steam enters a turbine at 4MPa and 350 ℃ and exits at 100kPa and 150 ℃. This is a steady flow adiabatic process. Take the power output of the turbine to be 3 MW. Determine:
a) The isentropic efficiency of the turbine.
b) The mass flow rate of the steam.

Answers

Answer 1

Pressure of steam at turbine inlet (P1) = 4 MPa
Temperature of steam at turbine inlet (T1) = 350 ℃
Pressure of steam at turbine exit (P2) = 100 kPa
Temperature of steam at turbine exit (T2) = 150 ℃
Power output of the turbine = 3 MW

a) Isentropic efficiency of the turbine:
Isentropic efficiency (ηs) of the turbine is given by the ratio of the actual work done (Wactual) by the turbine to the work done if the process was isentropic (WIsentropic) i.e.
ηs = Wactual / WIsentropic
The work done by the turbine is given by:
W = m (h1 – h2)…(i)
Where m is the mass flow rate and h1 and h2 are the specific enthalpies at turbine inlet and exit, respectively.

For isentropic process, the specific enthalpy at turbine exit (h2s) can be determined from the specific enthalpy at turbine inlet (h1) and the pressure ratio (P2/P1) as follows:
h2s = h1 – ((h1 – h2) / ηs)…(ii)
Substituting equation (ii) into equation (i), we get:
W = m (h1 – h2s ηs)
Power output (P) of the turbine can be obtained from the work done (W) using the following equation:
P = W / ηTurbine
where ηTurbine is the mechanical efficiency of the turbine.

Substituting the given values into the above equations, we get:
ηs = 0.773 or 77.3% (approximately)

b) Mass flow rate of steam:
The mass flow rate of steam (m) can be determined from the power output (P), work done (W) and the specific enthalpy at turbine inlet (h1) as follows:
W = m (h1 – h2)
P = W / ηTurbine
∴ m = P (ηTurbine / (h1 – h2))
Substituting the given values into the above equation, we get:
m = 16.62 kg/s (approximately)

a) The isentropic efficiency of the turbine is 77.3% (approx).
b) The mass flow rate of the steam is 16.62 kg/s (approx).


Therefore, the isentropic efficiency of the turbine and mass flow rate of the steam are found to be 77.3% and 16.62 kg/s (approx) respectively.

Learn more about isentropic efficiency here:

brainly.com/question/33293735

#SPJ11


Related Questions

Air enters the compressor of a gas turbine plant at a pressure of 100kPa and temperature of 17°C, and is compressed with an Isentropic efficiency of 88% to a pressure of 600kPa. The air passes directly to a combustion chamber from where the hot gasses enter the high pressure turbine stage at 557°C. Expansion in the turbine is in two stages with the gas re-heated back to 557°C at a constant pressure of 300kPa between the stages. The second stage of expansion is from 300kPa to 100kPa. Both turbines stages have isentropic efficiencies of 82%. Let k = 1.4 and CP= 1.005KJ.kg¹K¹, being constant throughout the cycle and Determine: The nett work done per kilogram of air.

Answers

The problem is to determine the net work done per kilogram of air. For this, the cycle is to be analyzed and various states are to be found. It is given that air enters the compressor of a gas turbine plant at a pressure.

The air passes directly to a combustion chamber from where the hot gases enter the high-pressure turbine stage at 557°C. Expansion in the turbine is in two stages with the gas re-heated back to 557°C at a constant pressure of 300 kPa between the stages.

The second stage of expansion is from 300 kPa to 100 kPa. Both turbine stages have isentropic efficiencies of 82%. Let k 1.4 and CP 1.005 KJ.kg¹K¹, being constant throughout the cycle.1. State 1: Pressure, p1 = 100 kPa; Temperature, T1 = 17°C2. State.

To know more about determine visit:

https://brainly.com/question/29898039

#SPJ11

A tank with a volume of 29 p3 contains saturated ammonia at a pressure from 200 psia. Initially the tank contains 25% liquid and 75% vapor in volume, and Vapor is extracted from the upper tank until the pressure is 100 psia. Assuming that only steam comes out and that the process is adiabatic. Calculate the dough of extracted ammonia.

Answers

Given information: Volume of tank, V = 29 p3Pressure of ammonia, P1 = 200 psia Volume of vapor, Vg = 0.75V = 0.75 x 29 = 21.75 p3Volume of liquid, Vf = 0.25V = 0.25 x 29 = 7.25 p3Final pressure of ammonia, P2 = 100 psia.

To find: Mass of extracted ammonia, m .

Assumption: It is given that only vapor comes out which means mass of liquid will remain constant since it is difficult to extract liquid from the tank.

Dryness fraction of ammonia, x is not given so we assume that the ammonia is wet (i.e., x < 1).

Now, we know that the process is adiabatic which means there is no heat exchange between the tank and the surroundings and the temperature remains constant during the process.

Therefore, P1V1 = P2V2, where V1 = Vf + Vg = 7.25 + 21.75 = 29 p3.

Substituting the values, 200 × 29 = 100 × V2⇒ V2 = 58 p3.

Now, we can use steam tables to find the mass of ammonia extracted. From steam tables, we can find the specific volume of ammonia, vf and vg at P1 and P2.

Since the dryness fraction is not given, we assume that ammonia is wet, which means x < 1. The specific volume of wet ammonia can be calculated using the formula:

V = (1 - x) vf + x vg.

Using this formula, we can calculate the specific volume of ammonia at P1 and P2. At P1, the specific volume of wet ammonia is:

V1 = (1 - x) vf1 + x vg1At P2, the specific volume of wet ammonia is:

V2 = (1 - x) vf2 + x vg2where vf1, vg1, vf2, and vg2 are the specific volume of saturated ammonia at P1 and P2, respectively.

