Suppose that 4 J of work is needed to stretch a spring from its natural length of 36 cm to a length of 47 cm. (a) How much work is needed to stretch the spring from 41 cm to 45 cm? (Round your answer to two decimal places.) J (b) How far beyond its natural length will a force of 15 N keep the spring stretched? (Round your answer one decimal place.)

Answers

Answer 1

Answer:

Explanation:

Work done on a spring is expressed as [tex]W = 1/2 ke^{2}[/tex]

k is the elastic constant

e is the extension of the material

If 4 J of work is needed to stretch a spring from its natural length of 36 cm to a length of 47 cm, then;

Work done = 4J and the extension e = 47 cm - 36 cm; e = 11 cm

11cm = 0.11m

Substituting the given values into the equation above to get the elastic constant;

[tex]W = 1/2 ke^{2}\\4 = 1/2k(0.11)^{2} \\8 = 0.0121k\\k = 8/0.0121\\k = 661.16N/m[/tex]

a) In order to determine the amount of work needed work is needed to stretch the spring from 41 cm to 45 cm, wre will use the same formula as above.

[tex]W = 1/2ke^{2} \\e = 0.45 - 0.41\\e = 0.04 m\\ k = 661.16N/m[/tex]

[tex]W = 1/2 * 661.16 * 0.04^{2} \\W = 330.58*0.0016\\W = 0.53J (to\ 2d.p)[/tex]

b) According to hooke's law, F = ke where F is the applied force

We are to get the extension when a force of 15N is applied to the original length of the material.

e = F/k

e = 15/661.16

e = 0.02 m (to 1 d.p)

This means that the natural length of the spring will be stretched by 0.02 m when a force of 15N is applied to it.


Related Questions

3. Identify the mathematical relationship that exists between pressure and volume, when temperature and quantity are held constant, as being directly proportional or inversely proportional. Explain your answer and write an equation that relates pressure and volume to a constant, using variables

Answers

Answer:

P = cte / V

therefore pressure and volume are inversely proportional

Explanation:

For this exercise we can join the ideal gases equation

        PV = n R T

they indicate that the amount of matter and the temperature are constant, therefore

         PV = cte

        P = cte / V

therefore pressure and volume are inversely proportional

What portion of the difference in the angular speed before and after you increased the mass can be accounted for by frictional losses

Answers

Answer:

As the mass increases, the moment of inertia(I) increases, therefore, the angular momentum(L) increases too.

Explanation:

friction can be defined as resistance in motion of bodies in relative to one another

momentum is the product of mass and velocity

torque is the time rate of change in momentum

τ = [tex]\frac{dL}{dt}[/tex]

where L = Iω = mvr

I = moment of inertia

ω=  angular frequency

if there is no external force(torque) acting on the system, then

[tex]\frac{dL}{dt}[/tex] = 0

dL = 0 = constant

moment of inertia I depends on the distribution of mass on the axis of rotation.

as the mass increases, the angular momentum(L) increases

angular frequency, ω, remains constant

Waves from two slits are in phase at the slits and travel to a distant screen to produce the second minimum of the interference pattern. The difference in the distance traveled by the wave is:

Answers

Answer:

Three halves of a wavelength I.e 7lambda/2

Explanation:

See attached file pls

A single slit of width 0.3 mm is illuminated by a mercury light of wavelength 254 nm. Find the intensity at an 11° angle to the axis in terms of the intensity of the central maximum.

Answers

Answer:

The  the intensity at an 11° angle to the axis in terms of the intensity of the central maximum is  

   [tex]I_c = \frac{I}{I_o} =8.48 *10^{-8}[/tex]

Explanation:

From the question we are told that

   The  width of the slit is  [tex]D = 0.3 \ mm = 0.3 *10^{-3} \ m[/tex]

    The  wavelength is  [tex]\lambda = 254 \ nm = 254 *10^{-9} \ m[/tex]

     The angle is  [tex]\theta = 11^o[/tex]

The intensity of at [tex]11^o[/tex] to the axis in terms of the intensity of the central maximum. is mathematically represented as

        [tex]I_c = \frac{I}{I_o} = [ \frac{sin \beta }{\beta }] ^2[/tex]

Where [tex]\beta[/tex] is mathematically represented as

        [tex]\beta = \frac{D sin (\theta ) * \pi}{\lambda }[/tex]

substituting values

      [tex]\beta = \frac{0.3 *10^{-3} sin (11 ) * 3.142}{254 *10^{-9} }[/tex]

     [tex]\beta = 708.1 \ rad[/tex]

So

  [tex]I_c = \frac{I}{I_o} = [ \frac{sin (708.1) }{(708.1)}] ^2[/tex]

   [tex]I_c = \frac{I}{I_o} =8.48 *10^{-8}[/tex]

When static equilibrium is established for a charged conductor, the electric field just inside the surface of the conductor is

Answers

Answer:

The electric field just inside the charged conductor is zero.

