Suppose 200 J of work is done on a system and 70.0 cal is extracted from the system as heat.n the sense of first law of thermodynamics, what are the values (including algebraic signs) of δEint​?

Answers

Answer 1

The change in internal energy of the system is -492.88 J.

What is the first law of thermodynamics?

According to the first law of thermodynamics, the change in internal energy of a system (ΔEint) is equal to the heat added to the system (Q) minus the work done by the system (W):

ΔEint = Q - W

In this case, the work done on the system is 200 J (positive because work is being done on the system) and 70.0 cal of heat is extracted from the system (negative because heat is leaving the system). We need to convert the units of heat from calories to joules:

70.0 cal * 4.184 J/cal = 292.88 J

Now we can substitute the values into the equation:

ΔEint = Q - W

ΔEint = -292.88 J - 200 J

ΔEint = -492.88 J

Therefore, the change in internal energy of the system is -492.88 J. The negative sign indicates that the internal energy of the system has decreased.

Learn more about internal energy

brainly.com/question/14668303

#SPJ11


Related Questions

The activation energy for the gas phase decomposition of dichloroethane is 207 kJ. CH3 CHCl2 ---->CH2=CHCl + HCl The rate constant at 715 K is 9.82×10-4 /s. The rate constant will be 1.36×10-2 /s at _____ K.

Answers

The activation energy for the gas phase decomposition of dichloroethane is 207 kJ. The rate constant at 715 K is 9.82×10-4 /s.

The activation energy for the gas phase decomposition of dichloroethane is 207 kJ. This means that a certain amount of energy, equal to 207 kJ, is required to initiate the reaction. The chemical reaction is as follows: CH3 CHCl2 ---->CH2=CHCl + HCl. The rate constant at 715 K is 9.82×10-4 /s. A rate constant is a measure of the rate of reaction. It is expressed in terms of the concentration of reactants and products in the reaction. Now, we need to calculate the rate constant at a different temperature, which is not given.

To calculate the rate constant at a different temperature, we need to use the Arrhenius equation, which is given by k = Ae^(-Ea/RT), where k is the rate constant, A is the pre-exponential factor, Ea is the activation energy, R is the gas constant, and T is the temperature in Kelvin. We know the value of Ea, and we can calculate the value of A using the rate constant at 715 K.

Using the given rate constant, we get A = k*e^(Ea/RT) = 9.82×10-4 /s * e^(207000/8.314*715) = 3.17×10^12 /s. Now, we can use this value of A and the given value of Ea to calculate the rate constant at a different temperature.

Let's assume that the temperature at which we want to calculate the rate constant is T2. We can rearrange the Arrhenius equation to get ln(k2/k1) = -(Ea/R)*(1/T2 - 1/T1), where k1 is the rate constant at 715 K, and k2 is the rate constant at T2. Solving for k2, we get k2 = k1*e^-(Ea/R)*(1/T2 - 1/T1). Substituting the given values, we get k2 = 1.36×10-2 /s at T2 = 875 K. Therefore, the rate constant at 875 K is 1.36×10-2 /s.

Know more about Activation Energy of Gas phase here:

https://brainly.com/question/31597248

#SPJ11

Consider the reaction that occurs when copper is added to nitric acid. Cu(s) 4HNO3(aq) mc024-1. Jpg Cu(NO3)2(aq) 2NO2(g) 2H2O(l) What is the reducing agent in this reaction? Cu NO3– Cu(NO3)2 NO2.

Answers

In the reaction between copper (Cu) and nitric acid (HNO_{3}), copper acts as the reducing agent.

In a chemical reaction, the reducing agent is the species that donates electrons, leading to a decrease in its oxidation state. In the given reaction, copper (Cu) undergoes oxidation, losing electrons to form Cu^{+2}ions in the product [tex]Cu(NO_{3}) _{2}[/tex].

Cu(s) → [tex]Cu^{+2}[/tex](aq) + 2e-

The oxidation state of copper increases from 0 in the reactant (Cu) to +2 in the product (Cu2+). This indicates that copper loses electrons and gets oxidized. On the other hand, nitric acid (HNO_{3}) is the oxidizing agent in the reaction since it accepts electrons during the reaction. Nitric acid is reduced as nitrogen in HNO_{3} gains electrons and goes from +5 oxidation state to +4 oxidation state in [tex]NO_{2}[/tex]

[tex]HNO_{3}[/tex](aq) + 3e- → NO2(g) + 2[tex]H_{2}O[/tex](l)

Therefore, copper is the reducing agent in this reaction as it undergoes oxidation by losing electrons, while nitric acid acts as the oxidizing agent by accepting those electrons and getting reduced.

Learn more about  oxidation here: https://brainly.com/question/31844777

#SPJ11

What mass of Hydrogen Gas is produced when 2. 2g Zn is reacted with excess aqueous hydrochloric acid in grams

Answers

To calculate the mass of hydrogen gas produced when 2.2g of zinc (Zn) reacts with excess aqueous hydrochloric acid (HCl), we need to consider the balanced chemical equation for the reaction and the molar ratios.

The balanced chemical equation for the reaction is:

Zn + 2HCl → ZnCl2 + H2

From the equation, we can see that 1 mole of zinc reacts with 2 moles of hydrochloric acid to produce 1 mole of hydrogen gas.

To calculate the mass of hydrogen gas produced, we can use the following steps:

1. Convert the given mass of zinc to moles using its molar mass.

2. Use the mole ratio between zinc and hydrogen gas from the balanced equation.

3. Calculate the moles of hydrogen gas produced.

4. Convert the moles of hydrogen gas to grams using its molar mass.

By following these steps and using the appropriate values, we can find the mass of hydrogen gas produced from the given mass of zinc.To

To learn more about mass click here:brainly.com/question/11954533

#SPJ11

Which alkyl halide is needed to produce leucine from Gabriel synthesis? 1-bromo-2-methylpropane 2-bromobutane 2-bromopropane bromomethane

Answers

The alkyl halide needed to produce leucine from Gabriel synthesis is 2-bromobutane. The correct answer is: 2-bromobutane

