Suppose that 9 years ago, you purchased shares in a certain corporation's stock. Between then and now, there was a 3:1 split and a 5:1 split. If shares today are 82% cheaper than they were 9 years ago, what would be your rate of return if you sold your shares today?
Round answer to the nearest tenth of a percent.

Answers

Answer 1

Your rate of return would be 170% if you sold your shares today.

To calculate the rate of return, we need to consider the effects of both stock splits and the change in the stock price.

Let's assume that you initially purchased 1 share of the stock 9 years ago. After the 3:1 split, you would have 3 shares, and after the 5:1 split, you would have a total of 15 shares (3 x 5).

Now, let's say the price of each share 9 years ago was P. According to the information given, the shares today are 82% cheaper than they were 9 years ago. Therefore, the price of each share today would be (1 - 0.82) * P = 0.18P.

The total value of your shares today would be 15 * 0.18P = 2.7P.

To calculate the rate of return, we need to compare the current value of your investment to the initial investment. Since you initially purchased 1 share, the initial value of your investment would be P.

The rate of return can be calculated as follows:

Rate of return = ((Current value - Initial value) / Initial value) * 100

Plugging in the values, we get:

Rate of return = ((2.7P - P) / P) * 100 = (1.7P / P) * 100 = 170%

Therefore, your rate of return would be 170% if you sold your shares today.

Learn more about rate from

https://brainly.com/question/119866

#SPJ11


Related Questions

Test the series below for convergence using the Root Test. ∑ n=1
[infinity]

n 3n
1

The limit of the root test simplifies to lim n→[infinity]

∣f(n)∣ where f(n)= The limit is: (enter oo for infinity if needed) Based on this, the series Converges Diverges

Answers

The series diverges according to the Root Test.

To test the convergence of the series using the Root Test, we need to evaluate the limit of the absolute value of the nth term raised to the power of 1/n as n approaches infinity. In this case, our series is:

∑(n=1 to ∞) ((2n + 6)/(3n + 1))^n

Let's simplify the limit:

lim(n → ∞) |((2n + 6)/(3n + 1))^n| = lim(n → ∞) ((2n + 6)/(3n + 1))^n

To simplify further, we can take the natural logarithm of both sides:

ln [lim(n → ∞) ((2n + 6)/(3n + 1))^n] = ln [lim(n → ∞) ((2n + 6)/(3n + 1))^n]

Using the properties of logarithms, we can bring the exponent down:

lim(n → ∞) n ln ((2n + 6)/(3n + 1))

Next, we can divide both the numerator and denominator of the logarithm by n:

lim(n → ∞) ln ((2 + 6/n)/(3 + 1/n))

As n approaches infinity, the terms 6/n and 1/n approach zero. Therefore, we have:

lim(n → ∞) ln (2/3)

The natural logarithm of 2/3 is a negative value.Thus, we have:ln (2/3) <0.

Since the limit is a negative value, the series diverges according to the Root Test.

For more such questions on series,click on

https://brainly.com/question/30087275

#SPJ8


The probable question may be:
Test the series below for convergence using the Root Test.

sum n = 1 to ∞ ((2n + 6)/(3n + 1)) ^ n

The limit of the root test simplifies to lim n → ∞  |f(n)| where

f(n) =

The limit is:

(enter oo for infinity if needed)

Based on this, the series

Diverges

Converges

Use the method of undetermined coefficients to solve the second order ODE \[ y^{\prime \prime}-4 y^{\prime}-12 y=10 e^{-2 x}, \quad y(0)=3, y^{\prime}(0)=-14 \]

Answers

The complete solution to the given ordinary differential equation (ODE)is:

[tex]y(x) = y_h(x) + y_p(x) = 5e^{6x} - 2e^{-2x} + 10e^{-2x} = 5e^{6x} + 8e^{-2x}[/tex]

To solve the second-order ordinary differential equation (ODE) using the method of undetermined coefficients, we assume a particular solution of the form:

[tex]y_p(x) = A e^{-2x}[/tex]

where A is a constant to be determined.

Next, we find the first and second derivatives of [tex]y_p(x)[/tex]:

[tex]y_p'(x) = -2A e^{-2x}\\y_p''(x) = 4A e^{-2x}[/tex]

Substituting these derivatives into the original ODE, we get:

[tex]4A e^{-2x} - 4(-2A e^{-2x}) - 12(A e^{-2x}) = 10e^{-2x}[/tex]

Simplifying the equation:

[tex]4A e^{-2x} + 8A e^{-2x} - 12A e^{-2x} = 10e^{-2x}[/tex]

Combining like terms:

[tex](A e^{-2x}) = 10e^{-2x}[/tex]

Comparing the coefficients on both sides, we have:

A = 10

Therefore, the particular solution is:

[tex]y_p(x) = 10e^{-2x}[/tex]

To find the complete solution, we need to find the homogeneous solution. The characteristic equation for the homogeneous equation y'' - 4y' - 12y = 0 is:

r² - 4r - 12 = 0

Factoring the equation:

(r - 6)(r + 2) = 0

Solving for the roots:

r = 6, r = -2

The homogeneous solution is given by:

[tex]y_h(x) = C1 e^{6x} + C2 e^{-2x}[/tex]

where C1 and C2 are constants to be determined.

Using the initial conditions y(0) = 3 and y'(0) = -14, we can solve for C1 and C2:

y(0) = C1 + C2 = 3

y'(0) = 6C1 - 2C2 = -14

Solving these equations simultaneously, we find C1 = 5 and C2 = -2.

Therefore, the complete solution to the given ODE is:

[tex]y(x) = y_h(x) + y_p(x) = 5e^{6x} - 2e^{-2x} + 10e^{-2x} = 5e^{6x} + 8e^{-2x}[/tex]

The question is:

Use the method of undetermined coefficients to solve the second order ODE y'' - 4 y' - 12y = 10[tex]e ^{- 2x}[/tex], y(0) = 3, y' (0) = - 14

To know more about differential equation:

https://brainly.com/question/32645495


#SPJ4

A. hot bowl otseds is geryed at a dincher party. It statis to cool according to Newton's Law of Cooling so that its temperature at time i it given by T(t)=55+150e −0.058
where tis measured in minutes and T is measured in of: fa) What is the initial temperature of the soup? ef thw. What is the tecrperature after 10 min? (found your answer to one deomal place.) alp sel thter howliong will the terperature be 100 "f 7 (Round your answer po the nearest whole number) min

Answers

According to Newton's Law of Cooling, the temperature of a hot bowl of soup at time \(t\) is given by the function \(T(t) = 55 + 150e^{-0.058t}\).