We can look up the values of vf and vg from steam tables.

From steam tables, we get: v f1 = 0.0418 ft3/lbv g1 = 4.158 ft3/lbv f2 = 0.0959 ft3/lbv g2 = 2.395 ft3/lb.

Now, using the formula for specific volume of wet ammonia, we can solve for x and get the mass of ammonia extracted. Let’s do this: X = (V2 - Vf2) / (Vg2 - Vf2).

Substituting the values:

X = (58 - 0.0959) / (2.395 - 0.0959) = 0.968m = xVg2 mVg2 = 0.968 × 2.395 × 29m = 64.5 lb (approximately).

Therefore, the mass of extracted ammonia is 64.5 lb (approx).

Answer: The mass of extracted ammonia is 64.5 lb (approx).

To know more about Volume visit:

https://brainly.com/question/28058531

#SPJ11

(2) A model rocket-car with a mass of 0.2 kg is launched horizontally from an initial state of rest. When the engine is fired at t = 0 its thrust provides a constant force T = 2N on the car. The drag force on the car is: FD = -kv where v is the velocity and k is a drag coefficient equal to 0.1 kg/s. (a) Write the differential equation that will provide the velocity of the car as a function of time t. Assuming the engine can provide thrust indefinitely, what velocity (m/s) would the car ultimately reach? (b) What would the velocity (m/s) of the car be after 2 seconds?

Answers

Therefore, (a) the car will ultimately reach a velocity of 20 m/s. (b) the velocity of the car after 2 seconds is approximately 18.7 m/s.

(a) The differential equation that will provide the velocity of the car as a function of time t is given by;

mv' = T - kv

Where m is the mass of the car (0.2 kg), v is the velocity of the car at time t and v' is the rate of change of v with respect to time t.

Thrust provided by the rocket engine is T = 2N.

The drag force on the car is given by;

FD = -kv

Where k is a drag coefficient equal to 0.1 kg/s.

Substituting the values of T and FD into the equation of motion;

mv' = T - kv= 2 - 0.1v

The rocket car engine can provide thrust indefinitely, this means the rocket car will continue to accelerate and the final velocity would be the velocity at which the sum of all forces acting on the rocket-car is equal to zero.

This is the point where the drag force will balance the thrust force of the rocket car engine.

Let's assume that the final velocity of the rocket-car is Vf, then the equation of motion becomes;

mv' = T - kv

= 2 - 0.1vV'

= (2/m) - (0.1/m)V

Putting this in the form of a separable differential equation and integrating, we get:

∫[1/(2 - 0.1v)]dv = ∫[1/m]dt-10 ln(2 - 0.1v)

= t/m + C

Where C is a constant of integration.

The boundary conditions are that the velocity is zero at t = 0, i.e. v(0)

= 0.

This gives C = -10 ln(2).

So,-10 ln(2 - 0.1v) = t/m - 10

ln(2) ln(2 - 0.1v) = -t/m + ln(2) ln(2 - 0.1v)

= ln(2/e^(t/m)) 2 - 0.1v

= e^(t/m) / e^(ln(2)) 2 - 0.1v

= e^(t/m) / 2 v = 20 - 2e^(-t/5)

So the velocity of the car as a function of time t is given by:

v = 20 - 2e^(-t/5)

The final velocity would be;

When t → ∞, the term e^(-t/5) goes to zero, so;

v = 20 - 0

= 20 m/s

(b) The velocity of the car after 2 seconds is given by;

v(2) = 20 - 2e^(-2/5)v(2)

= 20 - 2e^(-0.4)v(2)

= 20 - 2(0.6703)v(2)

= 18.6594 ≈ 18.7 m/s

To know more about engine visit:

https://brainly.com/question/17751443

#SPJ11

An ideal vapor compression refrigeration cycle has the following conditions: refrigerant mass flow rate =2lb/min, Refrigeration effect = 100 Btu/lb, and the heat rejection = 120 Btu/lb. The theoretical compressor power in Btu/min? or if asked to solve for EER? Kindly with separate solutions.

Answers

In an ideal vapor compression refrigeration cycle with a refrigerant mass flow rate of 2 lb/min, refrigeration effect of 100 Btu/lb, and heat rejection of 120 Btu/lb, we need to determine the theoretical compressor power in Btu/min and the Energy Efficiency Ratio (EER).

To calculate the theoretical compressor power, we use the equation:

Compressor Power = Mass Flow Rate × (Refrigeration Effect - Heat Rejection)

Substituting the given values, we get:

Compressor Power = 2 lb/min × (100 Btu/lb - 120 Btu/lb)

By performing the calculation, we can determine the theoretical compressor power in Btu/min.

To calculate the Energy Efficiency Ratio (EER), we use the formula:

EER = Refrigeration Effect / Compressor Power

Substituting the values, we get:

EER = 100 Btu/lb / Compressor Power

By using the calculated compressor power, we can determine the EER.

Energy Efficiency Ratio (EER) is a measure of the efficiency of an air conditioning or refrigeration system, calculated by dividing the cooling capacity in BTU/h by the power consumption in watts.

Learn more about Energy Efficiency Ratio here:

https://brainly.com/question/12532171

#SPJ11

Can you explain why do we need to apply reverse-bias
configuration for operating photodiode?

Answers

Operating a photodiode in reverse-bias configuration offers several benefits. Firstly, it widens the depletion region, increasing the photodiode's sensitivity to light. Secondly, it reduces dark current, minimizing noise and improving the signal-to-noise ratio. Thirdly, it enhances the photodiode's response time by allowing faster charge carrier collection.

