This question is incomplete, here is the complete question:
Suppose in the next year, 2007, College D's expenses and enrollment remain about the same, but in addition to their current revenues, they receive an additional $50,000,000 grant. This would allow them to reduce average tuition by how much?
A) $1388.89
B) $3571.43
C) $5555.56
D) $9500.00
E) $25888.89
number of students = 36,000
Answer: A) $
1388.89
Step-by-step explanation:
the college received additional grant which is $50,000,000
and the number of students is 36,000,
and we also know that expenses and enrollment remained the same.
So if we have more money (grants) and nothing changed (expenses remain the same)
dividing the grant by the number of students will show just how much the average tuition fee would be reduced
therefore R = G/n
R = 50,000,000 / 36000
R = 1,388.888 ≈ $1388.89
Find the equation for the parabola that has its vertex at the origin and has directrix at x=1/48
Answer:
The equation for a parabola with vertex at the origin and a directrix at x = 1/48 is [tex]x= \frac{1}{12}\cdot y^{2}[/tex].
Step-by-step explanation:
As directrix is a vertical line, the parabola must "horizontal" and increasing in the -x direction. Then, the standard equation for such geometric construction centered at (h, k) is:
[tex]x - h = 4\cdot p \cdot (y-k)^{2}[/tex]
Where:
[tex]h[/tex], [tex]k[/tex] - Horizontal and vertical components of the location of vertex with respect to origin, dimensionless.
[tex]p[/tex] - Least distance of directrix with respect to vertex, dimensionless.
Since vertex is located at the origin and horizontal coordinate of the directrix, least distance of directrix is positive. That is:
[tex]p = x_{D} - x_{V}[/tex]
[tex]p = \frac{1}{48}-0[/tex]
[tex]p = \frac{1}{48}[/tex]
Now, the equation for a parabola with vertex at the origin and a directrix at x = 1/48 is [tex]x= \frac{1}{12}\cdot y^{2}[/tex].
In a random sample 765 adults in the United States, 322 say they could not cover a $400 unexpected expense without borrowing money or going into debt. (a) What population is under consideration in the data set
Answer:
The population under consideration in the data set are all the adults in the United States.
Step-by-step explanation:
Sampling
This is a common statistics practice, when we want to study something from a population, we find a sample of this population.
For example:
I want to estimate the proportion of New York state residents who are Buffalo Bills fans. So i ask, lets say, 1000 randomly selected New York state residents wheter they are Buffalo Bills fans, and expand this to the entire population of New York State residents.
The population of interest are all the residents of New York State.
In this question:
Sample of 765 adults in the United states.
So the population under consideration in the data set are all the adults in the United States.
In how many ways can you put seven marbles in different colors into two jars? Note that the jars may be empty.
ith 0 identical marbles permitted to be included in any of the jars, An expression can be developed to determine the total of marbles in jar arrangements, which is:
E = [(n+j -1)!]*{1/[(j-1)!]*[(n)!]}, where n = number of identical balls and j =number of distinct jars, the contents of all of which must sum to n for each marbles in j jars arrangement. With n = 7 and j = 4. E = 10!/(3!)(7!) = 120= number of ways 7 identical marbles can be distributed to 4 distinct jars such that up to 3 boxes may be empty and the maximum to any box is 7 balls.i think is the answer
Pls help me find the volume of this solid
Answer:
240cm³
Step-by-step explanation:
First, let's assume the entire shape is full rectangular prism without that has the middle being cut out.
What this means is that, to get the volume of the solid made out of clay, we would calculate the solid as a full rectangular prism, then find the volume of the assumed middle cut-out portion. Then find the difference between both.
Let's solve:
Find the volume of the rectangular prism assuming the solid is full:
Volume of prism = width (w) × height (h) × length (l)
w = 4cm
h = 7cm
l = 3+6+3 = 12cm
Volume of full solid = 4*7*12 = 336cm³
Next, find the volume of the assumed cut-out portion using same formula for volume of rectangular prism:
w = 4cm
h = 7-3 = 4cm
l = 6cm
Volume of assumed cut-out portion = 4*4*6 = 96cm³
Volume of solid made from clay = 336cm³ - 96cm³ = 240cm³
"There is a group of people. The average height of these people is 67 inches. Is it more likely to pick an individual who is more than 68 inches tall or a sample of four people who average more than 68 inches tall
Answer:
Step-by-step explanation:
The spread of the height of each person in the group depends on the standard deviation. A low standard deviation means that the heights are closer to the mean than that of a high standard deviation. If an individual is picked, the probability of picking one who is more than 68 inches tall is small as this depends on the number of individuals in this category. The probability of picking a sample of four people who average more than 68 inches tall would be higher since average would be taken. Therefore, it is more likely to pick a sample of four people who average more than 68 inches tall
For the data set represented by this box plot, what is the value of the maximum? maximum:
Answer:
140
Step-by-step explanation:
The maximum is the furthest the line that goes out the furthest, the minimum would be about 83-84
Answer:
the other person is correct!