Explanation:

Electric field is defined as the region where electrical force is experienced by an electric charge usually as a result of the presence of another electric charge. A charged conductor is said to be in electrostatic equilibrium when it is in an electrostatically balanced state. This simply means a state in which the free electrical charges in the charged conductor have stopped moving.

For any charged conductor that has attained electrostatic equilibrium, the electric field at any point below the surface of the charged conductor falls to zero. Hence the electric field just inside the charged conductor is zero.

The velocity selector in in a mass spectrometer consists of a uniform magnetic field oriented at 90 degrees to a uniform electric field so that a charge particle entering the region perpendicular to both fields will experience an electric force and a magnetic force that are oppositely directed. If the uniform magnetic field has a magnitude of 37.8 ~\text{mT}37.8 mT, then calculate the magnitude of the electric field that will cause a proton entering the velocity selector at 40.640.6 km/s to be undeflected. Give your answer in units of kV/m.

Answers

Answer:

50k/h is the answer to iy

Suppose a proton moves to the right and enters a uniform magnetic field into the page. It follows trajectory B with radius rp. An alpha particle (twice the charge and 4 times the mass) enters the same magnetic field in the same way and with the same velocity as the proton. Which path best represents the alpha particle’s trajectory?

Answers

Answer:

   R = r_protón / 2

Explanation:

The alpha particle when entering the magnetic field experiences a force and with Newton's second law we can describe its movement

      F = m a

Since the magnetic force is perpendicular, the acceleration is centripetal.

       a = v² / R

       

the magnetic force is

       F = q v x B = q v B sin θ

the field and the speed are perpendicular so the sin 90 = 1

we substitute

          qv B = m v² / R

          R = q v B / m v²

in the exercise they indicate

the charge  q = 2 e

the mass     m = 4 m_protón

        R = 2e v B / 4m_protón v²

we refer the result to the movement of the proton

         R = (e v B / m_proton) 1/2

the data in parentheses correspond to the radius of the proton's orbit

         R = r_protón / 2

A cylindrical capacitor is made of two thin-walled concentric cylinders. The inner cylinder has radius 5 mm , and the outer one a radius 11 mm . The common length of the cylinders is 160 m . What is the potential energy stored in this capacitor when a potential difference 6 V is

Answers

Answer:

The  potential energy is [tex]PE = 2.031 *10^{-7} \ J[/tex]

Explanation:

From the question we are told that

    The inner radius is  [tex]r_i = 5 \ mm = 0.005 \ m[/tex]

      The outer radius is  [tex]r_o = 11 \ mm = 0.011 \ m[/tex]

     The  common length is  [tex]l = 160 \ m[/tex]

      The  potential  difference is   [tex]V = 6 \ V[/tex]

Generally the capacitance of the cylindrical capacitor is mathematically represented as

       [tex]C = \frac{2 \pi * k * \epsilon_o }{ ln \frac{ r_o }{r_i} } * l[/tex]

Where  [tex]\epsilon _o[/tex] is the permitivity of free space with the values [tex]\epsilon _o = 8.85*10^{-12} \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]

and  k  is the dielectric constant  of the dielectric material here the  dielectric material is free space so  k  =   1

     Substituting values

             [tex]C = \frac{2* 3.142 * 1 * 8.85*10^{-12} }{ ln \frac{ 0.011}{0.005} } * 160[/tex]

             [tex]C = 1.129 *10^{-8} \ F[/tex]

The potential energy stored is mathematically represented as

       [tex]PE = \frac{1}{2} * C * V ^2[/tex]

substituting values

      [tex]PE = 0.5 * 1.129 *10^{-8} * (6)^2[/tex]

      [tex]PE = 2.031 *10^{-7} \ J[/tex]

what is the mass of an oil drop having two extra electrons that is suspended motionless by the field between the plates

Answers

Answer:

 m = 3,265 10⁻²⁰  E

Explanation:

For this exercise we can use Newton's second law applied to our system, which consists of a capacitor that creates the uniform electric field and the drop of oil with two extra electrons.

