Options:
The supplier products have a lower mean than claimed
The supplier is more accurate than they claimed
The supplier products have a higher mean than claimed
The supplier is less accurate than they have claimed
Answer:
The supplier is less accurate than they have claimed
Step-by-step explanation:
Confidence Interval for supplier claim, CI = (20.45, 21.05)
Confidence Interval for your claim, CI = (20.48, 21.02)
Calculate the mean of the Confidence Interval for the supplier's claim:
[tex]\bar{X_s} = \frac{20.45 + 21.05}{2} \\\bar{X_s} = \frac{41.50}{2}\\\bar{X_s} = 20.75[/tex]
Calculate the mean of the Confidence Interval for your claim :
[tex]\bar{X_y} = \frac{20.48 + 21.02}{2} \\\bar{X_y} = \frac{41.50}{2}\\\bar{X_y} = 20.75[/tex]
Both the supplier and you have the equal mean
Margin of Error by the supplier = 21.05 - 20.75 = 0.30
Margin of Error by you = 21.02 - 20.75 = 0.27
Since the margin of error for the supplier is more, you can conclude that the suppler is less accurate than they have claimed.
The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
Supplier claims that they are 95% confident that their products will be in the interval of 20.45 to 21.05. You take samples and find that the 95% confidence interval of what they are sending is 20.48 to 21.02. What conclusion can be made?
The supplier products have a lower mean than claimed
The supplier is more accurate than they claimed
The supplier products have a higher mean than claimed
The supplier is less accurate than they have claimed
Answer:
The margin of error reported by the supplier is greater as compared to the actual margin of error. A greater margin of error results in less accuracy.
Therefore, we can conclude that the supplier is less accurate than they have claimed.
Step-by-step explanation:
Supplier claims that they are 95% confident that their products will be in the interval of 20.45 to 21.05.
The mean is given by
Mean = (Upper limit + Lower limit)/2
Mean = (21.05 + 20.45)/2
Mean = (41.50)/2
Mean = 20.75
The margin of error in this case is
MoE = Upper limit - Mean
MoE = 21.05 - 20.75
MoE = 0.30
You take samples and find that the 95% confidence interval of what they are sending is 20.48 to 21.02.
The mean is given by
Mean = (Upper limit + Lower limit)/2
Mean = (21.02 + 20.48)/2
Mean = (41.50)/2
Mean = 20.75
The margin of error in this case is
MoE = Upper limit - Mean
MoE = 21.02 - 20.75
MoE = 0.27
As you can notice the margin of error reported by the supplier is greater as compared to the actual margin of error. A greater margin of error results in less accuracy.
Therefore, we can conclude that the supplier is less accurate than they have claimed.
The container of a breakfast cereal usually lists the number of calories and the amounts of protein, carbohydrate, and fat contained in one serving of the cereal. The amounts for two common cereals are given below. Suppose a mixture of these two cereals is to be prepared that contains exactly 295 calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat.
a. Set up a vector equation for this problem. Include a statement of what the variables in your equation represent.
b. Write an equivalent matrix equation, and then determine if the desired mixture of the two cereals can be prepared.
$$\begin{matrix}
\text{Nutrient} & \text{General Mills Cherrios} & \text{Quaker 100% Natura Cereal}\
\text{Calories} & \text{110} & \text{130}\
\text{Protein (g)} & \text{4} & \text{3}\
\text{Carbhydrate (g)} & \text{20} & \text{18}\
\text{Fat (g)} & \text{2} & \text{5}\
\end{matrix}$$
Answer:
(a)
[tex]\left[\begin{array}{ccc}110\\4\\20\\2\end{array}\right] x+\left[\begin{array}{ccc}130\\3\\18\\5\end{array}\right] y=\left[\begin{array}{ccc}295\\9\\48\\8\end{array}\right][/tex]
(b)
[tex]\left[\begin{array}{ccc}110&130&295\\4&3&9\\20&18&48\\2&5&8\end{array}\right][/tex]
1.5 servings of cheerios and 1 serving of Quaker 100% natural cereal will give the desired mixture.
Step-by-step explanation:
Given the mixture of cereals below:
[tex]\left|\begin{array}{c|c|c}&$General Mills &$Quaker \\$Nutrient&$Cherrios &100\% $Natural Cereal\\----&---&---\\$Calories&110&130\\$Protein (g)&4&3\\$Carbhydrate (g)&20&18\\$Fat (g)&2&5\end{array}\right|[/tex]
Suppose a mixture of these two portions of cereals is to be prepared that contain exactly 295 calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat.