TheThe initial temperature of the soup is 55°F. After 10 minutes, the temperature of the soup can be calculated by substituting \(t = 10\) into the equation. The temperature will be approximately 107.3°F. To find how long it takes for the temperature to reach 100°F, we need to solve the equation \(T(t) = 100\) and round the answer to the nearest whole number.

The initial temperature of the soup is given by the constant term in the equation, which is 55°F.
To find the temperature after 10 minutes, we substitute \(t = 10\) into the equation \(T(t) = 55 + 150e^{-0.058t}\):
[tex]\(T(10) = 55 + 150e^{-0.058(10)} \approx 107.3\)[/tex] (rounded to one decimal place).
To find how long it takes for the temperature to reach 100°F, we set \(T(t) = 100\) and solve for \(t\):
[tex]\(55 + 150e^{-0.058t} = 100\)\(150e^{-0.058t} = 45\)\(e^{-0.058t} = \frac{45}{150} = \frac{3}{10}\)[/tex]
Taking the natural logarithm of both sides:
[tex]\(-0.058t = \ln\left(\frac{3}{10}\right)\)\(t = \frac{\ln\left(\frac{3}{10}\right)}{-0.058} \approx 7\)[/tex] (rounded to the nearest whole number).
Therefore, it takes approximately 7 minutes for the temperature of the soup to reach 100°F.

learn more about whole number here

https://brainly.com/question/29766862



#SPJ11

Projectile Motion Problem Formula: s(t)=−4⋅9t2+v0t+s0 Where t is the number of seconds after the object is projected, v0 is the initial velocity and s0 is the initial height in metersof the object. Question: A rocket is fired upward. At the end of the burn it has an upwatd velocity of 147 m/sec and is 588 m high. a) After how many seconds will it reach it maximum height? b) What is the maximum height it will reach? After how many seconds will it reach it maximum height? sec What is the maximum height it will reach ? meters After how many seconds, to the nearest tenth, will the projectile hit the ground? 50c

Answers

It will take approximately 15 seconds for the rocket to reach its maximum height.

The maximum height the rocket will reach is approximately 2278.5 meters.

The projectile will hit the ground after approximately 50 seconds.

To find the time at which the rocket reaches its maximum height, we can use the fact that at the maximum height, the vertical velocity is zero. We are given that the upward velocity at the end of the burn is 147 m/s. As the rocket goes up, the velocity decreases due to gravity until it reaches zero at the maximum height.

Given:

Initial velocity, v0 = 147 m/s

Initial height, s0 = 588 m

Acceleration due to gravity, g = -9.8 m/s² (negative because it acts downward)

(a) To find the time at which the rocket reaches its maximum height, we can use the formula for vertical velocity:

v(t) = v0 + gt

At the maximum height, v(t) = 0. Plugging in the values, we have:

0 = 147 - 9.8t

Solving for t, we get:

9.8t = 147

t = 147 / 9.8

t ≈ 15 seconds

(b) To find the maximum height, we can substitute the time t = 15 seconds into the formula for vertical displacement:

s(t) = -4.9t² + v0t + s0

s(15) = -4.9(15)² + 147(15) + 588

s(15) = -4.9(225) + 2205 + 588

s(15) = -1102.5 + 2793 + 588

s(15) = 2278.5 meters

To find the time it takes for the projectile to hit the ground, we can set the vertical displacement s(t) to zero and solve for t:

0 = -4.9t² + 147t + 588

Using the quadratic formula, we can solve for t. The solutions will give us the times at which the rocket is at ground level.

t ≈ 50 seconds (rounded to the nearest tenth)

Know more about velocity here:

https://brainly.com/question/18084516

#SPJ11

Suppose the price p of bolts is related to the quantity a that is demanded by p670-6q, where a is measured in hundreds of bots, Suppose the supply function for bots gn by p where q is the number of bolts (in hundreds) that are supplied at price p. Find the equilibrium price. Round answer to two decimal places A. $335.00 OB. $670.00 OC. $7.47 D. $350.00 F The supply and demand curves do not intersect. possible Suppose the price p of bolts is related to the quantity q that is demanded by p-670-6, where is measured in hundreds of bots Suppose t where q is the number of bolts (in hundreds) that are supplied at price p. Find the equilibrium price. Round answer to two decimal places A. $335.00 B. $670.00 C. $7.47 D. $350.00 OE. The supply and demand curves do not intersect.

Answers

We are not given this information, so we cannot solve for q and therefore cannot find the equilibrium price.  The correct answer is option E, "The supply and demand curves do not intersect."

The equilibrium price is the price at which the quantity of a good that buyers are willing to purchase equals the quantity that sellers are willing to sell.

To find the equilibrium price, we need to set the demand function equal to the supply function.

We are given that the demand function for bolts is given by:

p = 670 - 6qa

is measured in hundreds of bolts, and that the supply function for bolts is given by:

p = g(q)

where q is measured in hundreds of bolts. Setting these two equations equal to each other gives:

670 - 6q = g(q)

To find the equilibrium price, we need to solve for q and then plug that value into either the demand or the supply function to find the corresponding price.

To solve for q, we can rearrange the equation as follows:

6q = 670 - g(q)

q = (670 - g(q))/6

Now, we need to find the value of q that satisfies this equation.

To do so, we need to know the functional form of the supply function, g(q).

The correct answer is option E, "The supply and demand curves do not intersect."

Know more about the equilibrium price

https://brainly.com/question/28945352

#SPJ11

use the rational zero theorem to list all possible rational zeroes of the polynomial function:
p(x): x^3-14x^2+3x-32

Answers

The possible rational zeroes of p(x) are:

±1/1, ±2/1, ±4/1, ±8/1, ±16/1, ±32/1, which simplifies to:

±1, ±2, ±4, ±8, ±16, ±32.

The rational zero theorem states that if a polynomial function p(x) has a rational root r, then r must be of the form r = p/q, where p is a factor of the constant term of p(x) and q is a factor of the leading coefficient of p(x).

In the given polynomial function p(x) = x^3 - 14x^2 + 3x - 32, the constant term is -32 and the leading coefficient is 1.

The factors of -32 are ±1, ±2, ±4, ±8, ±16, and ±32.

The factors of 1 are ±1.

Therefore, the possible rational zeroes of p(x) are:

±1/1, ±2/1, ±4/1, ±8/1, ±16/1, ±32/1, which simplifies to:

±1, ±2, ±4, ±8, ±16, ±32.

Learn more about  rational zeroes from

https://brainly.com/question/28828052

#SPJ11

Question 15 The ratio of current ages of two relatives who shared a birthday is 7 : 1. In 6 years' time the ratio of theirs ages will be 5: 2. Find their current ages. A. 7 and 1 B. 14 and 2 C. 28 and 4 D. 35 and 5

Answers

The current ages of the two relatives who shared a birthday are 28 and 4 which corresponds to option C.