             ∑ F = 0

             [tex]F_{e}[/tex] - W = 0

             

the electric force is

             F_{e} = q E

   

as they indicate that the charge is two electrons

             F_{e} = 2e E

The weight is given by the relationship

             W = mg

we substitute in the first equation

               2e E = m g

         

               m = 2e E / g

     

let's put the value of the constants

              m = (2 1.6 10⁻¹⁹ / 9.80) E

 

               m = 3,265 10⁻²⁰  E

 The value of the electric field if it is a theoretical problem must be given and if it is an experiment it can be calculated with measures of the spacing between plates and the applied voltage, so that the system is in equilibrium

An air-filled parallel-plate capacitor is connected to a battery and allowed to charge up. Now a slab of dielectric material is placed between the plates of the capacitor while the capacitor is still connected to the battery. After this is done, we find that

Answers

Answer:

The voltage across the capacitor will remain constant

The capacitance of the capacitor will increase

The electric field between the plates will remain constant

The charge on the plates will increase

The energy stored in the capacitor will increase

Explanation:

First of all, if a capacitor is connected to a voltage source, the voltage or potential difference across the capacitor will remain constant. The electric field across the capacitor will stay constant since the voltage is constant, because the electric field is proportional to the voltage applied. Inserting a dielectric material into the capacitor increases the charge on the capacitor.

The charge on the capacitor is equal to

Q = CV

Since the voltage is constant, and the charge increases, the capacitance will also increase.

The energy in a capacitor is given as

E = [tex]\frac{1}{2}CV^{2}[/tex]

since the capacitance has increased, the energy stored will also increase.

You indicate that a symbol
is a vector by drawing
A. through the symbol.
B. over the symbol.
c. under the symbol.
D. before the symbol.​

Answers

Answer:

B. over the symbol.

Explanation:

vectors are represented with a symbol carrying an arrow head with also indicates direction

The refractive index n of transparent acrylic plastic (full name Poly(methyl methacrylate)) depends on the color (wavelength) of the light passing through it. At wavelength 486.1 nm (blue, designated with letter F) -> nF=1.497, and at wavelength 656.3 nm (red, designated with letter C) -> nC=1.488. Two beams (one of each wavelength) are prepared to coincide, and enter the flat polished surface of an acrylic block at angle of 45 arc degree measured from the normal to the surface. What is the angle between the blue beam and the red beam in the acrylic block?

Answers

Answer:

The angle between the blue beam and the red beam in the acrylic block is  

 [tex]\theta _d =0.19 ^o[/tex]

Explanation:

From the question we are told that

     The  refractive index of the transparent acrylic plastic for blue light is  [tex]n_F = 1.497[/tex]

     The  wavelength of the blue light is [tex]F = 486.1 nm = 486.1 *10^{-9} \ m[/tex]

    The  refractive index of the transparent acrylic plastic for red light is  [tex]n_C = 1.488[/tex]

       The  wavelength of the red light is [tex]C = 656.3 nm = 656.3 *10^{-9} \ m[/tex]

    The incidence angle is  [tex]i = 45^o[/tex]

Generally from Snell's law the angle of refraction of the blue light  in the acrylic block  is mathematically represented as

       [tex]r_F = sin ^{-1}[\frac{sin(i) * n_a }{n_F} ][/tex]

Where  [tex]n_a[/tex] is the refractive index of air which have a value of[tex]n_a = 1[/tex]

So

     [tex]r_F = sin ^{-1}[\frac{sin(45) * 1 }{ 1.497} ][/tex]

      [tex]r_F = 28.18^o[/tex]

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as

       [tex]r_C = sin ^{-1}[\frac{sin(i) * n_a }{n_C} ][/tex]

Where  [tex]n_a[/tex] is the refractive index of air which have a value of[tex]n_a = 1[/tex]

So

     [tex]r_C = sin ^{-1}[\frac{sin(45) * 1 }{ 1.488} ][/tex]

      [tex]r_F = 28.37^o[/tex]

The angle between the blue beam and the red beam in the acrylic block

     [tex]\theta _d = r_C - r_F[/tex]

substituting values

       [tex]\theta _d = 28.37 - 28.18[/tex]

       [tex]\theta _d =0.19 ^o[/tex]

 

An alternating current is supplied to an electronic component with a warning that the voltage across it should never exceed 12 V. What is the highest rms voltage that can be supplied to this component while staying below the voltage limit in the warning?