(a)Let x be the number of servings of Cheerios
Let y be the number of servings of Natural Cereal
From the table above, we have
[tex]110x+130y=295\\4x+3y=9\\20x+18y=48\\2x+5y=8[/tex]
Then a vector equation for this problem is:
[tex]\left[\begin{array}{ccc}110\\4\\20\\2\end{array}\right] x+\left[\begin{array}{ccc}130\\3\\18\\5\end{array}\right] y=\left[\begin{array}{ccc}295\\9\\48\\8\end{array}\right][/tex]
(b) Next, we obtain an equivalent matrix equation of the data
[tex]\left[\begin{array}{ccc}110&130\\4&3\\20&18\\2&5\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}295\\9\\48\\8\end{array}\right][/tex]
This is of the form AX=B. To solve for X we, therefore have an equivalence matrix:
[tex]\left[\begin{array}{ccc}110&130&295\\4&3&9\\20&18&48\\2&5&8\end{array}\right][/tex]
Next, we row reduce the matrix using a calculator to obtain the matrix:
[tex]\left[\begin{array}{ccc}1&0&1.5\\0&1&1\\0&0&0\\0&0&0\end{array}\right][/tex]
Therefore:
1x+0=1.5
0x+y=1
x=1.5 and y=1
To get the required mixture, we use 1.5 servings of cheerios and 1 serving of Quaker 100% natural cereal.
4(x-2+y)=
?????????????
[tex]\text{Solve:}\\\\4(x-2+y)\\\\\text{Use the distributive property:}\\\\4x-8+4y\\\\\text{Since you can't simplify it any further, that'll be your answer}\\\\\boxed{4x-8+4y}[/tex]
Answer:
4x-8+4y
Explanation:
///
Use the triangle shown on the right to complete the statement:
_____ (75*)=14.1/x
Answer: cos
2nd part: Use the equation shown to solve for the value of x. Round to the nearest tenth.
cos(75*)=14.1/x x=14.1/cos(75*)
Answer: 54.5 in
Answer:
Step-by-step explanation:
The answer is 54.5 on edg
For the triangle shown on the right, the term cos is used to complete the statement and the value of x is 54.5 degree for the triangle.
What is right angle triangle property?In a right angle triangle ratio of adjacent side to the hypotenuse side is equal the cosine angle between them.
[tex]\rm \cos=\dfrac{ adjacent}{hypotenuse}[/tex]
Here, (a) is the adjacent side, (c) is the hypotenuse side and θ is the angle made between them.
The traingle is not provided in the image. Let the triangle for the given problem is similar to the attached image below.
Here the hypontenuse side is AC and adjacent side of triangle is 14.1 units. Thus by the property of right angle triangle,
[tex]\cos75=\dfrac{AB}{AC}\\\cos75=\dfrac{14.1}{x}[/tex]
Now if we compare the above equation with the given statement __(75*)=14.1/x. The term cos is filled in the blank.
For the second part, we need to find the value of x. Thus solve the above equation further as,
[tex]\cos75=\dfrac{14.1}{x}\\x=\dfrac{14.1}{\cos75}\\x=\dfrac{14.1}{0.25882}\\x\approx54.5^o[/tex]
Hence, For the triangle shown on the right, the term cos is used to complete the statement and the value of x is 54.5 degree for the triangle.
Learn more about the right angle triangle property here;
https://brainly.com/question/22790996
Two negative integers are 8 units apart on the number line and have a product of 308. Which equation could be used to determine x, the smaller negative integer? A: x^2 + 8x – 308 = 0 B: x^2 – 8x + 308 = 0 C: x^2 + 8x + 308 = 0 D: x^2 − 8x − 308 = 0
Answer:
A
Step-by-step explanation:
The smaller negative integer is x.
The larger one is x+8, since they are 8 units apart.
The equation would be:
x*(x+8)=308
Let's simplify it by distributing.
x^2+8x=308
Subtract 308 from both sides.
x^2+8x-308=0
Therefore, the answer would be A.
Please answer this question !! 20 points and brainliest !!
Answer:
yes, they are parallel; the general form equation differs only in the constant.
Step-by-step explanation:
Subtract y from the first equation and multiply by 2.
y -y = 1/2x -y +3
0 = x -2y +6
x -2y +6 = 0 . . . . . put in general form
Compared to the second equation, we see the only difference is in the constant, +6 vs. -8.
This means the lines are parallel.