Let's explain the answer in more detail. We are given two ratios: the current ratio of their ages is 7:1, and the ratio of their ages in 6 years will be 5:2. To find their current ages, we can set up a system of equations.

Let's assume the current ages of the two relatives are 7x and x (since their ratio is 7:1). In 6 years' time, their ages will be 7x + 6 and x + 6. According to the given information, the ratio of their ages in 6 years will be 5:2. Therefore, we can set up the equation:

(7x + 6) / (x + 6) = 5/2

To solve this equation, we cross-multiply and simplify:

2(7x + 6) = 5(x + 6)

14x + 12 = 5x + 30

9x = 18

x = 2

Thus, one relative's current age is 7x = 7 * 2 = 14, and the other relative's current age is x = 2. Therefore, their current ages are 28 and 4, which matches option C.

Learn more about ratio here:

https://brainly.com/question/13419413

#SPJ11

Define a set T by {1} ∈ T (note the set braces!) and if {k} ∈ T,
then {1, 2, ..., k + 1} ∈ T. What is |T|?

Answers

The cardinality of set T, denoted as |T|, is infinite or uncountably infinite.

The set T is defined recursively as follows:

The set {1} is an element of T.

If {k} is an element of T, then the set {1, 2, ..., k + 1} is also an element of T.

Starting with {1}, we can generate new sets in T by applying the recursive rule. For example:

{1} ∈ T

{1, 2} ∈ T

{1, 2, 3} ∈ T

{1, 2, 3, 4} ∈ T

...

Each new set in T has one more element than the previous set. As a result, the cardinality of T is infinite or uncountably infinite because there is no upper limit to the number of elements in each set. Therefore, |T| cannot be determined as a finite value or a countable number.

You can learn more about cardinality  at

https://brainly.com/question/30425571

#SPJ11

12. Let p represent a true statement and let q represent a false statement. Find the truth value of the given compound p∨∼q A) False B) True 13. Use De Morgan's laws to write the negation of the statement. Cats are lazy or dogs aren't friendly. A) Cats aren't lazy or dogs are friendly. B) Cats aren't lazy and dogs are friendly. C) Cats are lazy and dogs are friendly. D) Cats aren't lazy or dogs aren't friendly

Answers

The truth value of the compound statement p V ~q is A) False. The negation of the statement "Cats are lazy or dogs aren't friendly" using De Morgan's laws is D) Cats aren't lazy or dogs aren't friendly.

For the compound statement p V ~q, let's consider the truth values of p and q individually.

p represents a true statement, so its true value is True.

q represents a false statement, so its true value is False.

Using the negation operator ~, we can determine the negation of q as ~q, which would be True.

Now, we have the compound statement p V ~q. The logical operator V represents the logical OR, which means the compound statement is true if at least one of the statements p or ~q is true.

Since p is true (True) and ~q is true (True), the compound statement p V ~q is true (True).

Therefore, the truth value of the compound statement p V ~q is A) False.

To find the negation of the statement "Cats are lazy or dogs aren't friendly," we can use De Morgan's laws. According to De Morgan's laws, the negation of a disjunction (logical OR) is equivalent to the conjunction (logical AND) of the negations of the individual statements.

The negation of "Cats are lazy or dogs aren't friendly" would be "Cats aren't lazy and dogs aren't friendly."

Therefore, the correct negation of the statement is D) Cats aren't lazy or dogs aren't friendly.

To learn more about truth value visit:

brainly.com/question/30087131

#SPJ11

Shante caught 17 ladybugs every 4 days. Hiw Mandy ladybugs dies Shante need to catch on the fifth day so that she will have caught an average of 20 laydybugs per day over 5 days? Solve this problem in two different ways and explain both solutions.

Answers

Shante will need to catch 32 ladybugs on the fifth day in order to have an average of 20 ladybugs per day over 5 days.

To get the required average of 20 ladybugs, Shante needs to catch 100 ladybugs in 5 days.

Let x be the number of ladybugs she has to catch on the fifth day.

She has caught 17 ladybugs every 4 days:

Thus, she would catch 4 sets of 17 ladybugs = 4 × 17 = 68 ladybugs in the first four days.

Hence, to get an average of 20 ladybugs in 5 days, Shante will have to catch 100 - 68 = 32 ladybugs in the fifth day.

Solution 1: To solve the problem algebraically:

Let x be the number of ladybugs she has to catch on the fifth day.

Therefore the equation becomes:17 × 4 + x = 100 => x = 100 - 68 => x = 32

Solution 2: To solve the problem using arithmetic:

To get an average of 20 ladybugs, Shante needs to catch 20 × 5 = 100 ladybugs in 5 days. She has already caught 17 × 4 = 68 ladybugs over the first 4 days.

Hence, on the fifth day, she needs to catch 100 - 68 = 32 ladybugs.

Therefore, the required number of ladybugs she needs to catch on the fifth day is 32.

Learn more about "average": https://brainly.com/question/20118982

#SPJ11

4. Solve the differential equation 4xy dx/dy=y2−1

Answers

Answer:

[tex]\displaystyle x=\frac{\pm\sqrt{y^2-\ln(y^2)+C}}{2}[/tex]

Step-by-step explanation:

[tex]\displaystyle 4xy\frac{dx}{dy}=y^2-1\\\\4x\frac{dx}{dy}=y-\frac{1}{y}\\\\4x\,dx=\biggr(y-\frac{1}{y}\biggr)\,dy\\\\\int4x\,dx=\int\biggr(y-\frac{1}{y}\biggr)\,dy\\\\2x^2=\frac{y^2}{2}-\ln(|y|)+C\\\\4x^2=y^2-2\ln(|y|)+C\\\\4x^2=y^2-\ln(y^2)+C\\\\x^2=\frac{y^2-\ln(y^2)+C}{4}\\\\x=\frac{\pm\sqrt{y^2-\ln(y^2)+C}}{2}[/tex]

If R is the set of real numbers, Q is the set of rational numbers, I is the set of integers, W is the set of whole numbers, N is the set of natural numbers, and S is the set of irrational numbers, simplify or answer the following. Complete parts (a) through (e) below. a. Q∩I b. S−Q c. R∪S d. Which of the sets could be a universal set for the other sets? e. If the universal set is R, how would you describe S
ˉ
? a. Q∩I= b. S−Q= c. R∪S= d. Which of the sets could be a universal set for the other sets?

Answers

a. Q∩I is the set of rational integers[tex]{…,-3,-2,-1,0,1,2,3, …}[/tex]

b. S−Q is the set of irrational numbers. It is because a number that is not rational is irrational. The set of rational numbers is Q, which means that the set of numbers that are not rational, or the set of irrational numbers is S.