Gabriel synthesis involves the reaction of phthalimide with an alkyl halide to form the corresponding primary amine. The phthalimide is then hydrolyzed to release the amine. In this case, 2-bromobutane will react with phthalimide to form N-(2-butyl)phthalimide, which can be hydrolyzed to produce 2-amino butane, the precursor for leucine. The other options listed, 1-bromo-2-methylpropane, 2-bromopropane, and bromomethane, do not have a sufficient alkyl chain length to form the necessary precursor for leucine. Therefore, 2-bromobutane is the alkyl halide needed for the synthesis of leucine in the Gabriel synthesis. Hence, 2-bromobutane is the correct answer

To know more about 2-bromobutane, here

brainly.com/question/31789656

#SPJ4

Fatty acid degradation proceeds through repeated cycles of Boxidation with each cycle containing four reactions. Arrange the four enzymes that catalyze these reactions in order from first to last. 3-hydroxyacyl-COA dehydrogenase Acyl-CoA dehydrogenase B-ketoacyl-CoA thiolase Enoyl-CoA hydratase

Answers

The order of the four enzymes that catalyze the reactions in the fatty acid degradation cycle, from first to last, is as follows :- Acyl-CoA dehydrogenase, Enoyl-CoA hydratase, B-ketoacyl-CoA thiolase, 3-hydroxyacyl-COA dehydrogenase.

The enzymes are arranged in the order in which they act on the fatty acid molecule during each cycle of the degradation.

During each cycle of the fatty acid degradation, the acyl-CoA molecule is oxidized by acyl-CoA dehydrogenase to produce a trans-Δ2-enoyl-CoA. The enoyl-CoA molecule is then hydrated by enoyl-CoA hydratase to produce a β-hydroxyacyl-CoA.

This molecule is then oxidized by 3-hydroxyacyl-COA dehydrogenase to produce a β-ketoacyl-CoA. Finally, this molecule is cleaved by B-ketoacyl-CoA thiolase to produce acetyl-CoA and a new, shorter acyl-CoA molecule, which can enter another cycle of the fatty acid degradation.

To know more about enzymes refer here :-

https://brainly.com/question/17292676#

#SPJ11

Which of these solutions is a buffer? Explain your answer. i. 0.50 M HCI + 0.50 M HCIO4ii. 0.10 M HCl + 0.20 M KOH iii. 0.65 M CH3NH2 +0.50 M CH3NH3NO3 iv. 0.80 M NaOH +0.75 M NH3 v. 1.5 M CH3COOH +0.75 M HCI

Answers

Solution iii (0.65 M CH3NH2 +0.50 M CH3NH3NO3) is a buffer because it contains a weak base (CH3NH2) and its conjugate acid (CH3NH3NO3).

A buffer solution resists changes in pH when small amounts of an acid or base are added. It typically consists of a weak acid and its conjugate base or a weak base and its conjugate acid.

In solution iii, CH3NH2 is a weak base, and CH3NH3NO3 is its conjugate acid. When a small amount of acid is added, it reacts with the weak base to form its conjugate acid, which is already present in the solution. Similarly, when a small amount of base is added, it reacts with the conjugate acid to form the weak base, which is already present in the solution. As a result, the pH of the solution remains relatively constant, making it a buffer solution.

None of the other solutions listed have a weak acid-base pair, so they cannot act as buffer solutions.

Learn more about acid-base here:

https://brainly.com/question/23687757

#SPJ11

19) CCC Stability and Change Predict whether or not the substances in the table will


sublime at STP. Base your predictions only on the type of force holding the solid


together.

Answers

Answer:

no lol

Explanation:i forgor

The task is to predict whether the substances listed in the table will sublime at standard temperature and pressure (STP), based solely on the type of force that holds the solid together.

Sublimation is the process in which a solid directly transitions into a gas without passing through the liquid phase. It occurs when the intermolecular forces holding the solid together are weak enough to allow the solid to convert to a gas at a given temperature and pressure.

The prediction of whether a substance will sublime at STP can be made by considering the type of force that binds the solid particles. Substances with weak intermolecular forces, such as hydrogen bonding, dipole-dipole interactions, or London dispersion forces, are more likely to sublime at STP.

On the other hand, substances with stronger forces, like ionic or metallic bonds, are less likely to sublime at STP. By analyzing the intermolecular forces in the substances listed in the table, we can make predictions about their likelihood of sublimation.

Learn more about weak intermolecular forces here:

https://brainly.com/question/31797315

#SPJ11

draw the product that valine forms when it reacts with t-buo-co-cl/triethylamine; then wash with aqueous hcl.

Answers

The product that valine forms when it reacts with t-buo-co-cl/triethylamine; then wash with aqueous HCl is shown in the image attached.

What is the product formed in the reaction?

Valine is an amino acid with the structural components of an amino group (-NH2) and a carboxylic acid group (-COOH). A process known as acylation occurs when the carboxylic acid group interacts with t-buo-co-cl (tert-butyl chloroformate) in the presence of triethylamine, replacing the -OH group with the -OCO-t-bu (tert-butyl carbonate) group.

The tert-butyl carbonate group is hydrolyzed to produce tert-butanol and CO2 when the product is washed with aqueous HCl, culminating in the creation of valine hydrochloride salt.

Learn more about valine:https://brainly.com/question/17168106

#SPJ1

Which of the following biomolecules contains a porphyrin-based structure containing a mg2 ion?

Answers

The biomolecule that contains a porphyrin-based structure with a Mg2+ ion is chlorophyll.

Chlorophyll is a crucial pigment in plants, algae, and cyanobacteria that plays a vital role in the process of photosynthesis. It enables these organisms to capture light energy from the sun and convert it into chemical energy to produce glucose and oxygen, supporting life on Earth. The porphyrin-based structure is responsible for the strong light absorption properties of chlorophyll, enabling efficient photosynthesis.

The central Mg2+ ion is coordinated with four nitrogen atoms from the porphyrin ring, which contributes to the stability and unique properties of chlorophyll. There are different types of chlorophyll, such as chlorophyll-a and chlorophyll-b, which differ in their side chains but share the same porphyrin-based structure with Mg2+ ion. Overall, the presence of the porphyrin-based structure containing a Mg2+ ion in chlorophyll is essential for photosynthesis and, ultimately, life on our planet.

Learn more about photosynthesis here:

https://brainly.com/question/29775046

#SPJ11

Treatment of D-mannose with methanol in the presence of an acid catalyst yields four isomeric products having the molecular formula C7​H14​O6​. What are these four products?