Evaluate 16x^0 if x= -3
Answer:
16
Step-by-step explanation:
[tex]16x^0= \\\\16(-3)^0= \\\\16(1)= \\\\16[/tex]
Hope this helps!
x = -3
[tex]A = 16.(-3)^{0} \\ x^{0} = 1\\A = 16.1 \\A = 16[/tex]
Remember that [tex]x^{0} = 1[/tex] ∀ [tex]x[/tex]
Diya spent 2/5 of her money on a dress and 1/2 of the reminder on a doll. She spent $8 more o the dress than the doll. How much money did she have left?
year 6 Mathematics
Answer:
$24
Step-by-step explanation:
2/5 — dress
3/5 — remainder
1/2 of remainder = 1/2 × 3/5 = 3/10 — doll
rewrite fraction spent on dress: 4/10
dress - doll = $8
4/10 - 3/10 = 1/10
1/10 = $8
fraction of money left = 10/10 - 4/10 - 3/10
= 3/10
amount of money left = $8 × 3
$24
Ten rugby balls are randomly selected from the production line to see if their shape is correct. Over time, the company has found that 89.4% of all their rugby balls have the correct shape. If exactly 6 of the 10 have the right shape, should the company stop the production line?
Answer:
Step-by-step explanation:
The question is incomplete. The complete question is:
Ten rugby balls are randomly selected from the production line to see if their shape is correct. Over time, the company has found that 89.4% of all their rugby balls have the correct shape. If exactly 6 of the 10 have the right shape, should the company stop the production line?
1)Yes as the probability of six having the correct shape is not unusual
2)NO. as the probability of six having the correct shape is unusual
3)Yes as the probability of six having the correct shape is unusual
4) No. as the probability of six having the correct shape is not unusual
Solution:
If exactly 6 of the 10 have the right shape, it means that the probability of success for the sample is
6/10 = 0.6
Expressing the probability in terms if percentage, it becomes
0.6 × 100 = 60%
Over time, the company has found that 89.4% of all their rugby balls have the correct shape. It means that the probability of success for the population is 89.4%
Comparing both probabilities, the probability of only 6 having the right shape is unusual. Therefore, the correct option is
3)Yes as the probability of six having the correct shape is unusual
6z+10=-2
pls answer'
i willmarke brainlest
Answer:
Step-by-step explanation: 6z=-2-10
6z= -12
z=-12/6
then z= -2
A cylindrical tank has a radius of 2 m and a height of 9 m. The tank is filled with water. Find the work needed to pump the top 3 m of water out the top of the tank. (Use 9.8 m/s2 for g and the fact that the density of water is 1000 kg/m3.)
Answer:
3,325,140 Joules
Step-by-step explanation:
Work done by the pump = Force applied to pump * distance covered by the water.
Since Force = mass * acceleration due to gravity
Force = (density of water * volume of the tank) * acceleration due to gravity
F =ρVg
Workdone = (ρVg )* d
Given ρ = 1000kg/m³, g = 9.8m/s², d = 3m
[tex]V = \pi r^{2}h\\V = \pi (2)^{2} *9\\V = 36 \pi \\V =113.10m^{3}[/tex]
Workdone by the pump = 1000 * 113.10 * 9.8 * 3
Workdone by the pump = 3,325,140Joules
the population of a country increased by 3%, 2.6%, and 1.8% in three successive years. what was the total percentage increase in the country's population over the three year period?
please tell me how u did it
Answer:
The total percentage increase in the country's population over the three year period is 7.6%.
Step-by-step explanation:
Let x be the original population of a country.
It is provided that the population increased by 3%, 2.6%, and 1.8% in three successive years.
Compute the population of the country after three years as follows:
[tex]\text{New Population}=\text{Origibal Population}\times I_{1}\%\times I_{2}\%\times I_{3}\%[/tex]
[tex]=x\times [1+\frac{3}{100}]\times [1+\frac{2.6}{100}]\times [1+\frac{1.8}{100}]\\\\=x\times 1.03\times 1.026\times 1.018\\\\=1.07580204\cdot x\\\\\approx 1.076\cdot x[/tex]
The new population after three years is 1.076 x.
Compute the total percentage increase in the country's population over the three year period as follows:
[tex]\text{Total Increase}\%=\frac{\text{New Population}\ -\ \text{Original Population}}{\text{Original Population}}\times 100[/tex]
[tex]=\frac{1.076x-x}{x}\times 100\\\\=0.076\times 100\\\\=7.6\%[/tex]
Thus, the total percentage increase in the country's population over the three year period is 7.6%.
Please help. I’ll mark you as brainliest if correct . I don’t understand this math problem. Thank you .
