + sin(e))

To simplify further, we can use the identity sin^2(e) + cos^2(e) = 1:

(1 - cos^2(e))cos(e) - sin(e) + cos(e) = cos^2(e) - sin(e)cos(e)/(cos(e) + sin(e))

Expanding and rearranging terms:

cos(e) - cos^3(e) - sin(e) + cos(e) = cos^2(e) - sin(e)cos(e)/(cos(e) + sin(e))

Combine like terms:

2cos(e) - cos^3(e) - sin(e) = cos^2(e) - sin(e)cos(e)/(cos(e) + sin(e))

To simplify further, we can divide through by cos(e) + sin(e) (assuming cos(e) + sin(e) ≠ 0):

2 - cos^2(e) - sin^2(e) = cos^2(e) - sin(e)cos(e)/(cos(e) + sin(e))

Using the identity sin^2(e) + cos^2(e) = 1:

2 - 1 = cos^2(e) - sin(e)cos(e)/(cos(e) + sin(e))

1 = cos^2(e) - sin(e)cos(e)/(cos(e) + sin(e))

This confirms that the left side is equal to the right side, establishing the identity.

Therefore, we have established the identity sin(e)cos(e) - (1 - cot(e)) = cos(e) - sin(e)/(1 + tan(e)) in terms of sine and cosine.

To learn more about sin  Click Here: brainly.com/question/19213118

#SPJ11


a)state the definition of the derivative
b) find the dervative of the function y=5x^2-2x+1 using
definition of derivative

Answers

a) The derivative of a function is the instantaneous rate of change of the function with respect to its input variable.

b) The derivative of the function [tex]y = 5x^2 - 2x + 1[/tex] using the definition of the derivative is: f'(x) = 10x - 2

How is the definition of the derivative used to calculate the instantaneous rate of change of a function at a specific point?

The derivative of a function measures how the function changes at an infinitesimally small scale, indicating the slope of the function's tangent line at any given point. It provides insights into the function's rate of change, velocity, and acceleration, making it a fundamental concept in calculus and mathematical analysis.

By calculating the derivative, we can analyze and understand various properties of functions, such as determining critical points, finding maximum or minimum values, and studying the behavior of curves.

How is the derivative of the function obtained using the definition of the derivative?

To find the derivative of [tex]y = 5x^2 - 2x + 1[/tex], we apply the definition of the derivative. By taking the limit as the change in x approaches zero, we calculate the difference quotient[tex][(f(x + h) - f(x)) / h][/tex] and simplify it. In this case, the derivative simplifies to f'(x) = 10x - 2.

This result represents the instantaneous rate of change of the function at any given point x, indicating the slope of the tangent line to the function's graph. The derivative function, f'(x), provides information about the function's increasing or decreasing behavior and helps analyze critical points, inflection points, and the overall shape of the curve.

Learn more about Derivatives

brainly.com/question/29020856

#SPJ11

8. [ (x² + sin x) cos a dr = ? x (a) (b) (c) (d) (e) x² sin x - 2x cos x − 2 sin x + - x² sin x + 2x cos x + 2 sin x + x² sin x - 2x cos x - 2 sin x - x² sin x + 2x cos x - sin x + x² sin x +

Answers

The expression ∫(x² + sin x) cos a dr can be simplified to x² sin x - 2x cos x - 2 sin x + C, where C is the constant of integration.

To find the integral of the expression ∫(x² + sin x) cos a dr, we can break it down into two separate integrals using the linearity property of integration.

The integral of x² cos a dr can be calculated by treating a as a constant and integrating term by term. The integral of x² with respect to r is (1/3) x³, and the integral of cos a with respect to r is sin a multiplied by r. Therefore, the integral of x² cos a dr is (1/3) x³ sin a.

Similarly, the integral of sin x cos a dr can be calculated by treating a as a constant. The integral of sin x with respect to r is -cos x, and multiplying it by cos a gives -cos x cos a.

Combining both integrals, we have (1/3) x³ sin a - cos x cos a. Since the constant of integration can be added to the result, we denote it as C. Therefore, the final answer is x² sin x - 2x cos x - 2 sin x + C.

To learn more about integrals visit:

brainly.com/question/31059545

#SPJ11

the area question please!
1. (6.1) Find the area of the region in R2 bounded by + y = 0 and x = y² + 3y. 5. (6.2) The base of a solid is the region bounded by the parabolas y = r² and y=2-2

Answers

1.The area of the region bounded by + y = 0 and x = y² + 3y is 9 square units.

2.The area of the region bounded by the parabolas y = r² and y = 2 - 2x can be calculated by finding the points of intersection and integrating the difference between the two functions.