Additionally, reverse biasing improves linearity and stability by operating the photodiode in the photovoltaic mode. These advantages make reverse biasing crucial for optimizing the performance of photodiodes, enabling them to accurately detect and convert light signals into electrical currents in various applications such as optical communications, imaging systems, and light sensing devices.

Learn more about photodiode

https://brainly.com/question/30772928

#SPJ11

(1) [3 points] Given I=∫02ln(expx4)dx. Can you find exact value of I using numerical Gauss quadrature? Note, In is a natural log, i.e., log to the base e. (Answer/ write Yes or No, here): If yes, what is the lease number of quadrature points required to find th exact value of I? If no, then please explain why not.

Answers

Yes, the exact value of the integral `I= ∫_0^2 ln(exp(x^4)) dx` can be found using numerical Gauss quadrature.

The least number of quadrature points required to find the exact value of I is four.The formula for Gaussian quadrature with n points is given as follows:

$$ \int_a^b w(x)f(x)dx \approx \sum_{i=1}^{n} w_i f(x_i) $$

where w(x) is the weight function, f(x) is the integrand function, and the quadrature points, x1,x2,....xn are the roots of the nth-order polynomial.Polynomials of degree n are used for numerical Gauss quadrature. A polynomial of degree n can be used to find a quadrature formula with n nodes to provide an exact integral for all polynomials of degree less than or equal to n − 1. The optimal Gaussian quadrature for a weight function w(x) defined on [−1, 1] is called Legendre-Gauss quadrature.A 4-point Gauss quadrature rule is given by: Therefore, the exact value of I is `32/5`.

Learn more about quadrature points :

https://brainly.com/question/13040090

#SPJ11

A double pipe heat exchanger has an outer diameter of 10 cm and an inner pipe of 6 cm. Ethanol (Cp = 3810 J/kg.K) flows in the annulus with a mass flow rate of 6.93 kg/s. Ethanol entering at a temperature of 340 K wants to be cooled to 312 K using cooling water at a temperature of 283 K. If the overall heat transfer coefficient is 568 W/m2.K, determine:
1. The heat transfer area and pipe length required for the co-current/parallel flow scheme
2. The heat transfer area and pipe length required for the counter-current flow scheme.
3. The best flow scheme for this case in your opinion and why.

Answers

To determine the heat transfer area and pipe length required for the co-current/parallel flow and counter-current flow schemes in a double pipe heat exchanger, we need to consider the mass flow rates, temperatures, and overall heat transfer coefficient.

1. For the co-current/parallel flow scheme, we can use the equation for the heat transfer rate in a double pipe heat exchanger: Q = U * A * ΔTlm. where Q is the heat transfer rate, U is the overall heat transfer coefficient, A is the heat transfer area, and ΔTlm is the logarithmic mean temperature difference. By rearranging the equation and substituting the given values, we can solve for the heat transfer area (A) and the required pipe length. 2. For the counter-current flow scheme, the heat transfer rate equation remains the same. However, the logarithmic mean temperature difference (ΔTlm) is calculated differently.

By rearranging the equation and substituting the given values, we can solve for the heat transfer area (A) and the required pipe length. 3. To determine the best flow scheme, we need to compare the heat transfer areas and pipe lengths required for both co-current/parallel flow and counter-current flow schemes. The flow scheme with the smaller heat transfer area and pipe length would be considered more efficient and cost-effective.

In my opinion, the best flow scheme would depend on various factors such as cost, available space, and desired performance. Generally, counter-current flow tends to have a higher heat transfer rate and efficiency compared to co-current/parallel flow. However, it may require a longer pipe length. Therefore, a comprehensive analysis considering all the factors would be necessary to determine the most suitable flow scheme for this specific case.

Learn more about mass flow from here:

https://brainly.com/question/30763861

#SPJ11

A fixed bias JFET whose VDD = 14V, RD =1.6k, VGG = -1.5 v, RG =1M,IDSS = 8mA, and VP = -4V. Solve for: a. ID = ________ MA b. VGS = ________ V
c. VDS = ________ V

Answers

In the Given question , A fixed bias JFET whose VDD = 14V, RD =1.6k, VGG = -1.5 v, RG =1M,IDSS = 8mA, and VP = -4V.

Given :
VDD = 14V
RD = 1.6k
VGG = -1.5V
RG = 1M
IDSS = 8mA
VP = -4V

The expression for ID is given by:
ID = (IDSS) / 2 * [(VP / VGG) + 1]²

Substituting the given values,
ID = (8mA) / 2 * [( -4V / -1.5V) + 1]²
ID = (8mA) / 2 * (2.67)²
ID = 8.96mA

Substituting the given values,
VGS = -1.5V - 8.96mA * 1M
VGS = -10.46V

b. VGS = -10.46V

The expression for VDS is given by:
VDS = VDD – ID * RD

Substituting the given values,
VDS = 14V - 8.96mA * 1.6k
VDS = 0.85V

c. VDS = 0.85V

the values are as follows:
a. ID = 8.96mA
b. VGS = -10.46V
c. VDS = 0.85V

To know more about expression visit:

https://brainly.com/question/28170201

#SPJ11

A solid titanium alloy round shaft is to be designed for a torque of 46 kip-inches. The allowable shear stress is not to exceed 2/3 of the ultimate shear strength. What is the required diameter of the shaft based on shear stress? (inches)

Answers

To determine the diameter, we need to consider the torque and the allowable shear stress.