S-Q means that it contains all irrational numbers that are not rational.

c. R∪S is the set of real numbers because R is the set of all rational numbers and S is the set of all irrational numbers. Every real number is either rational or irrational.

The union of R and S is equal to the set of all real numbers. d. The set R is a universal set for all the other sets. This is because the set R consists of all real numbers, including all natural, whole, integers, rational, and irrational numbers. The other sets are subsets of R. e. If the universal set is R, then the complement of the set S is the set of rational numbers.

It is because R consists of all real numbers, which means that S′ is the set of all rational numbers.

To know more about rational visit:

https://brainly.com/question/15837135

#SPJ11

Consider the following equation: 3x+5=13
(a) If x is equal to the number of trucks, is it possible to find an exact value for x? Use the language of abstract algebra to explain why or why not.
(b) If x is equal to the number of kilograms gained or lost, is it possible to find an exact value for x? Use the language of abstract algebra to explain why or why not.

Answers

(a) Yes, an exact value for x can be determined in the equation 3x + 5 = 13 when x represents the number of trucks. (b) No, it may not be possible to find an exact value for x in the equation 3x + 5 = 13 when x represents the number of kilograms gained or lost, as the solution may involve decimals or irrational numbers.

(a) In the equation 3x + 5 = 13, x represents the number of trucks. To determine if an exact value for x can be found, we need to consider the algebraic properties involved. In this case, the equation involves addition, multiplication, and equality. Abstract algebra tells us that addition and multiplication are closed operations in the set of real numbers, which means that performing these operations on real numbers will always result in another real number.

(b) In the equation 3x + 5 = 13, x represents the number of kilograms gained or lost. Again, we need to analyze the algebraic properties involved to determine if an exact value for x can be found. The equation still involves addition, multiplication, and equality, which are closed operations in the set of real numbers. However, the context of the equation has changed, and we are now considering kilograms gained or lost, which can involve fractional values or irrational numbers. The solution for x in this equation might not always be a whole number or a simple fraction, but rather a decimal or an irrational number.

To know more about equation,

https://brainly.com/question/30437965

#SPJ11

(For problems 8 - 10 rouesd monetary answers to nearest peniny.) 8. Margaret buys new stereo equipment for $500. The store agrees to finance the parchase price for 4 months at 12% annual interest rate compounded monthly, with approximately equal payments at the end of each month. Her first 3 monthly payments will be $128. 14. The amount of the fourth payment will be \$128.14 or less (depending on the balance after the third payment). Use this information to complete the amortiration schedule below.

Answers

The first step is to find out the monthly interest rate.Monthly Interest rate, r = 12%/12 = 1%

Now, we have to find the equal payments at the end of each month using the present value formula. The formula is:PV = Payment × [(1 − (1 + r)−n) ÷ r]

Where, PV = Present Value Payment = Monthly Payment

D= Monthly Interest Raten n

N= Number of Months of Loan After substituting the given values, we get

:500 = Payment × [(1 − (1 + 0.01)−4) ÷ 0.01

After solving this equation, we get Payment ≈ $128.14.So, the monthly payment of Margaret is $128.14.Thus, the amortization schedule is given below

:Month Beginning Balance Payment Principal Interest Ending Balance1 $500.00 $128.14 $82.89 $5.00 $417.111 $417.11 $128.14 $85.40 $2.49 $331.712 $331.71 $128.14 $87.99 $0.90 $243.733 $243.73 $128.14 $90.66 $0.23 $153.07

Thus, the amount of the fourth payment will be \$153.07.

To know more about cost estimate visit :-

https://brainly.in/question/40164367

#SPJ11

\( x^{3} y^{\prime \prime \prime}-3 x y^{\prime}+80 y=0 \) is a Cauchy-Euler equation. True False A Moving to another question will save this response.

Answers

False. The given differential equation \(x^{3} y^{\prime \prime \prime}-3 x y^{\prime}+80 y=0\) is not a Cauchy-Euler equation.

A Cauchy-Euler equation, also known as an Euler-Cauchy equation or a homogeneous linear equation with constant coefficients, is of the form \(a_n x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \ldots + a_1 x y' + a_0 y = 0\), where \(a_n, a_{n-1}, \ldots, a_1, a_0\) are constants.

In the given equation, the term \(x^3 y^{\prime \prime \prime}\) with the third derivative of \(y\) makes it different from a typical Cauchy-Euler equation. Therefore, the statement is false.

Learn more about differential equation here

https://brainly.com/question/1164377

#SPJ11

What amount invested today would grow to $10,500 after 25 years, if the investment earns: (Do not round intermediate calculations and round your final answers to 2 decimal places.) Amount a. 8% compounded annually $ b. 8% compounded semiannually $ c. 8% compounded quarterly $ d. 8% compounded monthly $

Answers

Amount invested today to grow to $10,500 after 25 years is $2,261.68 for monthly compounding, $2,289.03 for quarterly compounding, $2,358.41 for semiannual compounding, and $2,500.00 for annual compounding.

The amount of money that needs to be invested today to grow to a certain amount in the future depends on the following factors:

The interest rateThe number of yearsThe frequency of compounding

In this case, we are given that the interest rate is 8%, the number of years is 25, and the frequency of compounding can be annual, semiannual, quarterly, or monthly.

We can use the following formula to calculate the amount of money that needs to be invested today: A = P(1 + r/n)^nt

where:

A is the amount of money in the futureP is the amount of money invested todayr is the interest raten is the number of times per year that interest is compoundedt is the number of years

For annual compounding, we get:

A = P(1 + 0.08)^25 = $2,500.00

For semiannual compounding, we get:

A = P(1 + 0.08/2)^50 = $2,358.41

For quarterly compounding, we get:

A = P(1 + 0.08/4)^100 = $2,289.03

For monthly compounding, we get:

A = P(1 + 0.08/12)^300 = $2,261.68

As we can see, the amount of money that needs to be invested today increases as the frequency of compounding increases. This is because more interest is earned when interest is compounded more frequently.

To know more about rate click here

brainly.com/question/199664

#SPJ11

For what values of \( a \) and \( b \) will make the two complex numbers equal? \[ 5-2 i=10 a+(3+b) i \]

Answers

For the values of a and b to make the two complex numbers equal are: a = 1/2 and b = -2.

Given equation is 5 - 2i = 10a + (3+b)i

In the equation, 5-2i is a complex number which is equal to 10a+(3+b)i.

Here, 10a and 3i both are real numbers.

Let's separate the real and imaginary parts of the equation: Real part of LHS = Real part of RHS5 = 10a -----(1)

Imaginary part of LHS = Imaginary part of RHS-2i = (3+b)i -----(2)

On solving equation (2), we get,-2i / i = (3+b)1 = (3+b)

Therefore, b = -2

After substituting the value of b in equation (1), we get,5 = 10aA = 1/2

Therefore, the values of a and b are 1/2 and -2 respectively.The solution is represented graphically in the following figure:

Answer:For the values of a and b to make the two complex numbers equal are: a = 1/2 and b = -2.