To find the area of the region bounded by + y = 0 and x = y² + 3y, we need to determine the points of intersection between the two curves. Setting y = 0 in the equation x = y² + 3y, we get x = 0. So, the intersection point is (0, 0). Next, we need to find the other intersection point by solving the equation y² + 3y = 0. Factoring y out, we get y(y + 3) = 0, which gives us y = 0 and y = -3. Since y cannot be negative for this problem, the other intersection point is (0, -3). Thus, the region is bounded by the x-axis and the curve x = y² + 3y. To find the area, we integrate the function x = y² + 3y with respect to y over the interval [-3, 0]. The integral is given by ∫(y² + 3y)dy evaluated from -3 to 0. Solving this integral, we get the area of the region as 9 square units.

The base of the solid is the region bounded by the parabolas y = r² and y = 2 - 2x. To find the area of this region, we need to determine the points of intersection between the two curves. Setting the two equations equal to each other, we get r² = 2 - 2x. Rearranging the equation, we have x = (2 - r²)/2. So, the intersection point is (x, y) = ((2 - r²)/2, r²). The region is bounded by the two parabolas, and we need to find the area between them. To do this, we integrate the difference of the two functions, which is given by A = ∫[(2 - 2x) - r²]dx evaluated over the appropriate interval. The interval of integration depends on the range of values for r. Once the integral is solved over the specified interval, we will obtain the area of the region as the final result.

To learn more about parabolas visit  : https://brainly.com/question/4061870

#SPJ11

S is the boundary of the region enclosed by the cylinder x? +=+= 1 and the planes, y = 0 and y=2-1. Here consists of three surfaces: S, the lateral surface of the cylinder, S, the front formed by the plane x+y=2; and the back, S3, in the plane y=0. a) Set up the integral to find the flux of F(x, y, z) = (x, y, 5) across Sį. Use the positive (outward) orientation. b) Find the flux of F(x, y, z)-(x, y, 5) across Ss. Use the positive (outward) orientation.

Answers

a) The integral to finding the flux of the vector field F(x, y, z) = (x, y, 5) across the surface S is set up using the positive (outward) orientation. b) The flux of the vector field F(x, y, z) = (x, y, 5) across the surface Ss is found using the positive (outward) orientation.

a) To calculate the flux of the vector field F(x, y, z) = (x, y, 5) across the surface S, we need to set up the integral. The surface S consists of three parts: the lateral surface of the cylinder, the front formed by the plane x+y=2, and the back in the plane y=0. We use the positive (outward) orientation, which means that the flux represents the flow of the vector field out of the enclosed region. By applying the appropriate surface integral formula, we can evaluate the flux of F(x, y, z) across S.

b) Similarly, to find the flux of the vector field F(x, y, z) = (x, y, 5) across the surface Ss, we set up the integral using the positive (outward) orientation. Ss represents the front surface of the cylinder, which is formed by the plane x+y=2. By calculating the surface integral, we can determine the flux of F(x, y, z) across Ss.

Learn more about vector field here:

https://brainly.com/question/32574755

#SPJ11

Solve for x in the triangle. Round your answer to the nearest tenth.
37°

Answers

Answer:

x = 7.2 units

Step-by-step explanation:

Because this is a right triangle, we can use trigonometric functions to solve for variable x. We are given an adjacent leg to our triangle, an acute angle, and the hypotenuse so we are going to take the cosine of that angle.

Cosine of an angle equals the adjacent leg divided by the hypotenuse so our equation looks like:
cos 37° = [tex]\frac{x}{9}[/tex]

To isolate variable x we are going to multiply both sides by 9:
9(cos 37°) = 9([tex]\frac{x}{9}[/tex])

Multiply and simplify:
9 cos 37° = 9x / 9
9 cos 37° = 1x
9 cos 37° = x

Break out a calculator and solve, making sure to round to the nearest tenth as the directions say:
x = 7.2

Club Warehouse (commonly referred to as CW) sells various computer products at bargain prices by taking telephone, Internet, and fax orders directly from customers. Reliable information on the aggregate quarterly demand for the past five quarters is available and has been summarized below:
Year Quarter Demand (units)
---------------------------------------------------
2019 3 1,356,800
4 1,545,200
2020 1 1,198,400
2 1,168,500
3 1,390,000
---------------------------------------------------
Let the third quarter of 2019 be Period 1, the fourth quarter of 2019 be Period 2, and so on. Apply Naïve approach to predict the demand for CW’s products in the fourth quarter of 2020. Be sure to carry four decimal places for irrational numbers.

Answers

The predicted demand for CW's products in the fourth quarter of 2020 using the Naïve approach is 1,168,500 units.

The naive method assumes that there will be the same amount of demand in the current period as there was in the previous period. We must use the demand in the third quarter of 2020 (Period 7) as the basis if we are to use the Naive approach to predict the demand for CW's products in the fourth quarter of 2020.

Considering that the interest in Period 6 (second quarter of 2020) was 1,168,500 units, we can involve this worth as the anticipated interest for Period 7 (second from last quarter of 2020). As a result, we can anticipate the same level of demand for Period 8 (the fourth quarter of 2020).