Answer:
That can be factored as
(x -1 (1/3) ) * ( x +3) * (x -4/5)
and the zeroes are located at:
x = 1.33333333... x = -3 and x = .8
Step-by-step explanation:
Answer:
[tex]\boxed{\sf \ \ \ f(x)=(x+3)(5x-4)(3x-4) \ \ \ }[/tex]
Step-by-step explanation:
We need to factorise the following function
[tex]f(x)=15 x^3+13 x^2-80 x+48[/tex]
-3 is a trivial solution, we can notice that f(-3)=0
so we can factorise by (x+3)
let s note a, b and c real and let s write
[tex]f(x)=15 x^3+13 x^2-80 x+48=(x+3)(ax^2+bx+c)[/tex]
[tex](x+3)(ax^2+bx+c) = ax^3+bx^2+cx+3ax^2+3bx+3c=ax^3+(b+3a)x^2+(3b+c)x+3c[/tex]
let s identify...
the terms in [tex]x^3[/tex]
15 = a
the terms in [tex]x^2[/tex]
13 = b + 3a
the terms in x
-80 = 3b+c
the constant terms
48 = 3c
so it comes, c=48/3=16, a = 15, b = 13-3*15=13-45=-32
so [tex]f(x)=(x+3)(15x^2-32x+16)[/tex]
[tex]\Delta=32^2-4*15*16=64[/tex]
so the roots of [tex](15x^2-32x+16)[/tex] are
[tex]\dfrac{32-8}{15*2}=\dfrac{24}{30}=\dfrac{12}{15}=\dfrac{4}{5}[/tex]
and
[tex]\dfrac{32+8}{15*2}=\dfrac{40}{30}=\dfrac{20}{15}=\dfrac{4}{3}[/tex]
so [tex]f(x)=(x+3)(5x-4)(3x-4)[/tex]
the zeros are -3, 4/5, 4/3
how to simplify 4e + 6f + 7e - f
Answer:
11e+5f
Step-by-step explanation:
Combine like terms:
4e+7e+6f-f
11e+5f
Answer:
11e +5f
Step-by-step explanation:
4e + 6f + 7e - f
Combine like terms
4e+7e +6f-f
11e +5f
(1 point) A man claims to have extrasensory perception (ESP). As a test, a fair coin is flipped 25 times, and the man is asked to predict the outcome in advance. He gets 18 out of 25 correct. What is the probability that he would have done at least this well if he had no ESP
Answer:
2.16% probability that he would have done at least this well if he had no ESP
Step-by-step explanation:
For each coin toss, there are only two possible outcomes. Either he predicts the correct outcome, or he does not. The tosses are independent. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Fair coin:
Equally as likely to be heads or tails, so [tex]p = 0.5[/tex]
Coin is flipped 25 times
So [tex]n = 25[/tex]
What is the probability that he would have done at least this well if he had no ESP?
[tex]P(X \geq 18) = P(X = 18) + P(X = 19) + P(X = 20) + P(X = 21) + P(X = 22) + P(X = 23) + P(X = 24) + P(X = 25)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 18) = C_{25,18}.(0.5)^{18}.(0.5)^{7} = 0.0143[/tex]
[tex]P(X = 19) = C_{25,19}.(0.5)^{19}.(0.5)^{6} = 0.0053[/tex]
[tex]P(X = 20) = C_{25,20}.(0.5)^{20}.(0.5)^{5} = 0.0016[/tex]
[tex]P(X = 21) = C_{25,21}.(0.5)^{21}.(0.5)^{4} = 0.0004[/tex]
[tex]P(X = 22) = C_{25,22}.(0.5)^{22}.(0.5)^{3} = 0.0001[/tex]
The others(23, 24 and 25) are close to 0.
[tex]P(X \geq 18) = P(X = 18) + P(X = 19) + P(X = 20) + P(X = 21) + P(X = 22) + P(X = 23) + P(X = 24) + P(X = 25) = 0.0143 + 0.0053 + 0.0016 + 0.0004 = 0.0216[/tex]
2.16% probability that he would have done at least this well if he had no ESP
 any help would be great
Answer:
k = P - m - n
Step-by-step explanation:
The question is asking you to rearrange the equation so that k is alone on one side.
P = k + m + n
P - k = (k + m + n) - k
P - k = m + n
(P - k) - P = m + n - P
-k = m + n - P
-1(-k) = -1 (m + n - P)
k = -m - n + P
The equation is completely simplified so this is your answer.
multiply (5 4/7) times (- 2 2/5)
Answer: -13.37
Explanation: I did it in decimals because I didn’t know if your assignment required fraction or decimal. 5 4/7= 5x7=35+4=39/7 so this means 5 4/7 is equal to 39/7. -2 2/5= -2x5=-10+2=-8/5. So it comes out to 39/7x-8/5.