Answers

Answer:

The highest rms voltage will be 8.485 V

Explanation:

For alternating electric current, rms (root means square) is equal to the value of the direct current that would produce the same average power dissipation in a resistive load

If the peak or maximum voltage should not exceed 12 V, then from the relationship

[tex]V_{rms} = \frac{V_{p} }{\sqrt{2} }[/tex]

where [tex]V_{rms}[/tex] is the rms voltage

[tex]V_{p}[/tex] is the peak or maximum voltage

substituting values into the equation, we'll have

[tex]V_{rms} = \frac{12}{\sqrt{2} }[/tex] = 8.485 V

A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust reversers in a distance of 425 m along the runway with constant deceleration. The total mass of the aircraft is 140 Mg with mass center at G. Compute the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking. At lower speed, aerodynamic forces on the aircraft are small and may be neglected.

Answers

Answer:

257 kN.

Explanation:

So, we are given the following data or parameters or information in the following questions;

=> "A jet transport with a landing speed

= 200 km/h reduces its speed to = 60 km/h with a negative thrust R from its jet thrust reversers"

= > The distance = 425 m along the runway with constant deceleration."

=> "The total mass of the aircraft is 140 Mg with mass center at G. "

We are also give that the "aerodynamic forces on the aircraft are small and may be neglected at lower speed"

Step one: determine the acceleration;

=> Acceleration = 1/ (2 × distance along runway with constant deceleration) × { (landing speed A)^2 - (landing speed B)^2 × 1/(3.6)^2.

=> Acceleration = 1/ (2 × 425) × (200^2 - 60^2) × 1/(3.6)^2 = 3.3 m/s^2.

Thus, "the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking" = The total mass of the aircraft × acceleration × 1.2 = 15N - (9.8 × 2.4 × 140).

= 140 × 3.3× 1.2 = 15N - (9.8 × 2.4 × 140).

= 257 kN.

The reaction N under the nose wheel B towards the end of the braking interval =  257 kN

Given data :

Landing speed of Jet = 200 km/h

Distance = 425 m

Total mass of aircraft = 140 Mg  with mass center at G

Determine the reaction N under the nose of wheel B First step : calculate the value of the Jet acceleration

  Jet acceleration = 1 / (2 *425) * (200²  - 60² ) *  1 / (3.6)²

                              = 3.3 m/s²

Next step : determine the reaction N under the nose of Wheel

Reaction N = Total mass of aircraft * jet acceleration* 1.2 = 15N - (9.8*2.4* 140).   ----- ( 1 )

∴ Reaction N = 140 * 3.3 * 1.2 = 15 N - ( 9.8*2.4* 140 )  

 Hence Reaction N = 257 KN

                     

We can conclude that the The reaction N under the nose wheel B towards the end of the braking interval =  257 kN

Learn more about : https://brainly.com/question/15776281

A wave travels at a consent speed. how does the frequency change if the wavelength is reduced by a factor of 4?

Answers

Answer:

The frequency increases by 4 because it is inversely proportional to the wavelength.

Two positive charges are located at x = 0, y = 0.3m and x = 0, y = -.3m respectively. Third point charge q3 = 4.0 μC is located at x = 0.4 m, y = 0.
A) Make a careful sketch of decent size that illustrates all force vectors with directions and magnitudes.
B) What is the resulting vector of the total force on charge q1 exerted by the other two charges using vector algebra?

Answers

Answer:

0.46N

Explanation:

See attached file

The medical profession divides the ultraviolet region of the electromagnetic spectrum into three bands: UVA (320-420 nm), UVB (290-320 nm), and UVC (100-290 nm). UVA and UVB promote skin cancer and premature skin aging; UVB also causes sunburn, but helpfully fosters production of vitamin D. Ozone in Earth's atmosphere blocks most of the more dangerous UVC. Find the frequency range associated with UVB radiation.

Answers

Answer:

υ = 9.375 x 10¹⁴ Hz to 10.34 x 10¹⁴ Hz

Explanation:

The frequency of an electromagnetic radiation can be given by the following formula:

υ = c/λ

where,

υ = frequency of electromagnetic wave = ?

c = speed of light = 3 x 10⁸ m/s

λ = wavelength of electromagnetic wave = 290 nm to 320 nm

FOR LOWER LIMIT OF FREQUENCY:

λ = 320 nm = 3.2 x 10⁻⁷ m

Therefore,

υ = (3 x 10⁸ m/s)/(3.2 x 10⁻⁷ m)

υ = 9.375 x 10¹⁴ Hz

FOR UPPER LIMIT OF FREQUENCY:

λ = 290 nm = 3.2 x 10⁻⁷ m

Therefore,

υ = (3 x 10⁸ m/s)/(2.9 x 10⁻⁷ m)

υ = 10.34 x 10¹⁴ Hz

Therefore, the frequency range for UVB radiations is:

υ = 9.375 x 10¹⁴ Hz to 10.34 x 10¹⁴ Hz

Suppose a 225 kg motorcycle is heading toward a hill at a speed of 29 m/s. The two wheels weigh 12 kg each and are each annular rings with an inner radius of 0.280 m and an outer radius of 0.330 m. How high can it coast up the hill, if you neglect friction in m?
a) m = 180 kg
b) v = 29 m/s
c) h = 32 m

Answers

Answer:

It can coast uphill 6.2m

Explanation:

See attached file pls

Find an article online or application in your daily life involving rotating objects and physics.

Answers

Answer:

the planet Earth is a good example

A circular loop in the plane of a paper lies in a 0.75 T magnetic field pointing into the paper. The loop's diameter changes from 18.0 cm to 6.8 cm in 0.46 s.
A) Determine the direction of the induced current and justify your answer.
B) Determine the magnitude of the average induced emf.
C) If the coil resistance is 2.5 Ω, what is the average induced current?

Answers

Answer:

Explanation:

A.the direction of induced current will be clockwise

B: Changing 18cm and 6.8cm into 0.18m and 0.68

2.5

Divide them both by 2 to find the radius . Now we have 0.09 and .034m.

Now use Φ=(π*0.09^2)(.75 T)cos0 and the 0.019wb

(π*0.034^2)(.75 T)cos0 and the 0.00272wb

ow use ε=-N(ΔΦ/Δt)

For ΔΦ, 0.091-0.0027=0.0883

C.

To find the current, use I=ε/R

0.0883/2.5= 0.035A

An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a temperature of 1950 K. (kb is Boltzmann's constant, 1.38x10-23 J/K).

Answers

Answer:

The de Broglie wavelength of electron βe = 2.443422 × 10⁻⁹ m

The de Broglie wavelength of proton βp = 5.70 × 10⁻¹¹ m

Explanation:

Thermal kinetic energy of electron or proton = KE

∴ KE = 3kbT/2

given that; kb = 1.38 x 10⁻²³ J/K , T = 1950 K

so we substitute

KE = ( 3 × 1.38 x 10⁻²³ × 1950 ) / 2

kE = 4.0365 × 10⁻²⁰ (  is the kinetic energy for both electron and proton at temperature T )

Now we know that

mass of electron M'e = 9.109 ×  10⁻³¹

mass of proton M'p = 1.6726 ×  10⁻²⁷

We also know that

KE = p₂ / 2m

from the equation, p = √ (2mKE)

{ p is momentum, m is mass }

de Broglie wavelength = β

so β = h / p = h / √ (2mKE)

h = Planck's constant = 6.626 ×  10⁻³⁴

βe =  h / √ (2m'e × KE)

βe = 6.626 ×  10⁻³⁴ / √ (2 × 9.109 ×  10⁻³¹ × 4.0365 × 10⁻²⁰ )

βe = 6.626 ×  10⁻³⁴ / √  7.3536957 × 10⁻⁵⁰

βe = 6.626 × 10⁻³⁴  / 2.71176984642871 × 10⁻²⁵

βe = 2.443422 × 10⁻⁹ m

βp =  h / √ (2m'p ×KE)

βp = 6.626 ×  10⁻³⁴ / √ (2 × 1.6726 ×  10⁻²⁷ × 4.0365 × 10⁻²⁰ )

βp = 6.626 ×  10⁻³⁴ / √ 1.35028998 × 10⁻⁴⁶

βp =  6.626 ×  10⁻³⁴ / 1.16201978468527 ×  10⁻²³

βp = 5.702140 × 10⁻¹¹ m

Question 5
A fidget spinner that is 4 inches in diameter is spinning clockwise. The spinner spins at 3000
revolutions per minute.
At t = 0, consider the point A on the outer edge of the spinner that is along the positive horizontal
axis. Let h(t) be the vertical position of A in inches. Suppose t is measured in minutes. Find a
sinusoidal function that models h(t).
h(t) =

Can someone please help me for this question?!!!!! ASAP?!!!!