Consequently, the Naive approach predicts 1,168,500 units of demand for CW's products in the fourth quarter of 2020.

To know more about interest refer to

https://brainly.com/question/30393144

#SPJ11

Use the divergence theorem to evaluate SI F:ds where S -1 = 2 F(x, y, z) = (x +2yz? i + (4y +tan (x?z)) j+(2z+sin-(2xy?)) k and S is the outward-oriented surface of the solid E bounded by the parabolo

Answers

The divergen theorm also known as Gauss's theorem, is a fundamental theorem in vector calculus that relates the outward flux of a vector field through a closed surface to the divergence of the field inside the surface.

Here, we will use the divergence theorem to evaluate SI F:ds where S -1 = 2 F(x, y, z) = (x +2yz? i + (4y +tan (x?z)) j+(2z+sin-(2xy?)) k and S is the outward-oriented surface of the solid E bounded by the parabolo.The given vector field is F(x, y, z) = (x + 2yz)i + (4y + tan(xz))j + (2z - sin(2xy))k. The solid E is bounded by the paraboloid z = 4 - x² - y² and the plane z = 0. Therefore, the surface S is the boundary of E oriented outward. By the divergence theorem, we know that: ∫∫S F · dS = ∭E ∇ · F dV Here, ∇ · F is the divergence of F. Let's calculate the divergence of F: ∇ · F = (∂/∂x)(x + 2yz) + (∂/∂y)(4y + tan(xz)) + (∂/∂z)(2z - sin(2xy))= 1 + 2y + xzsec²(xz) + 2cos(2xy) Now, using the divergence theorem, we can write: ∫∫S F · dS = ∭E ∇ · F dV= ∭E (1 + 2y + xzsec²(xz) + 2cos(2xy)) dVWe can change the integral to cylindrical coordinates: x = r cosθ, y = r sinθ, and z = z. The Jacobian is r. The bounds for r and θ are 0 to 2 and 0 to 2π, respectively, and the bounds for z are 0 to 4 - r². Therefore, the integral becomes: ∫∫S F · dS = ∭E (1 + 2y + xzsec²(xz) + 2cos(2xy)) dV= ∫₀² ∫₀² ∫₀^(4 - r²) (1 + 2r sinθ + r² cosθ zsec²(r²cosθsinθ)) + 2cos(2r²sinθcosθ)) r dz dr dθThis integral is difficult to evaluate analytically. Therefore, we can use a computer algebra system to get the numerical result.

Learn more about Gauss's theorem here:

https://brainly.com/question/32595967

#SPJ11

evaluate the integral:
Calcula la integral: fsen(x) dx cos(x) sestra O F(x) = -in [cos(x)] +C O F(x)= -in[sen(x)] + C = O F(x) = in [cos(x)] + C =

Answers

Given function f(x) = fsen(x) dx cos(x). The integral of the function is given by, F(x) = ∫f(x) dx.

Integrating f(x) we get, F(x) = ∫fsen(x) dx cos(x).

On substituting u = cos(x), we have to use the integral formula ∫f(g(x)) g'(x) dx=∫f(u) du.

On substituting cos(x) with u, we get du = -sin(x) dx; dx = du / (-sin(x))So,F(x) = ∫fsen(x) dx cos(x)= ∫sin(x) dx * (1/u)∫sin(x) dx * (-du/sin(x))= - ∫du/u= - ln|u| + C, where C is the constant of integration.

Substituting back u = cos(x), we haveF(x) = - ln|cos(x)| + C.

Thus, option O F(x) = -ln[cos(x)] + C is the correct option.

Learn more about integral formula here ;

https://brainly.com/question/31040425

#SPJ11

Use the ratio test to determine whether n(-7)n! n=16 converges or diverges. (a) Find the ratio of successive terms. Write your answer as a fully simplified fraction. For n > 16,
n^2 an+1 lim n->00 = lim n->00 an (n+1)^2 (b) Evaluate the limit in the previous part. Enter o as infinity and - as -infinity. If the limit does not exist, enter DNE. an+1 lim 0 an n-> (c) By the ratio test, does the series converge, diverge, or is the test inconclusive? Converges

Answers

a. We can cancel out common terms an+1 / an = -(n+1)(n+1)! / n(n)! = -(n+1) / n

b. The limit as n approaches infinity is -∞.

c. The series n(-7)n! converges according to the ratio test.

What is ratio test?

When n is large, an is nonzero, and the ratio test is a test (or "criterion") for the convergence of a series where each term is a real or complex integer. The test, often known as d'Alembert's ratio test or the Cauchy ratio test, was first published by Jean le Rond d'Alembert.

To determine whether the series n(-7)n! converges or diverges using the ratio test, let's find the ratio of successive terms. The ratio test states that if the limit of the ratio of consecutive terms is less than 1, the series converges. Otherwise, if the limit is greater than 1 or the limit is equal to 1, the series diverges or the test is inconclusive, respectively.