A box is filled with 6 red cards, 8 green cards and 4 blue cards what is the probability that the card is not green that is chosen
Answer:
10/18
=5/9
pls mark as brainliest
Answer:
5/9
Step-by-step explanation:
6 red cards, 8 green cards and 4 blue cards = 18 total cards
not green cards = 6 red+ 4 blue = 10 cards
P( not green) = number not green / total
= 10/18
=5/9
Suppose that it costs $200 per day to search for chanterelle mushrooms at Pt. Reyes National Seashore. On an average day, the total weight of mushrooms M found at Pt. Reyes is M = 100x-x^2 pounds ,where x is the number of people mushroom hunting on that day. Chanterelles can be sold for $60 per pound. How many more people will go mushroom hunting than is socially optimal?
Answer:
For an overall profit, we need at least 97 people to go mushroom hunting.
Any number of people that is more than the socially optimal number should go mushroom hunting on any given day.
Step-by-step explanation:
The socially optimal number of people that will go mushroom hunting is the number where amount spent to go mushroom hunting equally balances the amount obtained by selling the mushrooms obtained.
If x people go mushroom hunting in a day, the total cost of hunting for that day = 200x
The amount of mushroom obtained is given as
M = (100x - x²) in pounds
The selling price of 1 pound = $60
The cost of M pounds = 60M = 60(100x - x²)
= (6000x - 60x²)
At socially optimal number,
200x = 6000x - 60x²
60x² - 6000x + 200x = 0
60x² - 5800x = 0
x(60x - 5800)
x = 0 or (60x - 5800) = 0
x = 0 or x = (5800/60) = 96.67
Socially optimal number of people = 0 or 96.67
For realistic purposes, we take the socially optimal number of people that went mushroom hunting as 96.67
Any number above this number will result in an overall profit, and any number below it results in an overall loss.
So, for an overall profit, we need at least 97 people to go mushroom hunting.
Hope this Helps!!
Answer:
48 people
Step-by-step explanation:
When allocating resources to a particular task it is important to assign optimal units of resources.
In this scenario if the people hunting mushrooms are too many they will not make profit. But an optimal number will guarantee everyone makes positive profit.
Optimal = (M÷x)Px - 200= 0
Optimal= {(100x -x^2) ÷ x} * 60 = 200
Optimal = 6000 - 60x = 200
x= 96.666~ 97 people
However to maximise profit MTB = MTC
Socially Optimal quantity = 60(100x - x^2) -200
∂(Socially Optimal amount) ÷ ∂ x= 6000 - 120x - 200
x = 48.33~ 48 people
So 48 more people go mushroom hunting than is socially optimal
A sample of size =n48 has sample mean x=54.6 and sample standard deviation =s9.2. Part: 0 / 20 of 2 Parts Complete Part 1 of 2 Construct a 99.9% confidence interval for the population mean μ. Round the answers to one decimal place. A 99.9% confidence interval for the population mean is:____________ .
Answer:
[tex]54.6-3.51\frac{9.2}{\sqrt{48}}=49.94[/tex]
[tex]54.6+3.51\frac{9.2}{\sqrt{48}}=59.26[/tex]
The confidence interval is given by (49.94, 59.26)
Step-by-step explanation:
Info given
[tex]\bar X=54.6[/tex] represent the sample mean
[tex]\mu[/tex] population mean (variable of interest)
s=9.2 represent the sample standard deviation
n=48 represent the sample size
Part a
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
The degrees of freedom are given by:
[tex]df=n-1=48-1=47[/tex]
The Confidence is 0.999 or 99.9%, and the significance is [tex]\alpha=0.001[/tex] and [tex]\alpha/2 =0.0005[/tex], and the critical value would be [tex]t_{\alpha/2}=3.51[/tex]
And replacing we got:
[tex]54.6-3.51\frac{9.2}{\sqrt{48}}=49.94[/tex]
[tex]54.6+3.51\frac{9.2}{\sqrt{48}}=59.26[/tex]
The confidence interval is given by (49.94, 59.26)
One of the questions in a study of marital satisfaction of dual-career couples was to rate the statement, "I'm pleased with the way we divide the responsibilities for childcare." The ratings went from 1 (strongly agree) to 5 (strongly disagree). The table below contains ten of the paired responses for husbands and wives. Conduct a hypothesis test at the 5% level to see if the mean difference in the husband's versus the wife's satisfaction level is negative (meaning that, within the partnership, the husband is happier than the wife). Wife's score 2 2 3 3 4 2 1 1 2 4 Husband's score 2 1 2 3 2 1 1 1 2 4 NOTE: If you are using a Student's t-distribution for the problem, including for paired data, you may assume that the underlying population is normally distributed. (In general, you must first prove that assumption, though.)(1) State the distribution to use for the test. (Enter your answer in the form z or tdf where df is the degrees of freedom.)(2) What is the test statistic? (If using the z distribution round your answer to two decimal places, and if using the t distribution round your answer to three decimal places.)(3) What is the p-value? (Round your answer to four decimal places.)(4) Alpha (Enter an exact number as an integer, fraction, or decimal.)α =
Answer;
1) The t-distribution is most suitable for this problem.