Answers

Answer:

   h = 4 sin (314.15 t)

Explanation:

This is a kinematics exercise, as the system is rotating at a constant speed.

          w = θ / t

          θ = w t

in angular motion all angles are measured in radians, which is defined

         θ = s / R

   we substitute

          s / R = w t

          s = w R t

let's reduce the magnitude to the SI system

    w = 3000 rev / min (2π rad / 1rev) (1min / 60 s) = 314.16 rad / s

   

let's calculate

   s = 314.16 4 t

   s = 1,256.6 t

this is the value of the arc

Let's find the function of this system, let's use trigonometry to find the projection on the x axis

                  cos θ = x / R

                  x = R cos θ

                  x = R cos wt

projection onto the y-axis is

               sin θ = y / R

     

how is a uniform movement

               θ = w t

               y = R sin wt

In the case y = h

              h = R sin wt

              h = 4 sin (314.15 t)

A solid cylinder has a diameter of 17.4 mm and a length of 50.3mm. It's mass is 49g . What is its density of the cylinder in metric tonnes per cubic metre? Give your answer to 1 significant figure.​

Answers

Answer:

4 tonne/m³

Explanation:

ρ = m / V

ρ = 49 g / (π (17.4 mm / 2)² (50.3 mm))

ρ = 0.0041 g/mm³

Converting to tonnes/m³:

ρ = 0.0041 g/mm³ (1 kg / 1000 g) (1 tonne / 1000 kg) (1000 mm / m)³

ρ = 4.1 tonne/m³

Rounding to one significant figure, the density is 4 tonne/m³.

A charged particle is moving with speed v perpendicular to a uniform magnetic field. A second identical charged particle is moving with speed 2v perpendicular to the same magnetic field. If the frequency of revolution of the first particle is f, the frequency of revolution of the second particle is

Answers

Answer:

the frequency of revolution of the second particle is f

Explanation:

centripetal force is balanced by the magnetic force for object under magnetic field is given as

Mv²/r= qvB

But v= omega x r

Omega= 2pi x f

f= qB/2pi x M

So since frequency does not depend on the velocity.therefore the frequency of revolution of the second particle remains the same and its equal to f

The specific heat of a certain type of cooking oil is 1.75 J/(g⋅°C). How much heat energy is needed to raise the temperature of 2.01 kg of this oil from 23 °C to 191 °C?

Answers

Answer:

Q = 590,940 J

Explanation:

Given:

Specific heat (c) = 1.75 J/(g⋅°C)

Mass(m) = 2.01 kg = 2,010

Change in temperature (ΔT) = 191 - 23 = 168°C

Find:

Heat required (Q)

Computation:

Q = mcΔT

Q = (2,010)(1.75)(168)

Q = 590,940 J

Q = 590.94 kJ

if a speed sound in air at o°c is 331m/s. what will be its value at 35 °c​

Answers

Answer:

please brainliest!!!

Explanation:

V1/√T1 =V2/√T2

V1 = 331m/s

T1 = 0°C = 273k

V2 = ?

T2 = 35°c = 308k

331/√273 = V2/√308331/16.5 = V2/17.520.06 = V2/17.5V2 = 20.06 x 17.5 V2 = 351.05m/s

A spherical capacitor contains a charge of 3.40 nC when connected to a potential difference of 240.0 V. Its plates are separated by vacuum and the inner radius of the outer shell is 4.10 cm.

Calculate:
a. The capacitance
b. The radius of the inner sphere.
c. The electric field just outside the surface of the inner sphere.

Answers

Answer:

A) 1.4167 × 10^(-11) F

B) r_a = 0.031 m

C) E = 3.181 × 10⁴ N/C

Explanation:

We are given;

Charge;Q = 3.40 nC = 3.4 × 10^(-9) C

Potential difference;V = 240 V

Inner radius of outer sphere;r_b = 4.1 cm = 0.041 m

A) The formula for capacitance is given by;

C = Q/V

C = (3.4 × 10^(-9))/240

C = 1.4167 × 10^(-11) F

B) To find the radius of the inner sphere,we will make use of the formula for capacitance of spherical coordinates.