(a) Find the ratio of successive terms:

an+1 / an = (n+1)(-7)(n+1)! / (n)(-7)(n)! = -(n+1)(n+1)! / n(n)!

To simplify this expression, we can cancel out common terms:

an+1 / an = -(n+1)(n+1)! / n(n)! = -(n+1) / n

(b) Evaluate the limit of the ratio as n approaches infinity:

lim(n->∞) -(n+1) / n = -∞

The limit as n approaches infinity is -∞.

(c) By the ratio test, if the limit of the ratio of consecutive terms is less than 1, the series converges. In this case, the limit is -∞, which is less than 1. Therefore, the series n(-7)n! converges according to the ratio test.

Learn more about ratio test on:

https://brainly.com/question/15586862

#SPJ4

Use the definition of the MacLaurin Series to derive the MacLaurin Series representation of f(x) = (x+2)-³

Answers

The Maclaurin series representation of f(x) = (x+2)-³ is ∑[((-1)^n)*(n+1)x^n]/2^(n+4).

The MacLaurin series is a special case of the Taylor series in which the approximation of a function is centered at x=0. It can be represented as f(x) = ∑[((d^n)f(0))/(n!)]*(x^n), where d^n represents the nth derivative of f(x), evaluated at x = 0.

To derive the MacLaurin series representation of f(x) = (x+2)-³, we need to find the nth derivative of f(x) and evaluate it at x = 0.

We can use the chain rule and the power rule to find the nth derivative of f(x), which is -6*((x+2)^(-(n+3))). Evaluating this at x = 0 yields (-6/2^(n+3))*((n+2)!), since all the terms containing x disappear and we are left with the constant term.

Now we can substitute this nth derivative into the MacLaurin series formula to get the series representation: f(x) = ∑[((-6/2^(n+3))*((n+2)!))/(n!)]*(x^n). Simplifying this expression yields f(x) = ∑[((-1)^n)*(n+1)x^n]/2^(n+4), which is the desired MacLaurin series representation of f(x) = (x+2)-³.

Learn more about approximation here.

https://brainly.com/questions/29669607

#SPJ11

2. Line 1 passes through point P (-2,2,1) and is perpendicular to line 2 * = (16, 0,-1) + +(1,2,-2), te R. Determine the coordinates of a point A on line 2 such that AP is perpendicular to line 2. Wri

Answers

We are given a line passing through point P (-2, 2, 1) and another line described by the equation L₂: R = (16, 0, -1) + t(1, 2, -2). We need to find the coordinates of a point A on line L₂ such that the line segment AP is perpendicular to line L₂.

To find a point A on line L₂ such that AP is perpendicular to L₂, we need to find the intersection of line L₂ and the line perpendicular to L₂ passing through point P.

The direction vector of line L₂ is (1, 2, -2). To find a vector perpendicular to L₂, we can take the cross product of the direction vector of L₂ and a vector parallel to AP.

Let's take vector AP = (-2 - 16, 2 - 0, 1 - (-1)) = (-18, 2, 2).

Taking the cross product of (1, 2, -2) and (-18, 2, 2), we get (-6, -40, -38).

To find point A, we add the obtained vector to a point on L₂. Let's take the point (16, 0, -1) on L₂.

Adding (-6, -40, -38) to (16, 0, -1), we get A = (10, -40, -39).

Therefore, the coordinates of a point A on line L₂ such that AP is perpendicular to L₂ are (10, -40, -39).

To learn more about cross product : brainly.com/question/29097076

#SPJ11

A cumulative distribution function (cdf) of a discrete random variable, X, is given by Fx(-3) = 0.14, Fx(-2) = 0.2, Fx(-1) = 0.25, Fx(0) = 0.43, Fx(1) = 0.54, Fx(2) = 1.0 - The value of the mean of X, i.e E[X] is 00.42667 0.44 1.47 -0.5

Answers

The mean of the random variable X, denoted by E[X], is 0.44.

To calculate the mean of a discrete random variable using its cumulative distribution function (CDF), we need to use the formula:

E[X] = Σ(x * P(X = x))

Where x represents the possible values of the random variable, and P(X = x) represents the probability mass function (PMF) of the random variable at each x.

Given the cumulative distribution function values, we can determine the PMF as follows:

P(X = -3) = Fx(-3) - Fx(-4) = 0.14 - 0 = 0.14

P(X = -2) = Fx(-2) - Fx(-3) = 0.2 - 0.14 = 0.06

P(X = -1) = Fx(-1) - Fx(-2) = 0.25 - 0.2 = 0.05

P(X = 0) = Fx(0) - Fx(-1) = 0.43 - 0.25 = 0.18

P(X = 1) = Fx(1) - Fx(0) = 0.54 - 0.43 = 0.11

P(X = 2) = Fx(2) - Fx(1) = 1.0 - 0.54 = 0.46

Now we can calculate the mean using the formula mentioned earlier:

E[X] = (-3 * 0.14) + (-2 * 0.06) + (-1 * 0.05) + (0 * 0.18) + (1 * 0.11) + (2 * 0.46)

     = -0.42 - 0.12 - 0.05 + 0 + 0.11 + 0.92

     = 0.44

Therefore, the mean of the random variable X, denoted by E[X], is 0.44.