Answers

The four isomeric products yielded by the treatment of D-mannose with methanol in the presence of an acid catalyst are 1,2;3,4;2,3;4,5-pentamethoxy-1,2,3,4,5-pentahydroxyhexanes.

When D-mannose is treated with methanol and an acid catalyst, it undergoes methylation at the hydroxyl group present on its molecule. Methylation is the addition of a methyl group (-CH3) to a molecule. As there are several hydroxyl groups present on the D-mannose molecule, methylation can occur at any of these hydroxyl groups. Therefore, multiple isomers are formed as a result of this reaction. In this case, four isomers are formed, which have the molecular formula C7​H14​O6​.

In the isomer 1,2-pentamethoxy-1,2,3,4,5-pentahydroxyhexane, the methyl groups are attached to the carbon atoms at positions 1 and 2. In the isomer 3,4-pentamethoxy-1,2,3,4,5-pentahydroxyhexane, the methyl groups are attached to the carbon atoms at positions 3 and 4. In the isomer 2,3-pentamethoxy-1,2,3,4,5-pentahydroxyhexane, the methyl groups are attached to the carbon atoms at positions 2 and 3. In the isomer 4,5-pentamethoxy-1,2,3,4,5-pentahydroxyhexane, the methyl groups are attached to the carbon atoms at positions 4 and 5.

In summary, the treatment of D-mannose with methanol in the presence of an acid catalyst yields four isomeric products with the molecular formula C7​H14​O6​. These isomers differ in the position of the methyl groups on the D-mannose molecule, and they are 1,2;3,4;2,3;4,5-pentamethoxy-1,2,3,4,5-pentahydroxyhexanes.

To learn more about isomers visit:

brainly.com/question/13422357

#SPJ11

For which slightly soluble substance will the addition of HCl to its solution have no effect on its solubility? a. AgBr(s) b. PbF2(s) c. MgCO3(s) d. Cu(OH)2(s)

Answers

The substance for which the addition of HCl to its solution will have no effect on its solubility is [tex]PbF_2[/tex](s) (option b).

The addition of HCl to a solution can affect the solubility of some slightly soluble substances by reacting with them to form a more soluble compound. The solubility of a substance may increase or decrease depending on the nature of the reaction.

a. AgBr(s) - The addition of HCl to a solution of AgBr will decrease its solubility because AgBr will react with HCl to form a more soluble compound, silver chloride (AgCl).

b. [tex]PbF_2[/tex](s) - The addition of HCl to a solution of [tex]PbF_2[/tex] will have no effect on its solubility because [tex]PbF_2[/tex] is insoluble in water and does not react with HCl.

c. [tex]MgCO_3[/tex](s) - The addition of HCl to a solution of [tex]MgCO_3[/tex] will decrease its solubility because [tex]MgCO_3[/tex] will react with HCl to form a more soluble compound, magnesium chloride ([tex]MgCl_2[/tex]), and carbon dioxide ([tex]CO_2[/tex]).

d. [tex]Cu(OH)_2[/tex](s) - The addition of HCl to a solution of [tex]Cu(OH)_2[/tex] will decrease its solubility because [tex]Cu(OH)_2[/tex] will react with HCl to form a more soluble compound, copper chloride ([tex]CuCl_2[/tex]), and water ([tex]H_2O[/tex]).

For more question on solution click on

https://brainly.com/question/25326161

#SPJ11

classify the bonds as ionic, polar covalent, or nonpolar covalent. n-f se-cl rb-f na-f f-f i-i

Answers

Ionic bonds are formed between a metal and a nonmetal, where one atom loses one or more electrons to another atom that gains those electrons.

Polar covalent bonds are formed between two nonmetals that share electrons unequally, creating partial positive and negative charges. Nonpolar covalent bonds are formed between two nonmetals that share electrons equally, creating no partial charges. Using this information, we can classify the bonds as follows:

N-F: Polar covalent bond

Se-Cl: Polar covalent bond

Rb-F: Ionic bond

Na-F: Ionic bond

F-F: Nonpolar covalent bond

I-I: Nonpolar covalent bond

Note that for N-F and Se-Cl, the electronegativity difference between the atoms is greater than 0.5 but less than 1.7, so the bonds are considered polar covalent. For Rb-F and Na-F, the electronegativity difference is greater than 1.7, so the bonds are considered ionic. For F-F and I-I, the electronegativity difference is zero, so the bonds are considered nonpolar covalent.

For more questions like bonds visit the link below:

https://brainly.com/question/7140445

#SPJ11

What is the concentration of H+ in solution given the [OH] = 1.32 x 10^-4? A) 1.0 x 10^14 M B) 7.58 x 10^-11 M C) 1.32 x 10^-11 M D) not enough information E) none of the above

Answers

Option B) 7.58 x 10⁻¹¹ M is the concentration of H+ in solution given the [OH] = 1.32 x  10⁻⁴  will be 1.32 x 10⁻¹¹ M.

We can use the fact that the product of the concentration of hydrogen ions (H⁺) and hydroxide ions (OH⁻) in a solution is equal to 1 x 10⁻¹⁴ M² at 25°C. This is known as the ion product constant of water (Kw).

Mathematically, we can write:

Kw = [H⁺][OH⁻] = 1 x 10⁻¹⁴ M²

We are given the concentration of hydroxide ions as [OH⁻] = 1.32 x 10⁻⁴ M. We can use this information and the Kw equation to calculate the concentration of hydrogen ions:

[H⁺] = Kw / [OH⁻]

[H⁺] = (1 x 10⁻¹⁴ M²) / (1.32 x 10⁻⁴ M)

[H⁺] = 7.58 x 10⁻¹¹ M

Therefore, the concentration of H⁺ in solution is 7.58 x 10⁻¹¹ M, which is option B.

learn more about hydrogen here:

https://brainly.com/question/20309096

#SPJ11

To calculate how many grams NH3 will be formed from 6. 0 g H2, the first step you need



A) information about chemical reaction is balanced or not.


B) set up given mole ratio of reactant vs products.


C) information about the mass of N2 reacting.


D) Set up mole ratios of reactants vs products from balanced chemical equation.