C = (4πε_o)/(1/r_a - 1/r_b)

Rearranging, we have;

(1/r_a - 1/r_b) = (4πε_o)/C

ε_o is a constant with a value of 8.85 × 10^(−12) C²/N.m

Plugging in the relevant values, we have;

(1/r_a - 1/0.041) = (4π × 8.85 × 10^(−12) )/(1.4167 × 10^(-11))

(1/r_a) - 24.3902 = 7.8501

1/r_a = 7.8501 + 24.3902

1/r_a = 32.2403

r_a = 1/32.2403

r_a = 0.031 m

C) Formula for Electric field just outside the surface of the inner sphere is given by;

E = kQ/r_a²

Where k is a constant value of 8.99 × 10^(9) Nm²/C²

Thus;

E = (8.99 × 10^(9) × 3.4 × 10^(-9))/0.031²

E = 3.181 × 10⁴ N/C

WILL MARK BRAINLIEST!!An igneous rock has large red, black, and green crystals. How else can this rock be accurately described?
O fine texture
O cooled quickly
O intrusive origin
O created by lava

Answers

Answer:

D

Explanation:

A 0.400-kg ice puck, moving east with a speed of 5.86 m/s , has a head-on collision with a 0.900-kg puck initially at rest.
A. Assume that the collision is perfectly elastic, what will be the speed of the 0.300 kg object after the collision?
B. What will be the direction of the 0.300 kg object after the collision?
C. What will be the speed of the 0.900 kg object after the collision?

Answers

Answer:

a) The final speed of the 0.400-kg puck after the collision is 2.254 meters per second, b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards, c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

Explanation:

a) Since collision is perfectly elastic and there are no external forces exerted on pucks system, the phenomenon must be modelled after the Principles of Momentum and Energy Conservation. Changes in gravitational potential energy can be neglected. That is:

Momentum

[tex]m_{1}\cdot v_{1,o} + m_{2}\cdot v_{2,o} = m_{1}\cdot v_{1,f} + m_{2}\cdot v_{2,f}[/tex]

Energy

[tex]\frac{1}{2}\cdot (m_{1}\cdot v_{1,o}^{2}+ m_{2}\cdot v_{2,o}^{2})=\frac{1}{2}\cdot (m_{1}\cdot v_{1,f}^{2}+ m_{2}\cdot v_{2,f}^{2})[/tex]

[tex]m_{1}\cdot v_{1,o}^{2} + m_{2}\cdot v_{2,o}^{2} = m_{1}\cdot v_{1,f}^{2} + m_{2}\cdot v_{2,f}^{2}[/tex]

Where:

[tex]m_{1}[/tex], [tex]m_{2}[/tex] - Masses of the 0.400-kg and 0.900-kg pucks, measured in kilograms.

[tex]v_{1,o}[/tex], [tex]v_{2,o}[/tex] - Initial speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Final speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

If [tex]m_{1} = 0.400\,kg[/tex], [tex]m_{2} = 0.900\,kg[/tex], [tex]v_{1,o} = +5.86\,\frac{m}{s}[/tex], [tex]v_{2,o} = 0\,\frac{m}{s}[/tex], the system of equation is simplified as follows:

[tex]2.344\,\frac{kg\cdot m}{s} = 0.4\cdot v_{1,f} + 0.9\cdot v_{2,f}[/tex]

[tex]13.736\,J = 0.4\cdot v_{1,f}^{2}+0.9\cdot v_{2,f}^{2}[/tex]

Let is clear [tex]v_{1,f}[/tex] in first equation:

[tex]0.4\cdot v_{1,f} = 2.344 - 0.9\cdot v_{2,f}[/tex]

[tex]v_{1,f} = 5.86-2.25\cdot v_{2,f}[/tex]

Now, the same variable is substituted in second equation and resulting expression is simplified and solved afterwards:

[tex]13.736 = 0.4\cdot (5.86-2.25\cdot v_{2,f})^{2}+0.9\cdot v_{2,f}^{2}[/tex]

[tex]13.736 = 0.4\cdot (34.340-26.37\cdot v_{2,f}+5.063\cdot v_{2,f}^{2})+0.9\cdot v_{2,f}^{2}[/tex]

[tex]13.736 = 13.736-10.548\cdot v_{2,f} +2.925\cdot v_{2,f}^{2}[/tex]

[tex]2.925\cdot v_{2,f}^{2}-10.548\cdot v_{2,f} = 0[/tex]

[tex]2.925\cdot v_{2,f}\cdot (v_{2,f}-3.606) = 0[/tex]

There are two solutions:

[tex]v_{2,f} = 0\,\frac{m}{s}[/tex] or [tex]v_{2,f} = 3.606\,\frac{m}{s}[/tex]

The first root coincides with the conditions before collision and the second one represents a physically reasonable solution.