2) Test statistic = 2.356
3) p-value = 0.0214
4) Alpha = 5% = 0.05
5) The p-value is greater than the significance level at which the test was performed, meaning that we reject the null hypothesis, accept the alternative hypothesis & say that there is enough evidence to conclude that the husbands are happier in dual couple marriages.
Step-by-step Explanation:
Wife's score 2 2 3 3 4 2 1 1 2 4
Husband's score 2 1 2 3 2 1 1 1 2 4
To conduct a hypothesis test at the 5% level to see if the mean difference in the husband's versus the wife's satisfaction level is negative (meaning that, within the partnership, the husband is happier than the wife, we first take the difference in the respomses of wives and husbands
x = (wife's score) - (husband's score)
Wife's score 2 2 3 3 4 2 1 1 2 4
Husband's score 2 1 2 3 2 1 1 1 2 4
Difference | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0
To use the hypothesis test method, we have to make sure that the distribution is a random sample of the population and it is normally distributed.
The question already cleared these two for us that this sample size is randomly selected from the population and each variable is independent from the other.
The question also already explained that the distribution is assumed to be normally distributed.
1) The distribution to use for this test is the t-distribution. This is because the sample size isn't very large and we have no information about the population mean and standard deviation.
For any hypothesis testing, we must first define the null and alternative hypothesis
Since we want to investigate whether the husbands are happier, that the mean difference is negative, that is less than 0,
The null hypothesis, which normally counters the claim to be investigated, would be that there isnt evidence to conclude that the husbands are happier in dual couple marriages. That is, the mean difference in happiness isn't less than 0, that it is equal to or greater than 0.
And the alternative hypothesis, which usually confirms the claim to be tested, is that there is significant evidence to conclude that the husbands are happier in dual couple marriages. That is, the mean difference in happiness is less than 0.
Mathematically, if μ is the mean difference in happiness of wives and husbands,
The null hypothesis is represented as
H₀: μ ≥ 0
The alternative hypothesis is represented as
Hₐ: μ < 0
2) To obtain the test statistic, we need the mean and standard deviation first.
Mean = (sum of variables)/(number of variables) = (5/10) = 0.5
Standard deviation = σ = √[Σ(x - xbar)²/N]
Σ(x - xbar)² = 6(0 - 0.5)² + 3(1 - 0.5)² + (2 - 0.5)² = 1.5 + 0.75 + 2.25 = 4.5
σ = √(4.5/10) = 0.671
we compute the t-test statistic
t = (x - μ)/σₓ
x = sample mean difference = 0.50
μ = 0
σₓ = standard error of the sample mean = (σ/√n)
where n = Sample size = 10,
σ = Sample standard deviation = 0.671
σₓ = (0.671/√10) = 0.2122
t = (0.50 - 0) ÷ 0.2122
t = 2.356
3) checking the tables for the p-value of this t-statistic
Degree of freedom = df = n - 1 = 10 - 1 = 9
Significance level = 5% = 0.05
The hypothesis test uses a one-tailed condition because we're testing only in one direction.
p-value (for t = 2.356, at 0.05 significance level, df = 9, with a one tailed condition) = 0.021441 = 0.0214
4) Alpha = significance level = 5% = 0.05
5) The interpretation of p-values is that
When the (p-value > significance level), we fail to reject the null hypothesis and when the (p-value < significance level), we reject the null hypothesis and accept the alternative hypothesis.
So, for this question, significance level = 0.05
p-value = 0.0214
0.0214 < 0.05
Hence,
p-value < significance level
This means that we reject the null hypothesis, accept the alternative hypothesis & say that there is enough evidence to conclude that the husbands are happier in dual couple marriages.
Hope this Helps!!