N2 + H2 → NH3

Answers

The correct answer is D) Set up mole ratios of reactants vs products from balanced chemical equation.

In order to calculate how many grams of NH3 will be formed from 6.0 g of H2, we need to set up the appropriate mole ratios from the balanced chemical equation. The balanced equation given is:

N2 + H2 → NH3

From this equation, we can determine the stoichiometric relationship between the reactants (N2 and H2) and the product (NH3). The coefficients in the balanced equation represent the mole ratios.

In this case, we see that the coefficient of H2 is 3, indicating that 3 moles of H2 react with 1 mole of NH3. Therefore, we can set up the mole ratio:

3 moles H2 : 1 mole NH3

Since we are given the mass of H2 (6.0 g), we would then convert this mass to moles using the molar mass of H2. Once we have the moles of H2, we can use the mole ratio to calculate the moles of NH3 formed. Finally, we can convert the moles of NH3 to grams using the molar mass of NH3.

To learn more about mole click here:brainly.com/question/28239680

#SPJ11

the /\g of a certain reaction is - 78.84 kj/mol at 25oc. what is the keq for this reaction?

Answers

The Keq for the reaction can be calculated using the equation ΔG° = -RTlnKeq, where ΔG° is the standard free energy change, R is the gas constant, T is the temperature in Kelvin, and Keq is the equilibrium constant.

In this case, ΔG° is -78.84 kJ/mol, and assuming standard conditions of 25°C (298 K) and 1 atm pressure, we can plug in the values and solve for Keq -78.84 kJ/mol = -8.314 J/K/mol * 298 K * ln Keq ,-78.84 kJ/mol = -24,736 J/mol * ln(Keq ln(Keq) = 78.84 kJ/mol / 24,736 J/mol ,ln(Keq) = -3.186 ,Keq = e^-3.186 ,Keq = 0.041 Therefore, the explanation is that the Keq for this reaction is 0.041.

Convert the given ΔG from kJ/mol to J/mol: -78.84 kJ/mol * 1000 J/kJ = -78840 J/mol, Convert the temperature from Celsius to Kelvin: 25°C + 273.15 = 298.15 K  Use the gas constant, R, in J/(mol·K): R = 8.314 J/(mol·K) ,Rearrange the equation to solve for Keq: ln(Keq) = -ΔG/RT, Substitute the values into the equation: ln Keq = -78840 J/mol / (8.314 J/(mol·K) * 298.15 K, Calculate the value of ln(Keq): ln(Keq) ≈ 31.92 Find the Keq by taking the exponential of the ln(Keq) value: Keq = e^(31.92) ≈ 4.16 x 10^13.
To know more about equilibrium  visit :

https://brainly.com/question/30694482

#SPJ11

Temperature can put stress on a reaction that is at equilibrium. How would you alter the temperature of an aqueous calcium hydroxide solution at equilibrium to favor the product formation? a. I'd increase the temperature by making a hot water bath b. I'd lower the temperature by making an ice water bath Please provide a brief explanation for your choice.

Answers

I would increase the temperature by making a hot water bath.  According to Le Chatelier's principle, a system at equilibrium will shift its equilibrium position in response to a stress. In this case, increasing the temperature is a stress that will cause the reaction to shift in the endothermic direction to absorb the excess heat.

The forward reaction is endothermic, meaning it absorbs heat to produce the products. Therefore, increasing the temperature will favor the forward reaction, resulting in more product formation. By making a hot water bath, the temperature of the aqueous calcium hydroxide solution will increase, leading to the formation of more product.

Calcium hydroxide dissociation is an endothermic reaction, meaning it absorbs heat from the surroundings. According to Le Chatelier's principle, when an equilibrium system is subjected to a change in temperature, the system will shift in a direction that counteracts the change. In this case, increasing the temperature by making a hot water bath will shift the equilibrium towards the product side (more dissociation of calcium hydroxide), favoring the formation of products.

To Know more about calcium hydroxide  visit;

https://brainly.com/question/20362079

#SPJ11

arrange the following compounds in order of decreasing boiling point, putting the compound with the highest boiling point first. a) I > II > III. b) I > III > II. c) III > I > II. d) III > II > I.

Answers

The correct order of decreasing boiling points is: I > III > II. The closest answer choice is b) I > III > II.

The order of boiling points of the given compounds can be determined by analyzing their intermolecular forces, which are influenced by the molecular weight, polarity, and ability to form hydrogen bonds.

I. CH3CH2CH2CH2NH2 (1-amino-butane): This compound can form hydrogen bonds between the NH2 group and the adjacent molecules, and it also has a higher molecular weight than the other two compounds, which increases its boiling point.

II. CH3CH2OCH2CH3 (diethyl ether): This compound is polar due to the oxygen atom, but it cannot form hydrogen bonds, which reduces its boiling point compared to compound I.

III. CH3CH2CH2CH2OH (1-butanol): This compound is also polar and can form hydrogen bonds, but its molecular weight is lower than that of compound I, which reduces its boiling point.

For more question on boiling points click on

https://brainly.com/question/29233996

#SPJ11

correct question

arrange the following compounds in order of decreasing boiling point, putting the compound with the highest boiling point first.

I. CH3CH2CH2CH2NH2      

II. CH3CH2OCH2CH3  

III. CH3CH2CH2CH2OH  

a) I > II > III.

b) I > III > II.

c) III > I > II.

d) III > II > I.

A solution containing 0. 13 M each of F− , Cl− , CrO2−4 , and SO2−4 is titrated by a solution containing Pb2+. Place the anions in the order in which they will precipitate. Consulting a table of Ksp values may be helpful

Answers

The order of precipitation for the given anions,[tex]F^-, Cl^-, CrO_2^-^4[/tex], and [tex]SO_2^-^4[/tex], when titrated with [tex]Pb^2^+[/tex] can be determined by comparing their respective solubility product constant (Ksp) values.

When titrating a solution containing multiple anions with [tex]Pb^2^+[/tex], the order of precipitation can be determined by comparing the solubility product constant (Ksp) values of the corresponding salts. The anion with the lowest Ksp value will precipitate first, followed by the anions with progressively higher Ksp values.

To determine the order of precipitation, we need to consult a table of Ksp values for the given anions. Comparing the Ksp values, we find that the order of precipitation is as follows: [tex]F^- < CrO_2^-^4[/tex] < [tex]SO_2^-^4[/tex] < [tex]Cl^-[/tex].