Step-by-step explanation:
Simplify The square root of 5 (6-4 the square root of 3)
Answer:
7.75
Step-by-step explanation:
6-4=2
2 times the square root of 3=3.46410161514
square root of 5 times 3.46410161514=7.74596669242
to 2dp=7.75
I NEED HELP PLEASE, THANKS! :)
Answer: C
Step-by-step explanation:
We can automatically eliminate D because since both matrices are 2x2, the product exists.
[tex]\left[\begin{array}{ccc}1&5\\-3&4\end{array}\right] \left[\begin{array}{ccc}2&6\\6&-1\end{array}\right] =\left[\begin{array}{ccc}1*2+5*6&1*6+5*(-1)\\(-3)*2+4*6&(-3)*6+4*(-1)\end{array}\right]=\left[\begin{array}{ccc}32&1\\18&-22\end{array}\right][/tex]
Factor by grouping 5x^3+6x^2+25x+30
Answer:
(5x + 6) (x² + 5)
Step-by-step explanation:
5x³ + 6x² + 25x + 30
= x² (5x + 6) + 25x + 30 -- Group 5x³ and 6x²
= x² (5x + 6) + 5 (5x + 6) -- Group 25x and 30
= (5x + 6) (x² + 5) -- Both terms have a common factor of 5x + 6
Marking Brainliest! 3(x-100)=?
Answer:
3x - 300
Step-by-step explanation:
Expand the brackets or use distribute law.
Answer:
[tex]3x - 300[/tex]solution,
[tex]3(x - 100) \\ = 3 \times x - 3 \times 100 \\ = 3x - 300[/tex]
hope this helps..
Jennifer has carpet in her square bedroom. She decides to also purchase carpet for her living room which is rectangular in shape and 9 feet longer than her bedroom.
The area of the carpet required in the living room is given by the quadratic expression below, where x represents the side length, in feet, of the carpet in the bedroom.
X^2 + 9X
Match each part of the expression with what is represents.
Answer/Step-by-step explanation:
Let's highlight the dimensions of the bedroom and living room using the information given in the question:
==>Squared Bedroom dimensions:
Side length = w = x ft
Area = x*x = x²
==>Rectangular living room dimensions:
width = side length of the squared bedroom = x
length = (x + 9) ft
Area = L*W = x*(x+9) = x² + 9x
Now let's match each given expression with what they represent:
==>"the monomial, x, a factor of the expression x² + 9x" represents "the width of the carpet in the living room"
As we have shown in the dimensions of the squared bedroom above.
==>"the binomial, (x + 9), a factor of the expression x² + 9x" represents "the length of the carpet in the living room" as shown above in the dimensions for living room
==>"the second-degree term of the expression x² + 9x" represents "the area of the carpet in the bedroom"
i.e. the 2nd-degree term in the expression is x², which represents the area of the carpet of the given bedroom.
==>"the first-degree term of the expression x2 + 9x" represents "the increase in the area of carpet needed for the living room".
i.e. 1st-degree term in the expression is 9x. And it represents the increase in the area of the carpet for the living room. Area of bedroom is x². Area of carpet needed for living room increased by 9x. Thus, area of carpet needed for living room = x² + 9x
Tom takes a cancer test and the test is advertised as being 99% accurate: if you have cancer you will test positive 99% of the time, and if you don't have cancer, you will test negative 99% of the time. If 1% of all people have cancer and Tom tests positive, what is the prob that Tom has the disease
Answer:
99% chance tommy has it
Step-by-step explanation:
cuz do da math
Couple more! Running out of time lol!
Answer:
A translation; (x,y) --> (x-4,y-5)
Step-by-step explanation:
This is because the figures are congruent and in the same orientation but just in different locations on the coordinate plane.