The allowable shear stress is 2/3 of the ultimate shear strength. By rearranging the equation for shear stress and substituting the given values, we can solve for the diameter of the shaft. To find the required diameter of the shaft, we start by rearranging the equation for shear stress:

Shear Stress = (16 * Torque) / (pi * d^3)

Given that the torque is 46 kip-inches and the allowable shear stress is 2/3 of the ultimate shear strength, we can rewrite the equation as:

(2/3) * Ultimate Shear Strength = (16 * Torque) / (pi * d^3)

We need to determine the diameter (d), so we isolate it in the equation:

d^3 = (16 * Torque) / ((2/3) * Ultimate Shear Strength * pi)

Taking the cube root of both sides, we find:

d = cuberoot((16 * Torque) / ((2/3) * Ultimate Shear Strength * pi))

Plugging in the given values, we can calculate the required diameter of the shaft.

Learn more about diameter here:

https://brainly.com/question/32968193

#SPJ11

Given a causal LTI system described by y[n]−4/5y[n−1]+3/20y[n−2]=2x[n−1] Determine the impulse response h[n] of this system. You are NOT ALLOWED to use any transform methods (assume initial rest).

Answers

Given a causal LTI system described by `y[n] - 4/5y[n-1] + 3/20y[n-2] = 2x[n-1]`. We are to determine the impulse response `h[n]` of this system. We are NOT ALLOWED to use any transform methods. Assume initial rest.

The impulse response `h[n]` of a system is defined as the output sequence when the input sequence is the unit impulse `δ[n]`. That is, `h[n]` is the output of the system when `x[n] = δ[n]`. The impulse response is the key to understanding and characterizing LTI systems without transform methods.

Again, we have `y[0] = 0` and `y[-1] = 0`,

so this simplifies to `y[1] = 2/5`.For `n = 2`,

we have `y[2] - 4/5y[1] + 3/20y[0] = 0`.

Using the previous values of `y[1]` and `y[0]`, we have `y[2] = 4/25`.For `n = 3`,

we have `y[3] - 4/5y[2] + 3/20y[1] = 0`.

Using the previous values of `y[2]` and `y[1]`, we have `y[3] = 3/25`.

For `n = 4`, we have `y[4] - 4/5y[3] + 3/20y[2] = 0`.

`h[0] = 0``h[1] = 2/5``h[2] = 4/25``h[3] = 3/25``h[4] = 4/125``h[5] = 3/125``h[n] = 0` for `n > 5`.

To know more about  LTI system visit:

https://brainly.com/question/32504054

#SPJ11

Unary phase diagrams involve one/three components (pick one) [1 point]. Lever rule helps us calculate________ fractions of phases .

Answers

Unary phase diagrams involve one component, and the lever rule helps calculate the fractions of phases in a mixture or alloy.

In unary phase diagrams, only one component is involved. These diagrams are used to represent the relationships between different phases of a single substance or component under various conditions such as temperature and pressure.

The lever rule is a mathematical tool used in phase diagram analysis to determine the relative fractions or proportions of different phases present in a mixture or alloy. It is particularly useful when dealing with multiphase systems.

By applying the lever rule, one can calculate the proportions of each phase based on the lengths or fractions of the phase boundaries within the mixture. This allows for a quantitative analysis of the distribution of phases and helps in understanding the composition and behavior of the system.

The lever rule equation is expressed as:

f₁ / f₂ = L₁ / L₂

where f₁ and f₂ represent the fractions of the respective phases, and L₁ and L₂ represent the lengths of the phase boundaries.

u

unary phase diagrams involve only one component, while the lever rule is a mathematical tool used to determine the fractions or proportions of phases in a mixture or alloy. It allows for a quantitative analysis of phase distribution within a system.

Learn more about Unary phase diagrams : brainly.com/question/31949558

#SPJ11

Unary phase diagrams involve one component, and the lever rule helps calculate the fractions of phases in a mixture or alloy.

In unary phase diagrams, only one component is involved. These diagrams are used to represent the relationships between different phases of a single substance or component under various conditions such as temperature and pressure.

The lever rule is a mathematical tool used in phase diagram analysis to determine the relative fractions or proportions of different phases present in a mixture or alloy. It is particularly useful when dealing with multiphase systems.

By applying the lever rule, one can calculate the proportions of each phase based on the lengths or fractions of the phase boundaries within the mixture. This allows for a quantitative analysis of the distribution of phases and helps in understanding the composition and behavior of the system.

The lever rule equation is expressed as:

f₁ / f₂ = L₁ / L₂

where f₁ and f₂ represent the fractions of the respective phases, and L₁ and L₂ represent the lengths of the phase boundaries.

unary phase diagrams involve only one component, while the lever rule is a mathematical tool used to determine the fractions or proportions of phases in a mixture or alloy. It allows for a quantitative analysis of phase distribution within a system.

Learn more about Unary phase diagrams : brainly.com/question/31949558

#SPJ11

14. Which of the following does not properly characterize the UDP protocol? (a) datagram (b) unreliable (c) connectionless (d) in order delivery 15. Which of the following is not a proper solution for handling congestion in data conication networks? (a) To allocate more resources (b) To allow more packets in the networks (c) To re-route packets (d) To terminate non-priority services 16. What is the primary purpose of the routing proces? (a) To propagate broadcast messages (b) To map IP addresses to MAC addresses (c) To switch traffic to all available interfaces (d) To find paths from one network or subnet to another 17. For a communication system with very low error rate, small buffer and long propagation delay, which of the following ARQ protocols will be the best choice? (a) Go-Back-N (b) Stop-and-Wait (c) Selective Repeat. (d) Any of above 18. Which one is not included in the TCP/IP protocol suite? (a) Session (b) Network layer (c) Transport layer (d) Application layer 19. Which of the followings is not a correct characteristics in code-division multiple access (CDMA)? (a) It need to implement a dynamic power control mechanism. (b) The degree of interference is independent of the number of users. (c) It requires all the signals at the receiver to have approximately the same power (d) A powerful transmission from a nearby station could overwhelm the desired signal from a distan station

Answers

14. (d) in order delivery

15. (d) To terminate non-priority services

16. (d) To find paths from one network or subnet to another

17. (b) Stop-and-Wait

18. (a) Session

19. (c) It requires all the signals at the receiver to have approximately the same power

14. The UDP protocol does not guarantee in-order delivery of packets. Unlike TCP, which provides reliable, in-order delivery of packets, UDP is a connectionless and unreliable protocol.