StartFraction 4 over 2 EndFraction = StartFraction 5 over x EndFraction Solve the proportion for x. After using cross products, the proportion becomes the equation . Isolate the variable by dividing both sides of the equation by . x = .
Answer:
StartFraction 4 over 2 EndFraction = StartFraction 5 over x EndFraction
Solve the proportion for x.
After using cross products, the proportion becomes the equation
✔ 4x = 10
.
Isolate the variable by dividing both sides of the equation by
✔ 4
.
x = ✔ 2.5
.
The value of x is 2.5 for the given proportion.
What is the proportion?A mathematical assessment of two numbers is called a proportion. If two sets of provided numbers rise or fall in the same relation, then the ratios are said to be directly proportional to each other.
The proportion is given in the question, as follows:
4/2 = 5/x
Using cross-product, the proportion becomes the equation as:
4x = 2 × 5
4x = 10
Divide by 4 into both sides of the above equation,
x = 10/4
x = 2.5
Thus, the value of x is 2.5 for the given proportion.
Learn more about the proportion here:
brainly.com/question/1504221
#SPJ3
What is 80,000,000,000,000 in standard form (80 billion)
Answer:
8x10^13
Step-by-step explanation:
What’s the correct answer for this question?
Answer:
what's the question?
it's not showing
Answer:
C.
Step-by-step explanation:
To find the perimeter, we'll use the distance formula
Distance Formula = √(x₂-x₁)²+(y₂-y₁)²
Finding Distance of AB
|AB| = √(-2+5)²+(3+1)²
|AB| = √25
|AB| = 5
Now For BC
|BC| = √(6+2)²+(-3-3)²
|BC| = √(8)²+(-6)²
|BC| = √100
|BC| = 10
FOR CA:
|CA| = √(-5-6)²+(-3+1)²
|CA| = √125
Perimeter of Triangle = 10 + 5 + √125
= 15 + √125
Water is flowing into and out of two vats, Vat A and Vat B. The amount of water, in gallons, in Vat A at time t hours is given by a function A(t) and the amount in Vat B is given by B(t). The two vats contain the same amount of water at t=0. You have a formula for the rate of flow for Vat A and the amount in Vat B: Vat A rate of flow: A(t)-3t2+24t-21 Vat B amount: B(t)-2t2+16t+40
(a) Find all times at which the graph of A(t) has a horizontal tangent and determine whether each gives a local maximum or a local minimum of A(t) smaller t= 1 gives a local minimum larger t= 7 l maximum
(b) Let D(t)-B(t)-A(t). Determine all times at which D(t) has a horizontal tangent and determine whether each gives a local maximum or a local minimum. (Round your times to two digits after the decimal.) xgives a Select x gives a Select smaller t- larger t=
(c) Use the fact trruntain the same amount of water at ta0 to find the formula for A(), the amount in Vat A at time t Enter a number
(d) At what time is the water level in Vat A rising most rapidly? t- hours
(e) what is the highest water level in Vat A during the interval from t=0 to t=10 hours? gallons
(f) What is the highest rate at which water flows into Vat B during the interval from t-0 to t-10 hours? gallons per hour
(g) How much water flows into VatA during the interval from t=1 to t-8 hours? gallons
Note: The first file attached contains the clear and complete question
Answer:
a) The times at which the graph of A(t) has horizontal tangent are t = 1 and t = 7
A(t) has a local maximum at t=7
A(t) has a local minimum at t=1
b) The times at which the graph of D(t) has horizontal tangent are t = 1.59 and t = 7.74
D(t) has a local maximum at t=1.59
D(t) has a local minimum at t=7.74
c) A(t) = (-t^3) + 8(t^2) -21t + 40
d) The water level in vat A is rising most rapidly at t = 4 hrs
e) 138 gallons
f) 18 gallons per hour
g) 98 gallons
Step-by-step explanation:
For clarity and easiness of expression, the calculations are handwritten and attached as files below.
Each step is neatly expressed and solutions to each part of the question are clearly written
2. What is the sum of 4 tens and 6 tens?
Answer:
100
Step-by-step explanation:
4 tens + 6 tens = 10 tens = 10*10 = 100
Select the number line model that matches the expression |8 - 1|
Answer:
Option B is correct
Step-by-step explanation:
Original expression is |8 - 1| = 7 = distance between number 1 and number 8
=> Option B is correct
Hope this helps!
The number line model that matches the expression |8 - 1| which is correct option(B)
What is the graph?The graph can be defined as a pictorial representation or a diagram that represents data or values.
What is the expression?The expressions is the defined as mathematical statements that have a minimum of two terms containing variables or numbers.