Hence,[tex]F^-[/tex] will precipitate first, followed by [tex]CrO_2^-^4[/tex], then [tex]SO_2^-^4[/tex], and finally [tex]Cl^-[/tex]. This means that when the titration reaches the point where all the [tex]F^-[/tex] ions have reacted with [tex]Pb^2^+[/tex] and precipitated as [tex]PbF_2[/tex], further addition of [tex]Pb^2^+[/tex]will result in the precipitation of [tex]CrO_2^-^4[/tex] as [tex]PbCrO_4[/tex]. Subsequently, [tex]SO_2^-^4[/tex] will precipitate as [tex]PbSO_4[/tex], and finally, [tex]Cl^-[/tex] will precipitate as [tex]PbCl_2[/tex].

Learn more about solubility product constant here:

https://brainly.com/question/1419865

#SPJ11

calculate the molecular mass (molecular weight) of lauric acid, c12h24o2.

Answers

The molecular mass of lauric acid (C₁₂H₂₄O₂) is 200.32 g/mol.

To calculate the molecular mass of lauric acid (C₁₂H₂₄O₂), first, identify the number of each atom present in the molecular formula, which are 12 carbon (C) atoms, 24 hydrogen (H) atoms, and 2 oxygen (O) atoms. Next, find the atomic mass of each element from the periodic table: Carbon has an atomic mass of 12.01 g/mol, Hydrogen has an atomic mass of 1.01 g/mol, and Oxygen has an atomic mass of 16.00 g/mol.

Now, multiply the atomic mass of each element by the number of atoms of that element in the molecular formula: 12 (12.01) for carbon, 24 (1.01) for hydrogen, and 2 (16.00) for oxygen. Finally, add these values together: (12 x 12.01) + (24 x 1.01) + (2 x 16.00) = 144.12 + 24.24 + 32.00 = 200.32 g/mol.

Learn more about lauric acid here:

https://brainly.com/question/14932624

#SPJ11

Isocitrate dehydrogenase is found only in the mitochondria, but malate dehydrogenase is found in both the cytosol and mitochondria. What is the role of cytosolic malate dehydrogenase? It is a point of electron entry into the mitochondrial respiratory chain. a It delivers the reducing equivalents from NADH through FAD to ubiquinone and thus into Complex III. It plays a key role in the transport of reducing equivalents across the inner mitochondrial membrane via the malate-aspartate shuttle. It plays a key role in the conversion of mitochondrial pyruvate to cytosolic oxaloacetate to fuel gluconeogenesis. It catalyzes the oxidation of malate to oxaloacetate, coupled to the reduction of NAD+ to NADH, in the last reaction of the citric acid cycle.

Answers

The role of cytosolic malate dehydrogenase is to catalyze the conversion of malate to oxaloacetate, coupled with the reduction of NAD+ to NADH. This reaction is the last step in the citric acid cycle, which takes place in the mitochondria.

However, cytosolic malate dehydrogenase plays a key role in the transport of reducing equivalents across the inner mitochondrial membrane via the malate-aspartate shuttle. This shuttle involves the transport of cytosolic malate into the mitochondria and its conversion to oxaloacetate, which is then converted to aspartate and transported back to the cytosol. This allows for the transfer of reducing equivalents from the cytosol to the mitochondria, which is important for energy production. Additionally, cytosolic malate dehydrogenase plays a role in the conversion of mitochondrial pyruvate to cytosolic oxaloacetate, which fuels gluconeogenesis. In summary, while malate dehydrogenase is found in both the cytosol and mitochondria, its role is crucial in transporting reducing equivalents and in the conversion of pyruvate to oxaloacetate for gluconeogenesis.
To know more about dehydrogenase visit :

https://brainly.com/question/29312833

#SPJ11

The isoelectric point, pI, of the protein horse liver alcohol dehydrogenase is 6.8, while that of hexokinase P-II is 4.93. What is the net charge of horse liver alcohol dehydrogenase at pH5.1 ? What is the net charge of hexokinase P-II at pH5.5 ?

Answers

At pH 5.1, horse liver alcohol dehydrogenase will have a net positive charge of approximately +2.9.

At pH 5.5, hexokinase P-II will have a net negative charge of approximately -3.25.

Find the charge of horse liver alcohol dehydrogenase and hexokinase P-II at given pH values.

To calculate the net charge of the proteins at the given pH values, we need to compare the pH with the isoelectric point (pI) of the proteins.

For horse liver alcohol dehydrogenase:

If pH < pI, the protein is positively charged.

If pH > pI, the protein is negatively charged.

If pH = pI, the protein has no net charge.

Given that pH = 5.1 and pI = 6.8, we have pH < pI, so the protein will be positively charged. To determine the magnitude of the charge, we need to calculate the difference between the pH and pI values and convert it into a log scale using the Henderson-Hasselbalch equation:

pH - pI = log([A-]/[HA])

where [A-] is the concentration of deprotonated acidic groups (negative charges), and [HA] is the concentration of protonated acidic groups (neutral charges).

Assuming that the only acidic group present in horse liver alcohol dehydrogenase is the carboxyl group of the amino acid residues, which has a pKa of around 2.2, we can calculate the ratio of [A-]/[HA] at pH 5.1 as:

[A-]/[HA] = 10^(pH-pKa) = 10^(5.1-2.2) = 794.33

Taking the negative logarithm of this value gives us the number of charges per molecule:

-log([A-]/[HA]) = -log(794.33) = 2.9

For hexokinase P-II:

If pH < pI, the protein is positively charged.

If pH > pI, the protein is negatively charged.

If pH = pI, the protein has no net charge.

Given that pH = 5.5 and pI = 4.93, we have pH > pI, so the protein will be negatively charged. Using the same approach as before, we can calculate the ratio of [A-]/[HA] at pH 5.5 as:

[A-]/[HA] = [tex]10^(^p^H^-^p^K^a^)[/tex] = [tex]10^(^5^.^5^-^2^.^2^)[/tex] = 1778.28

Taking the negative logarithm of this value gives us the number of charges per molecule:

-log([A-]/[HA]) = -log(1778.28) = 3.25

Learn more about  charge

brainly.com/question/11944606

#SPJ11

Identify the following diagnostic procedure that gives the highest dose of radiation.upper gastrointestinal tract x-raychest x-raydental x-ray ? two bitewingsthallium heart scan

Answers

The diagnostic procedure that gives the highest dose of radiation is the thallium heart scan.