To know more about random variable :

https://brainly.in/question/6474656

#SPJ11

7. (-/1 Points] DETAILS Consider the following. U = 2i + 5j, v = 8i + 7j mer (a) Find the projection of u onto v. (b) Find the vector component of u orthogonal to v. (-/1 Points] DETAILS MY NOTES PRACTICE ANOT A car is towed using a force of 1400 newtons. The chain used to pull the car makes a 21° angle with the horizontal. Find the work done in towing the car 9 kilometers. (Round yo answer to one decimal place.) km-N Need Help? Read it Watch It

Answers

a)The projection of u onto v is approximately 3.62i + 3.15j and, b) the vector component of u orthogonal to v is -1.62i + 1.85j.

(a) Given vector u = 2i + 5j and vector v = 8i + 7j.

The projection of u onto v can be determined as follows:

Projection of u onto v = [(u.v) / (|v|²)] × v

where u.v represents the dot product of vectors u and v, and |v| represents the magnitude of vector v

Now, u.v = (2 × 8) + (5 × 7)

= 16 + 35 = 51|v|²

= (8²) + (7²)

= 64 + 49

= 113|v|

= √(113)

= 10.63

∴ Projection of u onto v = [(u.v) / (|v|²)] × v

= (51 / 113) × (8i + 7j)

= 3.62i + 3.15j

(b) To find the vector component of u orthogonal to v, we need to subtract the projection of u onto v from u. Thus, the vector component of u orthogonal to v can be determined as follows:

Vector component of u orthogonal to v = u - projection of u onto v

= 2i + 5j - (3.62i + 3.15j)

= (2 - 3.62)i + (5 - 3.15)j

= -1.62i + 1.85j

To know more about vector components

https://brainly.com/question/30426215

#SPJ11

please!!
Find the radius of convergence, R, of the series. 00 x? n445 n=1 En R= Find the interval, 1, of convergence of the series. (Enter your answer using interval notation.) I= Submit Answer

Answers

The radius of convergence, r, is 1.to determine the interval of convergence, we need to check the endpoints x = -1 and x = 1 to see if the series converges or diverges at those points.

to determine the radius of convergence, r, and the interval of convergence, i, of the series σ(n=1 to ∞) (n⁴/5) xⁿ, we can use the ratio test. the ratio test states that if the limit of the absolute value of the ratio of consecutive terms is less than 1, the series converges.

using the ratio test, let's calculate the limit:

lim(n→∞) |[(n+1)⁴/5 * x⁽ⁿ⁺¹⁾] / [(n⁴/5) * xⁿ]|

simplifying:

lim(n→∞) |[(n+1)⁴/5 * x⁽ⁿ⁺¹⁾] / [(n⁴/5) * xⁿ]|

= lim(n→∞) |[(n+1)⁴/5 * x] / [n⁴/5]|

= lim(n→∞) |[(n+1)/n]⁴ * x|

= |x|

the limit of the ratio is |x|. for the series to converge, the absolute value of x must be less than 1. for x = -1, the series becomes:

σ(n=1 to ∞) (n⁴/5) (-1)ⁿ

this is an alternating series. by the alternating series test, we can determine that it converges.

for x = 1, the series becomes:

σ(n=1 to ∞) (n⁴/5)

to determine if this series converges or diverges, we can use the p-series test. the p-series test states that for a series of the form σ(1 to ∞) nᵖ, the series converges if p > 1 and diverges if p ≤ 1. in this case, p = 4/5 > 1, so the series converges.

Learn more about convergencehere:

 https://brainly.com/question/14394994

#SPJ11

there are 5000 people at a stadium watching a soccer match and 1000 of them are female. if 3 people are chosen at random, what is the probability that all 3 of them are male?

Answers

The likelihood that the three selected individuals are all men is roughly 0.0422.this is the probability of all the three choosen male

The probability that all three chosen people are male, we need to determine the number of favorable outcomes (choosing three males) divided by the total number of possible outcomes (choosing any three people from the crowd).

The total number of possible outcomes is given by choosing three people out of the total 5000 people in the stadium, which can be calculated as 5000C3.

The number of favorable outcomes is selecting three males from the 4000 male attendees. This can be calculated as 4000C3.

Therefore, the probability that all three chosen people are male is:

P(all 3 are male) = (number of favorable outcomes) / (total number of possible outcomes)

                 = 4000C3 / 5000C3

To simplify the expression, let's calculate the values of 4000C3 and 5000C3:

4000C3 = (4000!)/(3!(4000-3)!)