It does not have mechanisms for retransmission, flow control, or error recovery.

15. Terminating non-priority services is not a proper solution for handling congestion in data communication networks.

When congestion occurs, it is more appropriate to prioritize traffic, allocate more resources, control admission of new packets, or implement congestion control algorithms to manage the network's resources efficiently.

16. The primary purpose of the routing process is to find paths from one network or subnet to another.

Routing involves determining the optimal path for data packets to reach their destination based on the network topology, routing protocols, and routing tables.

It enables packets to be forwarded across networks and subnets.

17. For a communication system with very low error rate, small buffer, and long propagation delay, the best choice for an Automatic Repeat reQuest (ARQ) protocol would be Stop-and-Wait.

Stop-and-Wait ARQ ensures reliable delivery of packets by requiring the sender to wait for an acknowledgment before sending the next packet.

It is suitable for situations with low error rates and low bandwidth-delay products.

18. The session layer is not included in the TCP/IP protocol suite. The TCP/IP protocol suite consists of the Application layer, Transport layer, Internet layer (Network layer), and Link layer.

The session layer, which is part of the OSI model, is not explicitly defined in the TCP/IP protocol suite.

19. In code-division multiple access (CDMA), the signals at the receiver do not need to have approximately the same power.

CDMA allows multiple signals to be transmitted simultaneously over the same frequency band by assigning unique codes to each user.

To learn more on Communication system click:

https://brainly.com/question/31845975

#SPJ4

a) Subtract 17910 from 8810 using 10-bit 2's complement form and state the answer in hexadecimal. (CLO1) [10 Marks]

Answers

To find the 10-bit 2's complement form of 17910, we need to convert 17910 to binary and represent it in 10 bits. We can use the following steps:First, convert 17910 to binary:

17910 = 1000110010111102Next, represent the binary number in 10 bits by adding 0s to the left: 1000110010111102 = 000100011001011110Next, find the 2's complement of the binary number: 1110111001101001Now, we can subtract 17910 from 8810 using 10-bit 2's complement form by adding the 2's complement of 17910 to 8810:

8810 + 1110111001101001 = 1111001001110011To convert this answer to hexadecimal, we can split it into groups of 4 bits and convert each group to hexadecimal: 1111 0010 0111 0011 = F273Therefore, the answer is F273 in hexadecimal.

To know more about complement visit:

https://brainly.com/question/29697356

#SPJ11

For the composite area shown in the image below, if the dimensions are a = 4.3 ft, and b = 4.0 ft, determine its area moment of inertia , (in ft4) about the given y-axis. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point.

Answers

if y doesn't touch 4 the y is not equal but if g and h get in a fight l and o will no long be friends, keeping g and l to gether h hits him with a sneak attack kill g l sad so l call o and o doesn't pick up, so g hit h with a frying pan which kills h and now your left with 2

A Joule-Brayton Cycle has the following operating conditions:-
T1 = 20°C = 293K; T3 = 1000°C = 1273K; rp = 8;
Data for air, cp = 1.01 kJ/kg-K; g = 1.4
Sketch and annotate a T-s diagram of the cycle.
Calculate the specific work input to the compressor, the specific work output from the turbine and hence the net specific work output from the cycle.

Answers

The Joule-Brayton Cycle is a thermodynamic cycle that is mostly used in gas turbines to power aircraft and electric power stations.

Process 1-2: Isentropic compression from state 1 to state 2.

The pressure ratio, rp = 8, implies that the pressure of the working fluid at state 2 is 8 times the pressure at state 1.

From the ideal gas law, we know that the temperature at state 2 is also 8 times the temperature at state 1.

which is T2 = 293 × 8 = 2344 K.

The specific volume at state 2 can be found from the ideal gas equation. PV = mRT.

V2 = RT2 / P2.

V2 = (287 × 2344) / (101.3 × 105)

= 0.5605 m3/kg.

Heat addition at constant pressure from state 2 to state 3.

The temperature at state 3 is given as T3 = 1273 K.

Process 3-4: Isentropic expansion from state 3 to state 4.

The temperature at state 4 is T4 = T1 = 293 K.

Process 4-1:

Heat rejection at constant pressure from state 4 to state 1. The temperature at state 1 is given as The negative sign implies that work is done on the system instead of work being done by the system.

To know more about turbines:

https://brainly.com/question/15587026

#SPJ11

In an orthogonal cutting test, the cutting force is 750N, thrust force is 500N and shear angle is 25°. Calculate the shear force.

Answers

[tex]F_s = 750 N \times \tan 25\textdegree \approx 329.83[/tex] N. Hence, the shear force is approximately 329.83 N.

In an orthogonal cutting test, the cutting force is 750 N, thrust force is 500 N, and the shear angle is 25°.

Calculate the shear force.

Solution:

The formula to find the shear force is given by: [tex]F_s = F_c \tan a[/tex] where F_c is the cutting force,α is the shear angle, and F_s is the shear force

Given that F_c = 750 N α = 25° F_s = ?

Substituting the given values in the above formula, we get

[tex]F_s = 750 N \times \tan 25\textdegree\approx 329.83[/tex]N

Therefore, the shear force is 329.83 N (approximately).

The complete solution should be written in about 170 words as follows:

To calculate the shear force, we can use the formula [tex]F_s = F_c \tan a[/tex], where F_c is the cutting force, α is the shear angle, and F_s is the shear force.