Know more about complex numbers  here,

https://brainly.com/question/20566728

#SPJ11

A rectangular garden is to be constructed with 24ft of fencing. What dimensions of the rectangle (in ft ) will maximize the area of the garden? (Assume the length is less than or equal to the width.) length _____________ ft
width _____________ ft

Answers

The dimensions that maximize the area of the garden are a length of 6 feet and a width of 6 feet.

To maximize the area of a rectangular garden with 24 feet of fencing, the length should be 6 feet and the width should be 6 feet.

Let's assume the length of the garden is L feet and the width is W feet. The perimeter of the garden is given as 24 feet, so we can write the equation:

2L + 2W = 24

Simplifying the equation, we get:

L + W = 12

To maximize the area, we need to express the area of the garden in terms of a single variable. The area of a rectangle is given by the formula A = L * W.

We can substitute L = 12 - W into this equation:

A = (12 - W) * W

Expanding and rearranging, we have:

A = 12W - W²

To find the maximum area, we can take the derivative of A with respect to W and set it equal to zero:

dA/dW = 12 - 2W = 0

Solving for W, we find W = 6. Substituting this back into L = 12 - W, we get L = 6.

Therefore, the dimensions that maximize the area of the garden are a length of 6 feet and a width of 6 feet.

To learn more about area of a rectangle visit:

brainly.com/question/12019874

#SPJ11


Using the drawing, what is the vertex of angle 4?

Answers

Based on the image, the vertex of angle 4 is

C) A

What is vertex of an angle?

The term vertex refers to the common endpoint of the two rays that form an angle. In geometric terms, an angle is formed by two rays that originate from a common point, and the common point is known as the vertex of the angle.

In the diagram, the vertex is position A., and angle 4 and angle 1 are adjacent angles and shares same vertex

Learn more about vertex  at

https://brainly.com/question/21191648

#SPJ1

(A) Find the slope of the line that passes through the given points. (B) Find the point-slope form of the equation of the line (C) Find the slope-intercept form of the equation of the line. (D) Find the standard form of the equation of the line (1,7) and (8,10) (A) Choose the correct answer for the slope below O A. m (Type an integer or a simplified fraction.) OB. The slope is not defined (B) What is the equation of the line in point-siope form? OA. There is no point-slope form O B. (Use integers or fractions for any numbers in the equation.) (C) What is the equation of the line in slope-intercept form? (Use integers or fractions for any numbers in the equation.) O A O B. There is no slope-intercept form. (D) What is the equation of the line in standard form? (Use integers or fractions for any numbers in the equation.)

Answers

(A) The slope of the line passing through points (1,7) and (8,10) is 1/7. (B) y - 7 = 1/7(x - 1). (C) The equation of the line in slope-intercept form is y = 1/7x + 48/7. (D) The equation of the line in standard form is 7x - y = -48.

(A) To find the slope of the line passing through the points (1,7) and (8,10), we can use the formula: slope = (change in y)/(change in x). The change in y is 10 - 7 = 3, and the change in x is 8 - 1 = 7. Therefore, the slope is 3/7 or 1/7.

(B) The point-slope form of the equation of a line is given by y - y1 = m(x - x1), where (x1, y1) is a point on the line and m is the slope. Using point (1,7) and the slope 1/7, we can substitute these values into the equation to get y - 7 = 1/7(x - 1).

(C) The slope-intercept form of the equation of a line is y = mx + b, where m is the slope and b is the y-intercept. Since we know the slope is 1/7, we need to find the y-intercept. Plugging the point (1,7) into the equation, we get 7 = 1/7(1) + b. Solving for b, we find b = 48/7. Therefore, the equation of the line in slope-intercept form is y = 1/7x + 48/7.

(D) The standard form of the equation of a line is Ax + By = C, where A, B, and C are integers, and A is non-negative. To convert the equation from slope-intercept form to standard form, we multiply every term by 7 to eliminate fractions. This gives us 7y = x + 48. Rearranging the terms, we get -x + 7y = 48, or 7x - y = -48. Thus, the equation of the line in standard form is 7x - y = -48.

To learn more about slope visit:

brainly.com/question/9317111

#SPJ11

The cross product of two vectors in R 3
is defined by ⎣


a 1

a 2

a 3





× ⎣


b 1

b 2

b 3





× ⎣


a 2

b 3

−a 3

b 2

a 3

b 1

−a 1

b 3

a 1

b 2

−a 2

b 1





. Let v= ⎣


−4
7
−2




Find the matrix A of the linear transformation from R 3
to R 3
given by T(x)=v×x.

Answers

The matrix A of the linear transformation T(x) = v × x, where v = [-4, 7, -2], can be represented as:A = [0, -2, -7; 4, 0, -4; 7, 2, 0].

To find the matrix A of the linear transformation T(x) = v × x, we need to determine the transformation of the standard basis vectors in R^3 under T. The standard basis vectors are i = [1, 0, 0], j = [0, 1, 0], and k = [0, 0, 1].

Using the cross product formula, we can calculate the transformation of each basis vector under T:

T(i) = v × i = [-4, 7, -2] × [1, 0, 0] = [0, -2, -7],

T(j) = v × j = [-4, 7, -2] × [0, 1, 0] = [4, 0, -4],

T(k) = v × k = [-4, 7, -2] × [0, 0, 1] = [7, 2, 0].

The resulting vectors are the columns of matrix A. Therefore, the matrix A of the linear transformation T(x) = v × x is:

A = [0, -2, -7; 4, 0, -4; 7, 2, 0].

Each column of A represents the transformation of the corresponding basis vector in R^3 under T.

To learn more about matrix  Click Here:  brainly.com/question/29132693

#SPJ11

Find the standard divisor (to two decimal places) for the given population and number of representative seats. Assume the population is equal to 8,740,000 and number of seats is 19.

Answers

To two decimal places, the standard divisor for a population of 8,740,000 and 19 representative seats is approximately 459,473.68.

The standard divisor is a value used in apportionment calculations to determine the number of seats allocated to each district or region based on the population.

To find the standard divisor, we divide the total population by the number of representative seats. In this case, we divide 8,740,000 by 19.

Standard Divisor = Population / Number of Seats

Standard Divisor = 8,740,000 / 19

Calculating this, we get:

Standard Divisor ≈ 459,473.68

So, the standard divisor, rounded to two decimal places, for a population of 8,740,000 and 19 representative seats is approximately 459,473.68.

This means that each representative seat would represent approximately 459,473.68 people in the given population.

This value serves as a basis for determining the proportional allocation of seats among the different regions or districts in an apportionment process.