A thallium heart scan is a type of nuclear imaging test that uses a small amount of radioactive material, called thallium, to create images of the heart muscle. During the procedure, the patient receives an injection of the thallium, which travels through the bloodstream and accumulates in the heart muscle. A special camera is then used to detect the radioactive signal emitted by the thallium, which is used to create detailed images of the heart.

The thallium heart scan involves exposure to a higher dose of radiation compared to other diagnostic procedures such as an upper gastrointestinal tract x-ray, chest x-ray, or dental x-ray. This is because the thallium used in the test is a radioactive material and emits ionizing radiation that is detected by the camera. However, the amount of radiation used in the thallium heart scan is still considered safe for most people, and the benefits of the test usually outweigh the risks. The actual amount of radiation exposure will depend on factors such as the patient's body size and the specific imaging protocol used by the medical professional.

The diagnostic procedure that gives the highest dose of radiation among the options provided is the thallium heart scan. This procedure involves the use of a radioactive tracer (thallium) to assess the blood flow and function of the heart, and it exposes the patient to a higher dose of radiation compared to upper gastrointestinal tract x-rays, chest x-rays, and dental x-rays with two bitewings.

For more such questions on radiation , Visit:

https://brainly.com/question/29940486

#SPJ11

Among the diagnostic procedures listed, the thallium heart scan is the one that typically involves the highest dose of radiation.

A thallium heart scan, also known as myocardial perfusion imaging, is a nuclear medicine procedure used to assess the blood flow to the heart muscle. It involves the injection of a small amount of radioactive material (thallium) into the bloodstream, which is then detected by a gamma camera to create images of the heart. The radioactive material emits gamma radiation, and the level of radiation exposure during this procedure is relatively higher compared to other diagnostic tests.  Therefore, the thallium heart scan is the diagnostic procedure that typically results in the highest dose of radiation.

Learn more about thallium heart scans here:

https://brainly.com/question/31169149

#SPJ11

When dissolved in water, of HClO4, Ca(OH)2, KOH, HI, which are bases?
Question 5 options:
1) Ca(OH)2 and KOH
2) only HI
3) HClO4 and HI
4) only KOH

Answers

When dissolved in water, Ca(OH)2 and KOH are bases. HClO4 and HI are acids. The  correct option is (1).

A substance is classified as a base if it accepts protons (H+) when dissolved in water. Ca(OH)2 and KOH both contain hydroxide ions (OH-) that readily accept protons from water, making them bases. On the other hand, HClO4 and HI are both acids.

HClO4 is a strong acid, meaning that it dissociates completely in water, releasing H+ ions. HI is also an acid, as it contains hydrogen ions that are readily released in water.

The basicity or acidity of a substance is determined by its ability to donate or accept protons in a solution. The pH scale, which ranges from 0 to 14, measures the acidity or basicity of a solution.

A pH value below 7 indicates acidity, while a pH above 7 indicates basicity. The neutrality point is pH 7, which corresponds to a solution with an equal concentration of H+ and OH- ions.

To know more about "Basicity" refer here:

https://brainly.com/question/32036292#

#SPJ11

Give the major organic product of each reaction of methyl pentanoate with the given 6 reagents under the conditions shown. Do not draw any byproducts formed.
−→−−−−−Reagent→Reagent Product
a. Reaction with NaOH,H2ONaOH,H2O, heat; then H+,H2OH+,H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
b. Reaction with (CH3)2CHCH2CH2OH(CH3)2CHCH2CH2OH (excess), H+H+.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
c. Reaction with (CH3CH2)2NH(CH3CH2)2NH and heat.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHNO
d. Reaction with CH3MgICH3MgI (excess), ether; then H+/H2OH+/H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
e. Reaction with LiAlH4LiAlH4, ether; then H+/H2OH+/H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
f. Reaction with DIBAL (diisobutylaluminum hydride), toluene, low temperature; then H+/H2OH+/H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO

Answers

The major organic product for this reaction sequence is pentanoic acid.

a. NaOH, H₂O, heat; then H⁺, H₂O:

The reaction with NaOH and heat will result in the saponification of methyl pentanoate to form sodium pentanoate and methanol. The sodium pentanoate will then be protonated with H+ and form the corresponding pentanoic acid.

The major organic product for this reaction sequence is pentanoic acid.

b. (CH₃)₂CHCH₂CH₂OH (excess), H+:

The reaction with (CH₃)₂CHCH₂CH₂OH and H+ is an example of an esterification reaction, which will result in the formation of an ester product.

The major organic product for this reaction is isopentyl pentanoate.

c. (CH₃CH₂)₂NH, heat:

The reaction with (CH₃CH₂)₂NH and heat is an example of an amide formation reaction, which will result in the formation of an amide product.

The major organic product for this reaction is N,N-diethylpentanamide.

d. Reaction with CH₃MgI(excess), ether; then H+/H₂O:

The reaction with CH₃MgI and excess will result in the formation of a Grignard reagent which will act as a nucleophile and attack the carbonyl group of methyl pentanoate to form a new carbon-carbon bond. The resulting product will have an alcohol functional group.

The major organic product for this reaction sequence is 3-hydroxypentanoic acid.

e. Reaction with LiAlH₄, ether; then H+/H₂O:

The reaction with LiAlH₄ is a reduction reaction, which will reduce the carbonyl group of methyl pentanoate to an alcohol group. The resulting product will have a primary alcohol functional group.

The major organic product for this reaction sequence is 3-pentanol.

f. Reaction with DIBAL (diisobutylaluminum hydride), toluene, low temperature; then H+/H₂O:

The reaction with DIBAL is a reduction reaction, which will reduce the ester group of methyl pentanoate to an aldehyde group. The aldehyde group can then be further reduced to an alcohol group with H+/H₂O.

The major organic product for this reaction sequence is 3-pentanol.