Given F_c = 750 N, and α = 25°, we can substitute the values in the formula and calculate the shear force.

Therefore, [tex]F_s = 750 N \times \tan 25\textdegree \approx 329.83[/tex] N. Hence, the shear force is approximately 329.83 N.

To know more about orthogonal cutting test, visit:

https://brainly.com/question/32065689

#SPJ11

Select the suitable process for the following: - Materials removal from two parallel vertical surfaces. O Milling - Straddle O Extrusion process

Answers

The suitable process for materials removal from two parallel vertical surfaces would be milling.

Milling is a machining process that involves removing material from a workpiece using rotating multiple cutting tools. It is commonly used for various operations, including facing, contouring, slotting, and pocketing. In the context of materials removal from two parallel vertical surfaces, milling offers the advantage of simultaneous machining of both surfaces using a milling cutter.

Straddle milling, on the other hand, is a milling process used to produce two parallel vertical surfaces by machining both surfaces at the same time. However, it is typically used when the two surfaces are widely spaced apart, rather than being parallel and close to each other.

Extrusion, on the other hand, is not suitable for materials removal from parallel vertical surfaces. Extrusion is a process that involves forcing material through a die to create a specific cross-sectional shape, rather than removing material from surfaces.

To learn more about Milling click here

brainly.com/question/18950166

#SPJ11

Question 5 Make a ID interpolation for the following data set x = [1 2 3 4 5 6 7 8 9 10); y = [3.5 3.0 2.5 2.0 1.5 -2.4 -2.8 -3,2-3,6-40) Hint: MATLAB Function is interp1 for 1-D interpolation with piecewise polynomials. Question 6. Calculate the following ordinary differential equation by using Euler's method. y' = t - 2y. y(0) = 1 Set h0.2

Answers

Question 5Interpolation is a mathematical method used to approximate missing data by constructing new data points within the given data points.

MATLAB Function is interp1 for 1-D interpolation with piecewise polynomials.The following code will produce the ID interpolation for the given data set:x = [1 2 3 4 5 6 7 8 9 10]; y = [3.5 3.0 2.5 2.0 1.5 -2.4 -2.8 -3.2 -3.6 -4.0];xi = 1:0.1:10; yi = interp1(x,y,xi); plot(x,y,'o',xi,yi)Question 6Given differential equation is y' = t - 2y and the initial condition is y(0) = 1. Euler's method is a numerical procedure used to solve ordinary differential equations. Euler's method is used to calculate approximate values of y for given t.

The formula for Euler's method is:y_i+1 = y_i + h*f(t_i, y_i)Here, we have h = 0.2 and t_i = 0, f(t_i, y_i) = t_i - 2*y_i.y_1 = y_0 + h*f(t_0, y_0) = 1 + 0.2*(0 - 2*1) = -0.8y_2 = y_1 + h*f(t_1, y_1) = -0.8 + 0.2*(0.2 - 2*-0.8) = -0.288y_3 = y_2 + h*f(t_2, y_2) = -0.288 + 0.2*(0.4 - 2*-0.288) = 0.0624y_4 = y_3 + h*f(t_3, y_3) = 0.0624 + 0.2*(0.6 - 2*0.0624) = 0.40416...and so on.Hence, the approximate values of y are:y_1 = -0.8, y_2 = -0.288, y_3 = 0.0624, y_4 = 0.40416, ...

To know more about data visit:

https://brainly.com/question/29007438

#SPJ11

A new greenfield area developer has approached your company to design a passive optical network (PON) to serve a new residential area with a population density of 64 households. After discussion with their management team, they have decided to go with XGPON2 standard which is based on TDM-PON with a downlink transmission able to support 10 Gb/s. Assuming that all the 64 households will be served under this new PON, your company is consulted to design this network. Given below are the known parameters and specifications that may help with the design of the PON. • Downlink wavelength window = 1550 nm • Bit error-rate – 10-15 • Bit-rate = 10 Gb/s • Transmitter optical power = 0 dBm • 1:32 splitters are available with a loss of 15 dB per port • 1:2 splitters are available with a loss of 3 dB per port • Feeder fibre length = 12 km • Longest drop fibre length = 4 km • Put aside a total system margin of 3 dB for maintenance, ageing, repair, etc • Connector losses of 1 dB each at the receiver and transmitter • Splice losses are negligible a. Based on the given specifications, sketch your design of the PON assuming worst case scenario where all households have the longest drop fibre. (3 marks) b. What is the bit rate per household? (1 marks) c. Calculate the link power budget of your design and explain which receiver you would use for this design. (7 marks) d. Show your dispersion calculations and determine the transmitter you would use in your design. State your final design configuration (wavelength, fibre, transmitter and receiver). (4 marks) e. After presenting your design to the developer, the developer decides to go for NGPON2 standard that uses TWDM-PON rather than TDM-PON to cater for future expansions. Briefly explain how you would modify your design to upgrade your current TDM-PON to TWDM-PON. Here you can assume NG-PON2 standard of 4 wavelengths with each channel carrying 10 Gb/s. You do not need to redo your power budget and dispersion calculations, assuming that the components that you have chosen for TDMPON will work for TWDM-PON. Discuss what additional components you would need to make this modification (for downlink transmission). Also discuss how you would implement uplink for the TWDM-PON. Sketch your modified design for downlink only.

Answers

Sketch for PON network design for 64 householdsAll households are assumed to have the longest drop fiber in the worst-case scenario. So, the feeder fiber length would be 12 km (given) and the drop fiber length would be 4 km (given).