To learn more about population visit:

brainly.com/question/29095323

#SPJ11

The expression (z - 6) (x² + 2x + 6)equals Ax³ + Bx² + Cx + D where A equals: ___________ and B equals: ___________ and C equals: ___________ and D equals: ___________

Answers

The expression (z - 6) (x² + 2x + 6) can be expanded to the form Ax³ + Bx² + Cx + D, where A = 1, B = 2, C = 4, and D = 6.

To expand the expression (z - 6) (x² + 2x + 6), we need to distribute the terms. We multiply each term of the first binomial (z - 6) by each term of the second binomial (x² + 2x + 6) and combine like terms. The expanded form will be in the form Ax³ + Bx² + Cx + D.

Expanding the expression gives:

(z - 6) (x² + 2x + 6) = zx² + 2zx + 6z - 6x² - 12x - 36

Rearranging the terms, we get:

= zx² - 6x² + 2zx - 12x + 6z - 36

Comparing this expanded form to the given form Ax³ + Bx² + Cx + D, we can determine the values of the coefficients:

A = 0 (since there is no x³ term)

B = -6

C = -12

D = 6z - 36

Therefore, A = 1, B = 2, C = 4, and D = 6.

Learn more about coefficients here:

https://brainly.com/question/13431100

#SPJ11

A new sports car model has defective brakes 2 percent of the timie and a defective steering mechaaisen 6 percent of the time. Let's assume (and hopo that these problems occur independently. If one or the other of these problems is present, the car is calied a "lemoni. If both of these problems are present the car is a "hazard," Your instructor purchased one of these cars yesterday. What is the probability it is a thazard?" (Round to these decinat places as reeded.

Answers

The probability that the car is a "hazard" given that it has both defective brakes and a defective steering mechanism is approximately 0.0187, or 1.87%.

To find the probability that the car is a "hazard" given that it has both defective brakes and a defective steering mechanism, we can use the concept of conditional probability.

Let's denote the event of having defective brakes as B and the event of having a defective steering mechanism as S. We are looking for the probability of the event H, which represents the car being a "hazard."

From the information given, we know that P(B) = 0.02 (2% of the time) and P(S) = 0.06 (6% of the time). Since the problems are assumed to occur independently, we can multiply these probabilities to find the probability of both defects occurring:

P(B and S) = P(B) × P(S) = 0.02 × 0.06 = 0.0012

This means that there is a 0.12% chance that both defects are present in the car.

Now, to find the probability that the car is a "hazard" given both defects, we need to divide the probability of both defects occurring by the probability of having either defect:

P(H | B and S) = P(B and S) / (P(B) + P(S) - P(B and S))

P(H | B and S) = 0.0012 / (0.02 + 0.06 - 0.0012) ≈ 0.0187

Therefore, the probability that the car is a "hazard" given that it has both defective brakes and a defective steering mechanism is approximately 0.0187, or 1.87%.

Know more about Probability here :

https://brainly.com/question/31828911

#SPJ11

Find the matrix \( A \) of the linear transformation \( T(f(t))=5 f^{\prime}(t)+8 f(t) \) from \( P_{3} \) to \( P_{3} \) with respect to the standard basis for \( P_{3},\left\{1, t, t^{2}\right\} \).

Answers

Therefore, the matrix A of the linear transformation T(f(t))=5f'(t)+8f(t) from P₃ to P₃ with respect to the standard basis {1,t,t²} is:

[tex]A=\left[\begin{array}{ccc}8&0&0\\0&5&0\\0&0&8\end{array}\right][/tex]

To find the matrix A of the linear transformation T(f(t))=5f'(t)+8f(t) from P₃ to P₃ with respect to the standard basis {1,t,t²} for P₃, we need to determine the images of the basis vectors under the transformation and express them as linear combinations of the basis vectors.

Let's calculate T(1):

T(1) = 5(0) + 8(1) = 8

Now, let's calculate T(t):

T(t) = 5(1) + 8(t) = 5 + 8t

Lastly, let's calculate T(t²):

T(t²) = 5(2t) + 8(t²) = 10t + 8t²

We can express these images as linear combinations of the basis vectors:

T(1) = 8(1) + 0(t) + 0(t²)

T(t) = 0(1) + 5(t) + 0(t²)

T(t²) = 0(1) + 0(t) + 8(t²)

Now, we can form the matrix A using the coefficients of the basis vectors in the linear combinations:

[tex]A=\left[\begin{array}{ccc}8&0&0\\0&5&0\\0&0&8\end{array}\right][/tex]

Therefore, the matrix A of the linear transformation T(f(t))=5f'(t)+8f(t) from P₃ to P₃ with respect to the standard basis {1,t,t²} is:

[tex]A=\left[\begin{array}{ccc}8&0&0\\0&5&0\\0&0&8\end{array}\right][/tex]

To learn more about linear transformation visit:

brainly.com/question/13595405

#SPJ11

If the two figures are congruent, which statement is true?
A. BCDA ≅ FEHG

B. ABCD ≅ EFGH

C. BADC ≅ EFGH

D. ADCB ≅ HGFE

Answers

Answer:

A

Step-by-step explanation:

the order of letter should resemble the same shape

help me please! I don't know what to do ​

Answers

Answer:

28 yards.

Step-by-step explanation:

We can use the formula for the area of a right triangle to find the length of the longest side (the hypotenuse) of the playground. The area of a right triangle is given by:

A = 1/2 * base * height

where the base and height are the lengths of the two legs of the right triangle.

In this case, the area of the playground is given as 294 yards, and one of the legs (the short side) is given as 21 yards. Let x be the length of the longest side (the hypotenuse) of the playground. Then, we can write:

294 = 1/2 * 21 * x

Multiplying both sides by 2 and dividing by 21, we get:

x = 2 * 294 / 21

Simplifying the expression on the right-hand side, we get:

x = 28

Therefore, the length of the path along the longest side (the hypotenuse) of the playground would be 28 yards.

- How many ways can you select a group/set of 5 players, without regard to order, out of a total of 12 ? Answer: How many ways can you assign by position/Order Matters (e.g., Left \& Right Tackles; Left \& Right Guards \& center) 5 players out of a total of 12? Answer:

Answers

The number of ways of selecting a group of 5 players out of a total of 12 without regard to order. To solve this problem, we can use the combination formula, which is:nCk= n!/(k!(n-k)!)where n is the total number of players and k is the number of players we want to select.

Substituting the given values into the formula, we get:

12C5= 12!/(5!(12-5)!)

= (12x11x10x9x8)/(5x4x3x2x1)

= 792.

There are 792 ways of selecting a group of 5 players out of a total of 12 without regard to order. The question asks us to determine the number of ways of assigning 5 players by position out of a total of 12. Since order matters in this case, we can use the permutation formula, which is: nPk= n!/(n-k)!where n is the total number of players and k is the number of players we want to assign to specific positions.