Given the expression as |8 - 1|,
The value of the expression would give us 7. Meaning that the distance between coordinate 8 and 1 is 7 units.
The graphs given models the expression, |8 - 1|.
Option A, would match |-8 -1| = 5 units
Option B, would match |8 - 1| = 7 units.
Therefore, the answer is option (B).
Learn more about graph here :
https://brainly.com/question/16608196
#SPJ2
MTH 154 - DOBM
Homework: Homework 4B
Score: 0 of 1 pt
22 of 27 (21 complete)
V Score: 777
4.B.63
* Question H
Use the appropriate compound interest formula to compute the balance in the account afte
stated period of time
$14,000 is invested for 6 years with an APR of 5% and quarterly compounding.
Answer:
$18,862.91
Step-by-step explanation:
The appropriate formula is ...
A = P(1 +r/n)^(nt)
where P is the amount invested (14,000), r is the APR (.05), n is the number of times per year interest is compounded (4), and t is the number of years (6).
Filling in the numbers and doing the arithmetic, we get ...
A = 14,000(1 +.05/4)^(4·6) = 14,000·1.0125^24 ≈ 18,862.91
The balance after 6 years will be $18,862.91.
A cognitive psychologist would like to evaluate the claim that the omega-3 fatty acids can help improve memory in normal adult humans. One group of participants is given a large dose of fish extract containing the Omega-3 (500 mg), and a second group is given a placebo containing no Omega-3 (0 mg). The researcher asks each participant to read the front page of a local newspaper thoroughly every morning and to take their prescribed dosage (of either Omega-3 or placebo) immediately afterwards. The researcher gives each participant a memory test at the end of two weeks and records how many news items each participant remembers from the past three weeks of news. Answer the following:
A) What names would you give the independent and dependent variables;
B) Is the dependent variable discrete or continuous?
C) What scale of measurement (nominal, ordinal, interval or ratio; and continuous or discrete) is used to measure the independent variable?
D) What research method is being used (experimental or observational)? Explain why you conclude that the research method is one or the other.
Answer:
(a)
Independent Variable- Dosage of Omega-3 Fatty AcidsDependent Variable - Number of news item remembered(b)Discrete
(c)Ratio Scale and Discrete Variable
(d) Experimental Method
Step-by-step explanation:
The psychologist wants to evaluate the claim that omega-3 fatty acids can help improve memory in normal adult humans.
(a)In the study, the participants in the two groups were given fish extracts containing Omega-3 (500 mg) and no Omega-3 (0 mg).
The memory test involves measuring the number of items each participant remembers from the past three weeks of news.
Therefore:
Independent Variable- Dosage of Omega-3Dependent Variable - Number of news item remembered(b) The dependent variable is discrete since the number of news items remembered can only be whole numbers.
(c)The independent variable is in milligrams of Omega-3 where the placebo is 0 mg. This is a ratio scale since it has an absolute zero.
Since the dosage is given in multiples of 50mg, it is a discrete variable.
(d)Since the psychologist seeks to manipulate the conditions of the study by introducing Omega-3 to some of the participants and placebo to other participants, it is an experimental distribution.
a student in greece discovers a pottery bowl that contains 29% of its original amount of C-14
Answer:
The age of the pottery bowl is 12,378.7 years
Step-by-step explanation:
The amount of C-14 after t yeas is given by the following equation:
[tex]N(t) = N(0)e^{-kt}[/tex]
In which N(0) is the initial amount and k is the decay rate.
In this question, we have that:
[tex]k = 0.0001[/tex]
So
[tex]N(t) = N(0)e^{-0.0001t}[/tex]
Age of the pottery bowl:
29% of its original amount of C-14. So we have to find t for which N(t) = 0.29N(0). So
[tex]N(t) = N(0)e^{-0.0001t}[/tex]
[tex]0.29N(0) = N(0)e^{-0.0001t}[/tex]
[tex]e^{-0.0001t} = 0.29[/tex]
[tex]\ln{e^{-0.0001t}} = \ln{0.29}[/tex]
[tex]-0.0001t = \ln{0.29}[/tex]
[tex]t = -\frac{\ln{0.29}}{0.0001}[/tex]
[tex]t = 12378.7[/tex]
The age of the pottery bowl is 12,378.7 years
Please answer this correctly without making mistakes
Answer:
The perimeter is 26 yards
Step-by-step explanation:
Area of rectangle = A= l x w
1st rectangle = 6 x 5 = 30 yards squared
2nd rectangle= 10 x 3 = 30 yards squared
perimeter of rectangle = 2l+2w= 10 + 10 + 3 + 3= 26