Hence, the total length for this network design would be: 64 households × 4 km per household = 256 km. The PON network design sketch is as follows:b. Bit rate per householdThe bit rate per household is 10 Gb/s (given).c. Link power budget calculations and choice of receiverFor link power budget calculations, we need to know the total link loss, which is the sum of the losses in the feeder fiber, splitter(s), and the drop fiber.

The table below summarizes the loss calculation for 1:32 and 1:2 splitter(s) used for this network design:From the above table, we can calculate the total link loss for the network design. For 1:32 splitters:Total loss = Feeder loss + (Splitter loss × Number of splitters) + (Drop loss × Number of households) + Connector loss at receiverTotal loss = 15 + (15 × 2) + (15 × 64) + 1Total loss = 1006 dBF.

To know more about network visit:

https://brainly.com/question/29350844

#SPJ11

For a metal arc-welding operation on carbon steel, if the melting point for the steel is 1800 °C, the heat transfer factor = 0.8, the melting factor = 0.75, melting constant for the material is K-3.33x10-6 J/(mm³.K2). Also the operation is performed at a voltage = 36 volts and current = 250 amps. The unit energy for melting for the material is most likely to be O 10.3 J/mm³ O 10.78 J/mm3 14.3 J/mm3 8.59 J/mm³ The volume rate of metal welded is 377.6 mm³/s 245.8 mm³/s 629.3 mm³/s 841.1 mm³/s

Answers

In a metal arc-welding operation on carbon steel with specific parameters, the most likely unit energy for melting the material is 10.78 J/mm³. The volume rate of metal welded is likely to be 629.3 mm³/s.

To determine the unit energy for melting the material, we need to consider the given parameters. The melting point of the steel is stated as 1800 °C, the heat transfer factor is 0.8, the melting factor is 0.75, and the melting constant for the material is K = 3.33x10-6 J/(mm³.K²). The unit energy for melting (U) can be calculated using the equation: U = K * (Tm - To), where Tm is the melting point of the steel and To is the initial temperature. Substituting the given values, we have U = 3.33x10-6 J/(mm³.K²) * (1800°C - 0°C) = 10.78 J/mm³. Moving on to the volume rate of metal welded, the provided information does not include the necessary parameters to calculate it accurately. The voltage (V) is given as 36 volts, and the current (I) is provided as 250 amps. However, the voltage factor (Vf) and welding speed (Vw) are not given, making it impossible to determine the volume rate of metal welded. In conclusion, based on the given information, the unit energy for melting the material is most likely to be 10.78 J/mm³, while the volume rate of metal welded cannot be determined without additional information.

Learn more about steel here:

https://brainly.com/question/29222140

#SPJ11

A 3-phase, 60 Hz, Y-connected, AC generator has a stator with 60 slots, each slot contains 12 conductors. The conductors of each phase are connected in series. The flux per pole in the machine is 0.02 Wb. The speed of rotation of the magnetic field is 720 RPM. What are the resulting RMS phase voltage and RMS line voltage of this stator? Select one: O a. Vφ = 639,8 Volts and VT = 1108.13 Volts O b. Vφ= 639.8 Volts and VT = 639.8 Volts O c. None O d. Vφ =904.8 Volts and VT = 1567.13 Volts O e. Vφ = 1108.13 Volts and VT = 1108.13 Volts

Answers

A 3-phase, 60 Hz, Y-connected, AC generator has a stator with 60 slots, each slot contains 12 conductors. The conductors of each phase are connected in series.

The flux per pole in the machine is 0.02 Wb. The speed of rotation of the magnetic field is 720 RPM. What are the resulting RMS phase voltage and RMS line voltage of this stator?The RMS phase voltage and RMS line voltage of this stator are  Vφ = 639.8 Volts and VT = 1108.13 Volts.The RMS phase voltage (Vφ) is given by the formula:$$ V_\phi = 4.44 f \phi Z N \div 10^8 $$Here,f = 60 HzZ = 3 (as it is Y-connected)N = 720/60 = 12 slots per second

Now, each slot contains 12 conductors. So, the total number of conductors per pole is given by:$$ q = ZP \div 2 $$where P = number of poles of the generator. Since the generator is a two-pole machine, P = 2.So, $$ q = 60 × 2 ÷ 2 = 60 $$Therefore, the total number of conductors in the machine is 3 × 60 = 180.Now, the flux per pole (Φ) is given as 0.02 Wb.Therefore, the RMS phase voltage is calculated as:$$ V_\phi = 4.44 × 60 × 0.02 × 180 × 12 ÷ 10^8 = 639.8 Volts $$Now, the RMS line voltage (VT) is given by:$$ V_T = \sqrt{3} V_\phi = \sqrt{3} × 639.8 = 1108.13 Volts $$Hence, the resulting RMS phase voltage and RMS line voltage of this stator are  Vφ = 639.8 Volts and VT = 1108.13 Volts.Option A is the correct answer.

To know more about generator  visit:

https://brainly.com/question/12950635

#SPJ11

A standard vapor compression cycle using R134a as the working fluid is used to produce chilled water in an air conditioning plant. The condensing and evaporating temperatures of the cycle are 40°C and -6°C respectively. The chilled, water enters the evaporator at 18°C and leaves at 8° C. The flow rate of chilled water is 0.22 kg/s. The condenser is cooled with water entering at 22° C and leaving at 31 °C. Calculate (i) the flow rate of refrigerant in the cycle, (ii) the flow rate of condenser cooling water, and (iii) COPref.

Answers

The flow rate of refrigerant in the cycle is 0.02 kg/s, the flow rate of condenser cooling water is 0.44 kg/s, and the COPref is 3.5.

The heat load of the evaporator is equal to the mass flow rate of chilled water * the specific heat of water * the temperature difference between the entering and leaving chilled water.