A(0,3) --> A'(-4,-2)
So, the rule is (x,y) --> (x-4,y-5)
Each of 100 students in the Allen School can only take 1 CSE class each, between the four classes CSE 311, CSE 312, CSE 331, and CSE 332. Each student (independently of others) takes CSE 311 with probability 0.3, CSE 312 with probability 0.4, CSE 331 with probability 0.1, and CSE 332 with probability 0.2. What is the probability that exactly 31 sign up for CSE 311, 39 sign up for CSE 312, 7 sign up for CSE 331, and 23 sign up for CSE 332
Answer:
[tex]P(a=31,b=39,c=7,d=23) = 0.000668[/tex]
Step-by-step explanation:
Sample space, n = 100
Let the number of students signed up for CSE 311 = a
Let the number of students signed up for CSE 312 = b
Let the number of students signed up for CSE 331 = c
Let the number of students signed up for CSE 332 = d
Probability of taking CSE 311, [tex]P_a[/tex] = 0.3
Probability of taking CSE 312, [tex]P_b[/tex] = 0.4
Probability of taking CSE 331, [tex]P_c[/tex] = 0.1
Probability of taking CSE 332, [tex]P_d[/tex] = 0.2
[tex]P(a,b,c,d) = \frac{n!}{a! b! c! d!} p_a^{a} p_b^{b} p_c^{c} p_d^{d} \\P(a=31,b=39,c=7,d=23) = \frac{100!}{31! 39! 7! 23!} * 0.3^{31} * 0.4^{39} * 0.1^{7} 0.2^{23}\\P(a=31,b=39,c=7,d=23) = \frac{4.58*10^{111}}{2.13*10^{56}* 5040 }* (1.57*10^{-55})\\P(a=31,b=39,c=7,d=23) = 0.000668[/tex]
Progress
Question ID: 470099
One student can paint a wall in 12 minutes. Another student can paint the same wall in 24 minutes. Working together, how long will it
take for them to paint the wall?
Answer:
8 minStep-by-step explanation:
Try this:
1 wall 1 288
------------------------ = --------------- = --------------- min = 8 min
1 wall 1 wall 24 + 12 36
(---------) + (---------) ------------
12 min 24 min 288
circumference of 6cm ? help plz <3 heyyy b a e (bet you won't reply :)
Answer:
If r = 6 cm, the the circumference is c = 2π(6) = 12π cm
HOPE THIS HELPS AND PLS MARK AS BRAINLIEST
THNXX :)
Simplify e^ln4
A. 1/4
B. 4
C. 1n4
D. E^4
Answer:
The answer is option B.
4Step-by-step explanation:
Using the expression
[tex] {e}^{ ln(x) } = x[/tex]
[tex] {e}^{ ln(4) } = 4[/tex]
Hope this helps you
Malik collects rare stamps and has a total of 212 stamps. He has 34 more domestic stamps than foreign stamps. Let x represent the number of domestic stamps and let y represent the number of foreign stamps. This system of equations models the given information for both stamp types. x – y = 34 x + y = 212
Step-by-step explanation:
x - y = 34
x + y = 212
2x = 246
x = 123
123 + y = 212
y = 89
(123, 89)
Sphere A has a diameter of 2 and is dilated by a scale factor of 3 to create sphere B. What is the ratio of the volume of sphere A to sphere B? 2:6 4:36 1:3 1:27
Answer:
1:27 (D)
Step-by-step explanation:
Given:
Sphere A has a diameter of 2
Sphere A is dilated to create sphere B
Scale factor = 3
Volume of a sphere = 4/3 πr³
Radius = r = diameter/2 = 2/2
r = 1
Volume of sphere A = 4/3 ×π(1)³
Volume of sphere A = 4/3 × π
Volume of sphere B = 4/3 πR³
Since the diameter was dilated, the diameter of B = diameter of A × scale factor
diameter of B = 2×3 = 6
Radius of B = R = diameter/2 = 3
Volume of sphere B = 4/3 × π(3)³
Volume of sphere B = (4/3)(27)π
Ratio of the volume of sphere A to volume of sphere B
= [4/3 ×π]: [(4/3)(27)π]
= (4π/3)/[(4π/3)×27] = 1/27
= 1:27
Answer: 1:27
Step-by-step explanation:
The original volume * scale factor cubed = new volume.