Substituting the given values into the formula, we get:

12P5= 12!/(12-5)!

= (12x11x10x9x8)/(7x6x5x4x3x2x1)

= 95,040

There are 95,040 ways of assigning 5 players by position out of a total of 12.

To know more about combination visit:

https://brainly.com/question/31586670

#SPJ11

Calculate the vector field whose velocity potendal is (a) xy²x³ (b) sin(x - y + 2z) (c) 2x² + y² + 3z² (d) x + yz + z²x²

Answers

The vector field can be calculated from the given velocity potential as follows:

(a) [tex]For the velocity potential, V = xy²x³; taking the gradient of V, we get:∇V = i(2xy²x²) + j(xy² · 2x³) + k(0)∇V = 2x³y²i + 2x³y²j[/tex]

(b) [tex]For the velocity potential, V = sin(x - y + 2z); taking the gradient of V, we get:∇V = i(cos(x - y + 2z)) - j(cos(x - y + 2z)) + k(2cos(x - y + 2z))∇V = cos(x - y + 2z)i - cos(x - y + 2z)j + 2cos(x - y + 2z)k[/tex]

(c) [tex]For the velocity potential, V = 2x² + y² + 3z²; taking the gradient of V, we get:∇V = i(4x) + j(2y) + k(6z)∇V = 4xi + 2yj + 6zk[/tex]

(d)[tex]For the velocity potential, V = x + yz + z²x²; taking the gradient of V, we get:∇V = i(1 + 2yz) + j(z²) + k(y + 2zx²)∇V = (1 + 2yz)i + z²j + (y + 2zx²)k[/tex]

[tex]Therefore, the vector fields for the given velocity potentials are:(a) V = 2x³y²i + 2x³y²j(b) V = cos(x - y + 2z)i - cos(x - y + 2z)j + 2cos(x - y + 2z)k(c) V = 4xi + 2yj + 6zk(d) V = (1 + 2yz)i + z²j + (y + 2zx²)k[/tex]

To know more about the word vector visits :

https://brainly.com/question/24486562

#SPJ11

The vector field corresponding to the velocity potential \(\Phi = x + yz + z^2x^2\) is \(\mathbf{V} = (1 + 2zx^2, z, y + 2zx)\).

These are the vector fields corresponding to the given velocity potentials.

To calculate the vector field corresponding to the given velocity potentials, we can use the relationship between the velocity potential and the vector field components.

In general, a vector field \(\mathbf{V}\) is related to the velocity potential \(\Phi\) through the following relationship:

\(\mathbf{V} = \nabla \Phi\)

where \(\nabla\) is the gradient operator.

Let's calculate the vector fields for each given velocity potential:

(a) Velocity potential \(\Phi = xy^2x^3\)

Taking the gradient of \(\Phi\), we have:

\(\nabla \Phi = \left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}, \frac{\partial \Phi}{\partial z}\right)\)

\(\nabla \Phi = \left(y^2x^3, 2xyx^3, 0\right)\)

So, the vector field corresponding to the velocity potential \(\Phi = xy^2x^3\) is \(\mathbf{V} = (y^2x^3, 2xyx^3, 0)\).

(b) Velocity potential \(\Phi = \sin(x - y + 2z)\)

Taking the gradient of \(\Phi\), we have:

\(\nabla \Phi = \left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}, \frac{\partial \Phi}{\partial z}\right)\)

\(\nabla \Phi = \left(\cos(x - y + 2z), -\cos(x - y + 2z), 2\cos(x - y + 2z)\right)\)

So, the vector field corresponding to the velocity potential \(\Phi = \sin(x - y + 2z)\) is \(\mathbf{V} = (\cos(x - y + 2z), -\cos(x - y + 2z), 2\cos(x - y + 2z))\).

(c) Velocity potential \(\Phi = 2x^2 + y^2 + 3z^2\)

Taking the gradient of \(\Phi\), we have:

\(\nabla \Phi = \left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}, \frac{\partial \Phi}{\partial z}\right)\)

\(\nabla \Phi = \left(4x, 2y, 6z\right)\)

So, the vector field corresponding to the velocity potential \(\Phi = 2x^2 + y^2 + 3z^2\) is \(\mathbf{V} = (4x, 2y, 6z)\).

(d) Velocity potential \(\Phi = x + yz + z^2x^2\)

Taking the gradient of \(\Phi\), we have:

\(\nabla \Phi = \left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}, \frac{\partial \Phi}{\partial z}\right)\)

\(\nabla \Phi = \left(1 + 2zx^2, z, y + 2zx\right)\)

So, the vector field corresponding to the velocity potential \(\Phi = x + yz + z^2x^2\) is \(\mathbf{V} = (1 + 2zx^2, z, y + 2zx)\).

These are the vector fields corresponding to the given velocity potentials.

To know more about velocity, visit:

https://brainly.com/question/30559316

#SPJ11

Given the Price-Demand equation p=10−0.5x where x is the number items produced and p is the price of each item in dollars. a) Find the revenue function R(x) b) If the production for an item is increasing by 5 items per week, how fast is the revenue increasing (or decreasing) in dollars per week when 100 items are being produced.

Answers

a) The revenue function R(x) is given by R(x) = x * (10 - 0.5x).

b) The revenue is decreasing at a rate of $90 per week when 100 items are being produced.

a) The revenue function R(x) represents the total revenue generated by selling x items. It is calculated by multiplying the number of items produced (x) with the price of each item (p(x)). In this case, the Price-Demand equation p = 10 - 0.5x provides the price of each item as a function of the number of items produced.

To find the revenue function R(x), we substitute the Price-Demand equation into the revenue formula: R(x) = x * p(x). Using p(x) = 10 - 0.5x, we get R(x) = x * (10 - 0.5x).

b) To determine how fast the revenue is changing with respect to the number of items produced, we need to find the derivative of the revenue function R(x) with respect to x. Taking the derivative of R(x) = x * (10 - 0.5x) with respect to x, we obtain R'(x) = 10 - x.

To determine the rate at which the revenue is changing when 100 items are being produced, we evaluate R'(x) at x = 100. Substituting x = 100 into R'(x) = 10 - x, we get R'(100) = 10 - 100 = -90.

Therefore, the revenue is decreasing at a rate of $90 per week when 100 items are being produced.