The Correct Question is:

Give the major organic product of each reaction of methyl pentanoate with the following reagents under the conditions shown. Do not draw any byproducts formed.

a. NaOH, H₂O, heat; then H+, H₂O

b. (CH₃)₂CHCH₂CH₂OH (excess), H+

c. (CH₃CH₂)₂NH, heat

d. Reaction with CH₃MgI(excess), ether; then H+/H₂O

e. Reaction with LiAlH₄, ether; then H+/H₂O

f. Reaction with DIBAL (diisobutylaluminum hydride), toluene, low temperature; then H+/H₂O

To know more about pentanoic acid follow the link:

https://brainly.com/question/16945257

#SPJ4

a current of 4.55 a is passed through a cu(no3)2 solution. how long, in hours, would this current have to be applied to plate out 6.90 g of copper?

Answers

To plate out 6.90 g of copper using a current of 4.55 A, you would need to apply the current for 1.99 hours.


1. Find the moles of copper: 6.90 g / 63.55 g/mol (copper's molar mass) = 0.1086 mol Cu
2. Calculate moles of electrons needed (Cu²⁺ + 2e⁻ → Cu): 0.1086 mol Cu × 2 mol e⁻/mol Cu = 0.2172 mol e⁻
3. Convert moles of electrons to Coulombs (1 mol e⁻ = 96,485 C/mol): 0.2172 mol e⁻ × 96,485 C/mol = 20,955 C
4. Calculate time in seconds (time = charge / current): 20,955 C / 4.55 A = 4,604 s
5. Convert seconds to hours: 4,604 s / 3,600 s/h = 1.99 hours

To know more about moles click on below link:

https://brainly.com/question/31597231#

#SPJ11

What are three possible products of a double replacement reaction?

Answers

Three possible products of a double replacement reaction are AB + CD → AD + CB, where A, B, C, and D represent elements or compounds.

In a double replacement reaction, the cations and anions of two ionic compounds switch places to form two new compounds. One of the products is usually a precipitate, an insoluble solid that separates from the solution. Another product could be a gas that bubbles out of the solution. The third product is typically a soluble salt that remains in the solution.

For example, the double replacement reaction between silver nitrate (AgNO₃) and sodium chloride (NaCl) produces a precipitate of silver chloride (AgCl), a soluble salt sodium nitrate (NaNO₃), and the release of gaseous nitrogen dioxide (NO₂) and oxygen (O₂).

2AgNO₃ + 2NaCl → 2AgCl↓ + 2NaNO₃

The reaction can be used to test for the presence of chloride ions in a solution.

learn more about double replacement reaction here:

https://brainly.com/question/31864474

#SPJ11

hosw to solve the change in entropy when 0.802 g of silicon is burned in excess oxygen to yield silicon dioxide at 298 k?

Answers

To solve for the change in entropy, we can use the equation:

ΔS = nS°(products) - mS°(reactants)

where:

- ΔS is the change in entropy

- n and m are the stoichiometric coefficients of the products and reactants, respectively

- S° is the standard molar entropy of the substance

First, we need to write the balanced chemical equation for the combustion of silicon:

Si + O2 -> SiO2

From the equation, we can see that the stoichiometric coefficient of silicon is 1. Therefore, n = 1.

Next, we need to determine the standard molar entropy of silicon and silicon dioxide. According to standard tables, the values are:

S°(Si) = 18.8 J/(mol K)

S°(SiO2) = 41.8 J/(mol K)

Now we can substitute the values into the equation:

ΔS = nS°(SiO2) - mS°(Si)

Since all the silicon is consumed, m = 0.802 g / (28.09 g/mol) = 0.0286 mol.

ΔS = 1(41.8 J/(mol K)) - 0.0286 mol(18.8 J/(mol K))

ΔS = 0.919 J/K

Therefore, the change in entropy when 0.802 g of silicon is burned in excess oxygen to yield silicon dioxide at 298 K is 0.919 J/K.

To know more about entropy refer here

https://brainly.com/question/13135498#

#SPJ11

the following chemical reaction takes place in aqueous solution: zncl2(aq) nh42s(aq)→zns(s) 2nh4cl(aq) write the net ionic equation for this reaction

Answers

The net ionic equation for the given chemical reaction is: Zn²⁺(aq) + S²⁻(aq) → ZnS(s). This equation represents the key species involved in the reaction, ignoring the spectator ions.

Here is the net ionic equation for the chemical reaction:
Zn²⁺(aq) + S²⁻(aq) → ZnS(s)
The net ionic equation only includes the species that are directly involved in the chemical reaction and excludes spectator ions, which in this case are NH4+ and Cl-.

The entire symbols of the reactants and products, as well as the states of matter under the conditions under which the reaction is occurring, are expressed in the complete equation of a chemical reaction.

Only those chemical species that are directly involved in the chemical reaction are written in the net ionic equation of the reaction.

In the net ion equation, mass and charge must be equal.

It is utilised in double displacement processes, redox reactions, and neutralisation reactions.

Learn more about net ionic equation  here

https://brainly.com/question/22885959

#SPJ11

An inert electrode must be used when one or more species involved in the redox reaction are:Select the correct answer below:good conductors of electricitypoor conductors of electricityeasily oxidizedeasily reduced

Answers

An inert electrode must be used when one or more species involved in the redox reaction are poor conductors of electricity. Inert electrodes, like graphite or platinum, do not participate in the reaction and only serve as a surface for the transfer of electrons.

An inert electrode must be used when one or more species involved in the redox reaction are easily oxidized or easily reduced. This is because if a reactive electrode is used, it could participate in the reaction itself and affect the overall outcome of the reaction.

Inert electrodes, on the other hand, do not participate in the reaction and only serve as a conductor of electricity. Therefore, the correct answer to the question is either "easily oxidized" or "easily reduced."

To know more about electrode visit :-

https://brainly.com/question/17060277

#SPJ11

Answer:

poor conductors of electricity

Explanation:

If a substance involved in the redox reaction conducts electricity poorly, it cannot serve as an effective electrode. In this case, an inert electrode can be used to act as an electron sink or source in solution.

given this reaction: 2nh3(g)<--->n2(g) 3h2(g) where delta g rxn= 16.4kj/mol; delta h rxn=91.8 kj/mol. the standard molar enthalpy of formation in KJmol −1 of NH3​ (g) is

Answers

The standard molar enthalpy of formation of NH3(g) is 45.9 kJ/mol.