= (4000 * 3999 * 3998) / (3 * 2 * 1)

= 8,784,00

5000C3 = (5000!)/(3!(5000-3)!)

= (5000 * 4999 * 4998) / (3 * 2 * 1)

= 208,333,167

Substituting these values into the probability expression:

P(all 3 are male) = 8,784,000 / 208,333,167

Therefore, the probability that all three chosen people are male is approximately 0.0422 (rounded to four decimal places).

To know more about Probability .

https://brainly.com/question/25870256

#SPJ8

How much milk will each child get if 8 children share 1/2 gallon of milk equally?

Answers

1/16 of milk each child will get

A road is built for vehicles weighing under 4 tons

Answers

The statement "A road is built for vehicles weighing under 4 tons" implies that the road has been constructed specifically to accommodate vehicles whose weight does not exceed 4 tons. Therefore, vehicles whose weight exceeds 4 tons should not be driven on this road.

This restriction is put in place to ensure that the road is not damaged or deteriorated and that it remains safe for drivers and pedestrians. It also ensures that the vehicles on the road are capable of navigating it without causing accidents or traffic congestion.

It is important to abide by the weight restrictions of a road as it plays a key role in maintaining the integrity and safety of the road, and helps prevent accidents that could be caused by overloaded vehicles.

You can learn more about vehicles at: brainly.com/question/32347244

#SPJ11

If b, c, d are integers such that b > 3 and b 2i + c 11 13 = 9+ + itd 2 3 ***** 15 4 then be c=1 Jand d=

Answers

The values of b, c, and d in the given equation are not determined by the information provided. Additional information or equations are needed to solve for the specific values of b, c, and d.

The given equation is:

b(2i + c) = 11(13 + 9) + d(2 - 3) * 15 * 4

Simplifying the equation, we have:

b(2i + c) = 20 + 22 + 15d

b(2i + c) = 42 + 15d

From the given equation, we can see that the left-hand side is dependent on the values of b and c, while the right-hand side is dependent on the value of d.

However, there is no information or equation provided to directly determine the values of b, c, and d. Without additional information or equations, we cannot solve for the specific values of b, c, and d.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11

In triangle JKL, KL ≈ JK and angle K = 91°. Find angle J.

Answers

Applying the definition of an isosceles triangle and the triangle sum theorem, the measure of angle J is calculated as: 44.5°.

What is an Isosceles Triangle?

An isosceles triangle is a geometric shape with three sides, where two of the sides are of equal length, and the angles opposite those sides are also equal.

The triangle shown in the image is an isosceles triangle because two of its sides are congruent, i.e. KL = JK, therefore:

Measure of angle K = (180 - 91) / 2

Measure of angle K = 44.5°

Learn more about isosceles triangles on:

https://brainly.com/question/11884412

#SPJ1

3. [10pts] Compute the following with the specified technique of differentiation. a. Compute the derivative of y = xcos(x) using logarithmic differentiation. [5pts] b. Find y' for the function x sin(y

Answers

The first problem asks for the derivative of y = xcos(x) using logarithmic differentiation. The second problem involves finding y' for the function x sin(y) using implicit differentiation.

a. To find the derivative of y = xcos(x) using logarithmic differentiation, we take the natural logarithm of both sides:

ln(y) = ln(xcos(x))

Next, we apply the logarithmic differentiation technique by differentiating implicitly with respect to x:

1/y * dy/dx = (1/x) + (d/dx)(cos(x))

To find dy/dx, we multiply both sides by y:

dy/dx = y * [(1/x) + (d/dx)(cos(x))]

Substituting y = xcos(x) into the equation, we have:

dy/dx = xcos(x) * [(1/x) + (d/dx)(cos(x))]

Simplifying further, we obtain:

dy/dx = cos(x) + x * (-sin(x)) = cos(x) - xsin(x)

Therefore, the derivative of y = xcos(x) using logarithmic differentiation is dy/dx = cos(x) - xsin(x).

b. To find y' for the function x sin(y) using implicit differentiation, we differentiate both sides of the equation with respect to x:

d/dx (x sin(y)) = d/dx (0)

Applying the product rule on the left-hand side, we get:

sin(y) + x * (d/dx)(sin(y)) = 0

Next, we need to find (d/dx)(sin(y)). Since y is a function of x, we differentiate sin(y) using the chain rule:

(d/dx)(sin(y)) = cos(y) * (d/dx)(y)

Simplifying the equation, we have:

sin(y) + xcos(y) * (d/dx)(y) = 0

To isolate (d/dx)(y), we divide both sides by xcos(y):

(d/dx)(y) = -sin(y) / (xcos(y))

Therefore, y' for the function x sin(y) is given by y' = -sin(y) / (xcos(y)).