The scale factor is 3 and 3^3 is 27, so the ratio is 1:27
will give brainliest help plz i can't get back on the password won't go to my email and my little brother changed the password I am scared I lost everything PLZ HELP ME
Find the volume & surface area of a cylinder with radius 4 cm and height 9 cm
Answer:
V= 452.39cm³ (to 2 d.p. )
S.A. = 326.73cm² (to 2 d.p. )
Step-by-step explanation:
Vcylinder = π r² h = π (4)² (9) = 144 π = 452.3893421cm³ = 452.39cm³ (to 2 d.p. )
S.A. cylinder = 2π r h + 2π r² = 2π (4)(9) + 2π (4)² = 104π = 326.725636cm² = 326.73cm² (to 2 d.p. )
which of the following descriptions represent the transformation shown in the image? Part 3c
Answer: c) rotation of 180° & shift right 1 unit and down 2 units
Step-by-step explanation:
Rotation of 180° changes the signs of x and y
(x, y) → (-x, -y)
Shift right one unit adds 1 to x, Shift two down subtracts 2 from y
(-x, -y) → (-x + 1, -y - 2)
(x, y) (-x + 1, -y - 2)
(-1, -2) → (2, 0)
(-4, -1) → (5, -1)
(-4, -3) → (5, 1)
Help! Just a little more
Answer:
x = 7
y = 8
Step-by-step explanation:
4y-4 = 28
4y = 32
y = 8
10x+65 = 135
10x = 70
x = 7
Answer:
Step-by-step explanation:
(4y-4)=28
4y=32
y=8
(10x+65)=135
10x=70
x=7
An equilateral triangular plate with sides 6 m is submerged vertically in water so that the base is even with the surface. Express the hydrostatic force against one side of the plate as an integral and evaluate it. (Round your answer to the nearest whole number. Use 9.8 m/s^2 for the acceleration due to gravity. Recall that the weight density of water is 1000 kg/m^3.) rhog^3(3)^1/2 _______ dx = _______ N
Answer:
26,400 N
Step-by-step explanation:
PLEASE CHECK ATTACHMENT FOR COMPLETE SOLUTION
Does anyone know how to solve this? I don't know how to type it out so Im gonna attach a pic
Answer:
tan =-1
Step-by-step explanation:
tan(θ)=sen(θ)/cos(θ)
so
[tex]tan(angle)=\frac{\frac{-\sqrt{2} }{2} }{\frac{\sqrt{2} }{2} } }\\\\tan(angle)=-1[/tex]
Answer:
Sin (theta)=[tex] - \frac{ \sqrt{2} }{2} [/tex]Tan ( theta)= [tex] - 1[/tex]Step-by-step explanation:
[tex]cos \: \: theta \: = \frac{ \sqrt{2} }{2} = \frac{1}{ \sqrt{2} } = cos \: \frac{\pi}{4 } [/tex]
[tex]cos \: (2\pi \: - \frac{\pi}{4} ) \: \: ( \frac{3\pi}{2} < theta < 2\pi)[/tex]
[tex] = cos \: \frac{7\pi}{4} [/tex]
Theta = 7π / 4
[tex]sin \: theta = sin \: \frac{7\pi}{4} [/tex]
[tex] = sin \: (2\pi \: - \frac{\pi}{4} )[/tex]
[tex] - sin \: \frac{\pi}{4} [/tex]
[tex] = \frac{ - 1}{ \sqrt{2} } [/tex]
[tex] = - \frac{ \sqrt{2} }{2} [/tex]
Finding tan theta:
[tex]tan \: theta = tan \: \frac{7\pi}{4} [/tex]
[tex] =tan \: (2\pi - \frac{\pi}{4} )[/tex]
[tex] = - tan \: \frac{\pi}{4} [/tex]
[tex] = - 1[/tex]
Hope this helps...
Good luck on your assignment...
PLEASE HELPP! f(x)= -3x + 3
Which of the graphs represent the inverse of the function F??
Answer:
Answer is Y
Step-by-step explanation:
is lmn congruent to opq if so name the postulate
Answer:
Option (A)
Step-by-step explanation:
Given:
LM ≅ OP
MN ≅ PQ
∠M ≅ ∠P
To Prove:
ΔLMN ≅ ΔOQP
Statements Reasons
1). LM ≅ OP 1). Given
2). MN ≅ PQ 2). Given
3). ∠P ≅ ∠M 3). Given
4). ΔLNM ≅ ΔOQP 4). By the SAS postulate of congruence.
[Side - Angle - Side]
Therefore, Option (A) will be the answer.
The organization that Jones works for is running for a father son dinner for those employees is invited to attend along with his youngest son. If Jones is known to have two children, what is the condition probability that they are both boys given that he is invited to the dinner?
Answer:
25%
Step-by-step explanation:
The probability of having a boy is 50%
To calculate the probability of him having 2 boys, multiply the probabilities together
0.5(0.5) = 0.25
5x is equal to 8X raise to power - 1/3
Answer:
No solutions.
Step-by-step explanation:
5x = 8x^-1/3
Divide 8 into both sides.
5/8x = x^-1/3
Divide both sides by x.
5/8 = x^-4/3
Multiply both sides by the exponent -3/4.
5/8^-3/4 = x
1.422624 = x
Plug in 1.422624 for x to check.
It does not work. There are no real solutions.
"a. How many study subjects were cases? b. How many study subjects were controls? c. What was the ratio of controls to cases?"
Answer:
The description is provided following.
Step-by-step explanation:
The given question is incomplete. The complete question will be:
Brain tumors No Brain tumors
Cell Phones 63 185
No Cell Phones 96 292
The further explanation is given below.
a...
Subjects with these symptoms/diseases are recognized as "cases." Consequently, the majority of the instances would be as follows:
⇒ [tex]63+96[/tex]
⇒ [tex]159[/tex]
b...
Subjects who might not have the disorder or infection are classified as "controls." Therefore, the amount of controls is as follows:
⇒ [tex]185+292[/tex]
⇒ [tex]477[/tex]
c...
The proportion of control and monitoring of instances:
⇒ [tex]\frac{478}{159}[/tex]
⇒ [tex]3.006[/tex]