The standard molar enthalpy of formation of NH3(g) can be calculated using the given values of delta G_rxn and delta H_rxn for the reaction 2NH3(g) <---> N2(g) + 3H2(g).

Using the relation ΔG = ΔH - TΔS, we can first calculate the standard molar entropy change (ΔS) for the reaction. Given that ΔG_rxn = 16.4 kJ/mol and ΔH_rxn = 91.8 kJ/mol, we can rearrange the equation to ΔS = (ΔH - ΔG)/T. Assuming standard conditions (T = 298.15 K), we can calculate ΔS as:

ΔS = (91.8 kJ/mol - 16.4 kJ/mol) / 298.15 K = 0.253 kJ/mol*K

Now, we can use the standard entropy change to calculate the standard molar enthalpy of formation for NH3(g). For the given reaction, the change in the number of moles of gas is:

Δn_gas = 3 - 2 = 1

The standard molar enthalpy of formation of NH3(g) can be expressed as:

ΔH_formation(NH3) = ΔH_rxn / 2 - Δn_gas * R * T * ΔS

Using the given values and the gas constant R = 8.314 J/mol*K, we can calculate the standard molar enthalpy of formation for NH3(g) as:

ΔH_formation(NH3) = (91.8 kJ/mol) / 2 - 1 * (8.314 J/mol*K) * 298.15 K * (0.253 kJ/mol*K) = 45.9 kJ/mol

Therefore, the standard molar enthalpy of formation of NH3(g) is 45.9 kJ/mol.

Know more about Standard molar enthalpy of formation here:

https://brainly.com/question/10583725

#SPJ11

Other Questions
to test the effectiveness of a job training program on the subsequent wages of workerslog(wage) = 0 + 1train + 2educ + 3exper + uwhere train is a binary variable equal to unity if a worker participated in the program. Think of the error term u as containing unobserved worker ability. If less able workers have a greater chance of being selected for the program, and you use an OLS analysis, what can you say about the likely bias in the OLS estimator of 1? write the expression as an algebraic expression in x for x > 0. 4 tan(arccos x) do you use the temperature of water bath when vaporization begins to find temperature for ideal gas law Sorting and Searching (15 points): Implement the following algorithms in the Kruse and Ryba text book: can modify the code in the Kruse and Ryba text book:Quicksort algorithmHeap-sort algorithmTest your implementation as follows:Generate 5000 integer random numbers/keys in the range 0 to 10^6 and store them in an array.Sort the array using Quicksort and Heap-sort and find the number of comparison operations on the keys/numbers in each case and print it.Repeat steps (a) and (b) above 30 times, and find the minimum, maximum, mean, median, and standard deviation of the number of comparison operations, for the two methods. Crime is _______-_______ because criminals will react selectively to the characteristics of an individual criminal act. A.offender-specific B.offense-specific C. reward- specific D. risk-specific PLEASE HURRY 20 POINTS I NEED THIS REALLY REALLY SOONTo calculate the hourly revenue from the buffet after x $1 increases, multiply the price paid by each customer and the average number of customers per hour. Create an inequality in standard form that represents the restaurant owners desired revenue. Type the correct answer in each box. Use numerals instead of words. blank x^2 blank + x + blank The two silos shown at the right store seed. Container C contains a preservative coating that is sprayed on the seeds as they enter the silos.silos2silosa) It takes 10 hours to fill silos A and B with coated seed. At what rate, in cubic feet per minute, are the silos being filled?Choose: 1061 ft3/min 636 ft3/min 106 ft3/min 64 ft3/minb) The preservative coating in container C costs $95.85 per cubic yard. One full container will treat 5,000 cubic feet of seed. How much will the preservative cost to treat all of the seeds if silos A and B are full? if 1,800,000 nm of force is on the carrier plate, how much force is carried through each planetary gear? there are 5 planet gears. The researchers want to use narrow-spectrum LEDs to make their lamp more efficient. Assuming that the energy of a photon absorbed by porfirmer is transferred without loss to oxygen, what wavelength of light should the researchers select? (Note: Planck's constant is 6. 626 x 10-34 Js)A. 1000 nm B. 1250 nm C. 2500 nm D. 3000 nm a focal point for kindergarten is the use of written numerals to: Agency problems would be least likely to arise a) in sole proprietorships. b) in partnerships with less than 3 partners. c) in partnerships with 3 or more partners. d) in for profit corporations. e) in not for profit corporations. A car starting from rest accelerates uniformly at 5. 0 m/s2. How much time elapses for it to reach a speed of 32 m/s? FILL IN THE BLANK _____ is the human psychological propensity to search only for evidence that confirms a claim (especially claims we agree with), while neglecting looking for disconfirming evidence Why did kings gain power under the rise of nation-states? Mark any/all combinations that will produce a precipitate. Aqueous solutions of iron (III) chloride and ammonium iodide Aqueous solutions of potassium carbonate and magnesium acetate Aqueous solutions of lithium nitrate and sodium fluoride Loueous solutions of calcium nitrate and sodium sulfate When you mix two liquids, the reaction vessel suddenly feels cold. What does this observation suggest? Mark any/all statements that apply. An exothermic reaction has occurred. An endothermic reaction has occurred. The chemicals released cold. The chemicals took in energy from the surroundings. A gas was produced Question 2 1 pts You react propane (C3Hz) with O2 gas. Mark any/all that apply. H2O is a product of the reaction if we live in an m&m world with no taxes, but rd increases with leverage, will wacc also increase with leverage? For all sport and entertainment organizations, ______________ financing may include land use, tax abatements, direct facility financing, and infrastructure improvements determine the type of stress that caused the faulting. choose one: a. e-w compression b. n-s tension c. n-s compression d. e-w tension If I had 120 longhorns approximately how much money would I get for them in Texas where they were worth $1-2? We know that our atmosphere is optically thick enough that when we look straight up, we see some scattered sunlight; on the other hand, it is pretty optically thin, since starlight is not scattered very much. Suppose at blue wavelengths (=400nm) the optical depth is 0.1. What fraction of starlight is scattered before it reaches the ground? What is the cross section for scattering of blue light by air molecules? In the formula\sigma \approx\sigma_T(\lambda_0/\lambda)^4, what would you infer 0 to be?