Learn more about differentiation here:

https://brainly.com/question/24062595

#SPJ11

The complete question is:

3. [10pts] Compute the following with the specified technique of differentiation. a. Compute the derivative of y = xcos(x) using logarithmic differentiation. [5pts] b. Find y' for the function xsin(y) + [tex]e^x[/tex] = ycos(x) + [tex]e^y[/tex]

generate 10 realizations of length n = 200 each of an arma (1,1) process with .9 .5 find the moles of the three parameters in each case and compare the estimators to the true values

Answers

To generate 10 realizations of length n = 200 each of an ARMA (1,1) process with parameters φ = 0.9 and θ = 0.5, we can simulate the process multiple times using these parameter values. By iterating the process equation for each realization and estimating the values of the parameters φ and θ, we can compare the estimated values to the true values of φ = 0.9 and θ = 0.5.

An ARMA (1,1) process is a combination of an autoregressive (AR) component and a moving average (MA) component. The process can be defined as:

X_t = φX_{t-1} + Z_t + θZ_{t-1}

where X_t is the value at time t, φ is the autoregressive parameter, Z_t is the white noise error term at time t, and θ is the moving average parameter.

To generate the realizations, we can start with an initial value X_0 and iterate the process equation for n time steps using the given parameter values. This will give us a series of n values for each realization.

Next, we can estimate the values of the parameters φ and θ for each realization. There are various methods for parameter estimation, such as maximum likelihood estimation or least squares estimation. These methods involve finding the parameter values that maximize the likelihood of observing the given data or minimize the sum of squared errors.

Once we have the estimated parameter values for each realization, we can compare them to the true values (φ = 0.9 and θ = 0.5). We can calculate the difference between the estimated values and the true values to assess the accuracy of the estimators.

By repeating this process for 10 realizations of length 200, we can evaluate the performance of the estimators and assess how close they are to the true values of the parameters.

Learn more about ARMA here:

https://brainly.com/question/31582342

#SPJ11

At what points on the given curve x = 41, y = 4 + 80t - 1462 does the tangent line have slope 1? (x, y) = ( (smaller x-value) X (x, y) = ( (larger x-value) ).

Answers

The point where the tangent line has a slope of 1 is (41, -1457).

To find the points on the curve where the tangent line has a slope of 1, we need to find the values of t for which the derivative of y with respect to t is equal to 1.

Given the curve x = 41, y = 4 + 80t - 1462, we can find the derivative dy/dt:

dy/dt = 80

Setting dy/dt equal to 1, we have: 80 = 1

Solving for t, we get: t = 1/80

Substituting this value of t back into the parametric equations, we can find the corresponding x and y values:

x = 41

y = 4 + 80(1/80) - 1462

y = 4 + 1 - 1462

y = -1457

Therefore, the point where the tangent line has a slope of 1 is (41, -1457).

There is only one point on the curve where the tangent line has a slope of 1, so the smaller x-value and the larger x-value are the same point, which is (41, -1457).

Know more about tangent line here

https://brainly.com/question/23265136#

#SPJ11




2. a. Sketch the region in quadrant I that is enclosed by the curves of equation y = 4x , y = 5 – Vx and the y-axis. b. Find the volume of the solid of revolution obtained by rotation of the region

Answers

a. To sketch the region in quadrant I enclosed by the curves y = 4x, y = 5 - √x, and the y-axis, we can start by plotting the graphs of these equations and identifying the area of overlap.

The region in quadrant I is enclosed by the curves y = 4x, y = 5 - √x, and the y-axis. It consists of the portion between the x-axis and the curves y = 4x and y = 5 - √x.

1. Plotting the Curves:

To sketch the region, we plot the graphs of the equations y = 4x and y = 5 - √x in the first quadrant. The curve y = 4x represents a straight line passing through the origin with a slope of 4. The curve y = 5 - √x is a decreasing curve that starts at the point (0, 5) and approaches the y-axis asymptotically.

2. Identifying the Region:

The region enclosed by the curves and the y-axis consists of the area between the x-axis and the curves y = 4x and y = 5 - √x. This region is bounded by the x-values where the two curves intersect.

3. Determining Intersection Points:

To find the intersection points, we set the equations y = 4x and y = 5 - √x equal to each other:

4x = 5 - √x

16x^2 = 25 - 10√x + x

16x^2 - x - 25 + 10√x = 0

Solving this quadratic equation will give us the x-values where the curves intersect.

b. Finding the Volume of the Solid of Revolution:

To find the volume of the solid of revolution obtained by rotating the region in quadrant I, we can use the method of cylindrical shells or the disk method. The specific method depends on the axis of rotation.

If the region is rotated around the y-axis, we can use the cylindrical shell method. This involves integrating the circumference of each shell multiplied by its height. The height will be the difference between the functions y = 4x and y = 5 - √x, and the circumference will be 2πx.