Now, the final speed of the 0.400-kg puck is: ([tex]v_{2,f} = 3.606\,\frac{m}{s}[/tex])

[tex]v_{1,f} = 5.86-2.25\cdot (3.606)[/tex]

[tex]v_{1,f} = -2.254\,\frac{m}{s}[/tex]

The final speed of the 0.400-kg puck after the collision is 2.254 meters per second.

b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards.

c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

A 2.0 kg handbag is released from the top of the Leaning Tower of Pisa, and 55 m before reaching the ground, it carries a speed of 29 m / s. What was the average force of air resistance?

Answers

Answer:

4.31 N

Explanation:

Given:

Δy = -55 m

v₀ = 0 m/s

v = -29 m/s

Find: a

v² = v₀² + 2aΔy

(-29 m/s)² = (0 m/s)² + 2a (-55 m)

a = -7.65 m/s²

Sum of forces in the y direction:

∑F = ma

R − mg = ma

R = m (g + a)

R = (2.0 kg) (9.8 m/s² − 7.65 m/s²)

R = 4.31 N

Other Questions
Answers: 3x-2y=-122x-3y=-123x+2y=123x+3y=-12 Derek is building a deck. The sum of the interior angles is 10800 and each interior angle is 1350. How many sides does his deck have Simplify $(1-3i)(1-i)(1+i)(1+3i)$ Estimate the volume of a human heart (in mL) using the following measurements/assumptions: Blood flow through the aorta is approximately 11.2 cm/s The diameter of the aorta is approximately 3.0 cm Assume the heart pumps its own volume with each beat Assume a pulse rate of 67 beats per minute. In the end, how did Napoleon Bonaparte make use of the Louisiana Territory?A. He established a successful trade partnership with the Indians.B. He used it as a base to fight Spanish colonies in South America.C. He sold it in order to help pay for a war with Great Britain.D. He established a colony in partnership with the United States. What is x? The degree of the angle of x A body is thrown vertically upwards, remaining 4s in the air. Calculate the maximum height that the body reaches. Evaluate the determinant for the following matrix 1, 4, 4, 5, 2, 2, 1, 5, 5 Which of the following functions is graphed below?O A. y=x-4-2O B. y=x+4-2O C. y = x+4+2D. y = x - 4+2 if a nation is rich in resources then it can be developed.justify this statement You were going to Hyde Park Corner and you saw a wounded puppy on the road. You took it to the vet and then you brought it to your home. Write a diary entry in 50-80 words narrating your experience. The Allies responded to German occupation of the Rhineland by You are going to deposit $26,000 today. You will earn an annual rate of 6.1 percent for 11 years, and then earn an annual rate of 5.5 percent for 14 years. How much will you have in your account in 25 years? 11. In TLC analysis of ferrocene and acetylferrocene (on silica TLC plate) which prediction is correct: A) ferrocene is more polar and moves higher up the plate (higher Rf value) B) Acetylferrocene is more polar and moves higher up the plate (higher Rf value) C) ferrocene is less polar and moves higher up the plate (higher Rf value) D) Acetylferrocene is less polar and moves higher up the plate (higher Rf value) First, spend a couple of sentences summarizing the Concepts in Action video you watched this week. Then, answer the following. In the Concepts in Action video you watched this week, the speaker mentioned that for a small business, having payment terms is like using "free money" for a while. What do you think this means? And in your personal financial life, can you think of a situation where you also have access to using free money for a little while every month? Can somebody plz help me [-5+(-7)]^2-(7+3)^2 What happened after the Declaration of Independence?A. The American colonies remained part of England.B. The American colonies became free and independent states.O C. The American colonies gained new rights from the king ofEnglandO D. The American colonies became French colonies.SUBM Eighty percent of the light aircraft that disappear while in flight in a certain country are subsequently discovered. Of the aircraft that are discovered, 63% have an emergency locator, whereas 89% of the aircraft not discovered do not have such a locator. Suppose a light aircraft has disappeared. (Round your answers to three decimal places.) (a) If it has an emergency locator, what is the probability that it will not be discovered? (b) If it does not have an emergency locator, what is the probability that it will be discovered? 19. Hexavalent chromium bonds with fluorine to form an ionic compound. What's the chemical formula and name for this compoundusing the Stock system? A. Cr2F6, chromous hexafluorideB. CrF6, chromic fluorideC. CrF6, chromium(VI) hexafluorideD. CrF6, chromium(VI) hexafluoride Which type of food would you not choose for a picnic? a. Unpasteurized juices b. Well-aged cheeses c. Baked potatoes d. Whole fresh fruits e. Breads and crackers