Learn more about revenue function

brainly.com/question/29148322

#SPJ11

Other Questions
section Young's (d) A 4m long, simply supported rectangular beam of 350mm deep x 75mm wide, supports a uniformly distributed load of 2kN/m throughout it's the length and a point load of 3kN at midspan. Ignoring the self weight of the beam, calculate the maximum shear stress on the cross section of the beam at the location along the beam where the shear force is at a maximum. centre to centre B) Find the reduced mass and momentum of inertia 35 CT-195 separated by The inter distance 1.45 Note C = 3x108 m. s-1 Avogadro constant - 6. 0224131 Planck constant 6.626 4 10 24.5 d.S What activated carrier/carriers are generated during Stage 1 of photosynthesis? Mark all correct answers! a.ATP b.Acetyl COA c.NADPH d.NADH Which of the following are involved in elongation of transcription?Select/check all that apply. complimentary base pairing between DNA and RNA codonspromoter RNA polymerasetranscriptionfactors It is proposed that a discrete model of a plant system be identified using an on-line Least Squares system identification method. The sampling period, T, is 1 second. Initially, the discrete transfer function parameters are unknown. However, it is known that the plant may be modelled by the following generalized second order transfer function: G(=) b = -b =-a-a The following discrete input data signal, u(k), comprising of eight values, is applied to the plant: k 1 2 3 4 5 6 7 8 u(k) 1 1 0 0 1 1 0 0 The resulting output response sample sequence of the plant system, y(k), is: 1 2 3 4 5 6 7 8 y(k) 0 0.25 1.20 1.81 1.93 2.52 3.78 4.78 a) Using the input data, and output response of the plant, implement a Least Squares algorithm to determine the following matrices:- i. Output / input sample history matrix (F) Parameter vector () ii. In your answer, clearly state the matrix/vector dimensions. Justify the dimensions of the matrices by linking the results to theory. b) Determine the plant parameters a, a2, b and b2; hence determine the discrete transfer function of the plant. on the open loop stability of the plant model. Comment [5 Marks] c) Consider the discrete input signal, u(k). In a practical situation, is this a sensible set of values for the identification of the second order plant? Clearly explain the reason for your answer. [5 Marks] Note: Only if you do NOT have an answer to part b), please use the following 'dummy data' for G(z) in the remainder of this question; b= 0.3, b2= 0.6, a1= -0.6, a2= -0.2. Hence: G (2)= 0.3z +0.6 2-0.62-0.2 Please note; this is NOT the answer to part b). You MUST use your answer from b) if possible and this will be considered in the marking. c) It is proposed to control the plant using a proportional controller, with proportional gain, Kp = 1.85. With this controller, determine the closed loop pole locations. Comment on the closed loop stability. Sketch the step response of the closed loop system [5 Marks] d) What measures might you consider to improve; i) the closed loop stability of the system? ii) the transient response characteristic? There is no requirement for simulation work here, simply consider and discuss. [5 Marks] e) What effect would a +10% estimation error in parameter b2 have on the pole location of the closed loop control system? Use Matlab to investigate this possible situation and discuss the results. [10 Marks] Which of the following statements about Neanderthals is FALSE? Neanderthals likely buried their dead Neandertals were hunters and gatherers Neandertals were physiologically adapted to cold climatesNeandertals brains were notably smaller than those of modern humans Water with a velocity of 3.38 m/s flows through a 148 mmdiameter pipe. Solve for the weight flow rate in N/s. Express youranswer in 2 decimal places. Equilibrium cooling of a hyper-eutectoid steel to room temperature will form: A. Pro-eutectoid ferrite and pearlite B. Pro-eutectoid ferrite and cementite C. Pro-eutectoid cementite and pearlite Pro-eutectoid cementite and austenite D. Based on the family tree, decide which word is missing. When you have completed the sentence, record yourself reading it out loud.Luisa es la ____ de Jorge. 1. Failure [20 points] a. This type of failure is responsible for 90% of all service failures: fatique/creep/fracture (pick one) [1 point]. Flaws in objects are referred to as___ Raisers [1 point]. b. Draw brittle and moderately ductile fracture surfaces. QUESTION 24 High frequency sounds (above 200 Hz) are encoded by: none of these O phase locking O delay lines O a tonotopic map (tonotopy) Air is compressed by an adiabatic compressor from 100 kPa and 300 K to 607 kPa. Determine the exit temperature (in K) of air if the process is reversible. How might stem cells be beneficial to us? What could they help cure? 1 A Ff B I U S xz x2 % SS Learn Video 1 A high specific gravity reading means that: 1 pts O the urine is very dilute, containing more water than usual. the solutes in the urine are very concentrated. Check Answer 1 pts The pH of urine can b What is one priority nursing diagnosis for this shift?Example (Nursing Dx R/T_________AEB_________)___excess fluid volume r/t compromised regulatory mechanisms; heart liver or kidney failure AEB to patient bilateral closed/suction drain pleural__What is the goal for this client with regards to this nursing diagnosis? (SMART Goal)Client will:__________________________________________________________________________________________List 5 nursing interventions and rationales for this client in order to meet this goal. 1. 2 ng of a 2500 base pairs double stranded DNA is obtained from a National Genetic Laboratory in Ghana. The purpose is to amplify the DNA using recombinant techniques. a. What is a recombinant DNA? b. In addition to the DNA provided, what other DNAs and enzymes are needed to produce a recombinant DNA. Explain their role in designing the recombinant DNA. [9 marks] c. If the 2500 base pairs DNA contained 27% cytosines, calculate the percentage guanines, thymines and adenines. [6 marks] d. After sequencing, you realized that 4 adenines of the 2500 double stranded DNA were mutated to cytosines, calculate the percentage adenines, thymines, cytosines and guanines. [8 marks] A closed 0.09 m vessel contains a mixture of gases with a molar composition of 40% CO2, 30% N and the remainder is O2. If the pressure and temperature of the mixture are 3 bar and 30C, respectively, and using the ideal gas model, what is the mass of the gas mixture? Express your answer in kg. How many milliliters of a 2.15 M LiCl solution contain 42.0 g ofLiCl ? Express your answer with the appropriate units. Which of the following are not true?i. The profitability index is only completely reliable if the set of projects taken following the profitability index ranking completely exhausts the available resource and there is only a single relevant resource constraint.ii. When comparing two mutually exclusive opportunities using the incremental methodology, we will always choose the bigger project if the IRR of the incremental project is greater than the cost of capital.111. Since oil industry stocks have high standard deviations, such stocks should not be included in a well-diversified portfolio of a risk-averse investor. A downward-sloping term structure of interest rates often precedes a recession. IV.V. If a portfolio has a positive investment in every asset, the standard deviation on the portfolio should be greater than that on every asset in the portfolio.a. i and ivb. ii, iii and vc. ii and vd. i and iie. i, iv, and v A new truck is fitted with new wheels which hace a radius of 18 inches. How fast will the truck be moving when the wherls are rotating 425 revolutions per minute? Express the answer in miles per hour rounded to the newrest whole number1 mi = 5280 ft