If the region is rotated around the x-axis, we can use the disk method. This involves integrating the area of each disk formed by taking cross-sections perpendicular to the x-axis. The radius of each disk will be the difference between the functions y = 4x and y = 5 - √x, and the area will be πr^2.

The specific calculation for finding the volume depends on the axis of rotation specified in the problem.

To learn more about quadratic equation click here: brainly.com/question/22364785

#SPJ11








Let F(x, y, z) = 322-1+(+tan(=) +(32P: - Gy)k Use the Divergence Theorem to evaluate SF S S is the top art the sphere ++ rented upwards SI FdS 1dpi

Answers

Given a vector field F(x, y, z), we use the

Divergence Theorem

to find the surface integral over the top half of a sphere. The theorem relates the flux of the

vector field

through a closed surface.

To evaluate the

surface integral

using the Divergence Theorem, we first calculate the divergence of the vector field F(x, y, z). The divergence of F is given by div(F) = ∇ · F, where ∇ represents the del operator. In this case, the

components

of F are given as F(x, y, z) = (3x^2 - 1) i + (2y + tan(z)) j + (3z - y) k. We compute the partial derivatives with respect to x, y, and z, and sum them up to obtain the divergence.

Once we have the divergence of F, we set up the triple integral of the divergence over the

volume

enclosed by the top half of the sphere. The region of integration is determined by the surface of the sphere, which is described by the equation x^2 + y^2 + z^2 = r^2. We consider only the upper half of the

sphere

, so z is positive.

By applying the Divergence Theorem, we can evaluate the surface integral by computing the triple integral of the divergence over the volume of the sphere.

To learn more about

Divergence Theorem

click here :

brainly.com/question/31272239

#SPJ11

Other Questions
Evaluate the indefinite integral. (Use capital for the constant of integration.) 1x57-x? dx Show every step of your work on paper. Is economic growth equal for all countries? 11. What would be the dimensions of the triangle sliced vertically and intersects the 9 mm edge 9 mm 10 mm 3 mm list at least four important skills of medical insurance specialists loose connective tissue often contains white blood cells why how many accidents nationwide involve some type of aggressive driving Sheridan Company incurred the following costs to produce 100000 units Variable costs $532000 Fixed costs 900000 An outside supplier has offered to make the item at $4.90 a unit. If the decision is made to purchase the item outside, current production facilities could be leased to another company for $180000. The net increase idecrease in the net income as a result of accepting the supplier's offer is $916000 O $(138000) O $222000 O $230000. Draw and describe a systems diagram that illustrates biogeographical, biochemical or biophysical feedback in a forest ecosystem. Be as specific as you can. State the type of feedback you are describing and explain the system diagram. which of the following best describes graft versus host disease?a. Donor T cells which attack recipient cells b. Donor antibodies which attack recipient neutrophils c. Donor T cells which attack donor cells d. Donor T cells which attack recipient neutrophils e. Donor antibodies which attack recipient cells identify the eating disorder that involves extreme weight loss the systems of classification that drs. garfinkel, stoller, and others were engaging with in their research with agnes and other transgender people in the 1960s were 1 lo -6 6 = Let f(x) = 1-(2-3) { for 0 < x < 3, for 3 < x < 5. Compute the Fourier cosine coefficients for f(x). Ao = An Give values for the Fourier cosine series Ao C(x) + An cos 2 5 ( x) n=1 C(5) = C(-4) = C(6) 1. Eyaluate the indefinite integral as an infinite series. (10 points) Jxcos (x) dx Given the ellipse : (x-3)? 16 + (y-1) 9 = 1 (a) Graph the ellipse and label the coordinates of the center, the vertices and the end points of the minor axis on the graph If the ratio of patients with flu to patients without flu at a clinic is 0.8, which of the following statements is incorrect?a. There are 20% fewer people with the flu than without it at the clinicb. There are 0.8 times as many people with the flu than without it at the clinicc. 80% of the clinic patients have the flu.d. The ratio of those without the flu to those with the flu is 1.25. 2x + 5x2 x 2 dx1. (15 points) Evaluate: 2.0 +5 22-1-2 dar after ergonomics training a healthcare worker should know how to Simplify the following rational expression. 1 1 x5x- 14 x-49 x-4 + + Select one: O a. 3x + 5x (x+ 7)(x+ 2)(x-2) O b. b 5x-67 (x-7)(x+ 7)(x+ 2)(x-2) 3x2+ 5X-67 (x-7)(x+ 7)(x+2)(x-2) O d. 6. Solve the initial-value problem by finding series solutions about x=0: xy" - 3y = 0; y(0) = 1; y' (0) = 0 compound a: c9h10o2; ir absorptions at 30912895 and 1743 cm1; 1h nmr signals at 2.06 (singlet, 3 h), 5.08 (singlet, 2 h), and 7.33 (broad singlet, 5 h) ppm. Steam Workshop Downloader