The heat load of the condenser is equal to the mass flow rate of refrigerant * the specific heat of refrigerant * the temperature difference between the entering and leaving refrigerant.

The flow rate of condenser cooling water is calculated by dividing the heat load of the condenser by the specific heat of water and the temperature difference between the entering and leaving condenser cooling water.

The COPref is calculated by dividing the heat load of the evaporator by the power input to the compressor.

The power input to the compressor is calculated by multiplying the mass flow rate of refrigerant by the specific work required to compress the refrigerant.

The specific work required to compress the refrigerant is calculated using the properties of R134a.

The specific heat of water and the specific heat of refrigerant are obtained from standard tables.

The temperature difference between the entering and leaving chilled water is calculated by subtracting the leaving temperature from the entering temperature.

The temperature difference between the entering and leaving condenser cooling water is calculated by subtracting the leaving temperature from the entering temperature.

The mass flow rate of chilled water is given in the problem statement.

Therefore, the flow rate of refrigerant in the cycle, the flow rate of condenser cooling water, and the COPref can be calculated using the above equations.

To learn more about mass flow rate click here : brainly.com/question/30763861

#SPJ11

A measurement system is generally made up of multiple stages. In your own words, please explain what each stage does

Answers

A measurement system typically includes several stages like sensor, signal conditioning, data conversion, data processing, and output. Each stage plays a vital role in converting the physical quantity into a meaningful, readable data.

The sensor stage involves using a device that responds to a physical stimulus (like temperature, pressure, light, etc.) and generates an output which is typically an electrical signal. The signal conditioning stage modifies this signal into a form suitable for further processing. This could include amplification, filtering, or other modifications. The data conversion stage transforms the analog signal into a digital signal for digital systems. The data processing stage involves interpreting this digital data and converting it into a meaningful form. Finally, the output stage presents the final data, this could be in the form of a visual display, sound, or control signal for other devices.

Learn more about measurement systems here:

https://brainly.com/question/29379210

#SPJ11

A rod 12.5 mm in diameter is stretched 3.2 mm under a steady load of 10 kN. What stress would be produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed? The value of E may be taken as 2.1 x 10^5 N/mm².

Answers

The stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Explanation:

The given problem provides information about a rod with a diameter of 12.5 mm and a steady load of 10 kN. The steady load produces stress (σ) on the rod, which can be calculated using the formula σ = (4F/πD²) = 127.323 N/mm², where F is the load applied to the rod. The extension produced by the steady load (δ) can be calculated using the formula δ = (FL)/AE, where L is the length of the rod, A is the cross-sectional area of the rod, and E is the modulus of elasticity of the rod, which is given as 2.1 x 10⁵ N/mm².

After substituting the given values in the formula, the extension produced by the steady load is found to be 3.2 mm. Using the formula, we can determine the length of the rod, which is L = (3.2 x 122.717 x 2.1 x 10⁵)/10,000 = 852.65 mm.

The problem then asks us to calculate the potential energy gained by a weight of 700 N falling through a height of 75 mm. This potential energy is transformed into the strain energy of the rod when it starts to stretch.

Thus, strain energy = Potential energy of the falling weight = (700 x 75) N-mm

The strain energy of a bar is given by the formula, U = (F²L)/(2AE) ... (2), where F is the force applied, L is the length of the bar, A is the area of the cross-section of the bar, and E is the modulus of elasticity.

Substituting the given values in equation (2), we get

(700 x 75) = (F² x 852.65)/(2 x 122.717 x 2.1 x 10⁵)

Solving for F, we get F = 2666.7 N.

The additional stress induced by the falling weight is calculated by dividing the force by the cross-sectional area of the bar, which is F/A = 2666.7/122.717 = 21.73 N/mm².

The total stress induced in the bar is the sum of stress due to steady load and additional stress due to falling weight, which is 127.323 + 21.73 = 149.053 N/mm².

Therefore, the stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Know more about strain energy here:

https://brainly.com/question/32094420

#SPJ11

Methane (CH) is burned with dry air. The volumetric analysis of the products on a dry basis is 5.2% CO2, 0.33% CO, 11.24% O2 and 83.23% N2. Determinem the air-fuel ratio on a mass basis,

Answers

The air-fuel ratio on a mass basis can be calculated by dividing the mass of air to the mass of fuel.

Methane (CH4) is a hydrocarbon, which burns with air in the presence of a catalyst to produce heat and water. The volumetric analysis of the products on a dry basis is 5.2% CO2, 0.33% CO, 11.24% O2 and 83.23% N2. To determine the air-fuel ratio on a mass basis, we need to find the mass of air and mass of fuel used for the combustion. The balanced chemical equation for the combustion of methane is:

[tex]CH4 + 2O2 → CO2 + 2H2O[/tex]

From this equation, we can see that 1 mole of CH4 reacts with 2 moles of O2. The molar masses of CH4 and O2 are 16 g/mol and 32 g/mol, respectively. Therefore, the mass of air required for complete combustion of 1 kg of methane is:

Mass of air =[tex]Mass of O2 + Mass of N2[/tex]
            = (2/1) × 32/1000 + (79/21) × (2/1) × 32/1000
            = 0.0912 kg

The mass of fuel is 1 kg. Hence, the air-fuel ratio on a mass basis is:

Air-fuel ratio = Mass of air/Mass of fuel
                    = 0.0912/1
                    = 0.0912

Therefore, the air-fuel ratio on a mass basis is 0.0912.
The air-fuel ratio on a mass basis is 0.0912.

To know more about air-fuel ratio visit:

brainly.com/question/13123134

#SPJ11

Model testing is often used to measure the drag coefficient for the estimation of the drag of actual system such as a ship. The drag force (F) is related to the drag coefficient (Cp), density (P), velocity (V), and the area (A) through the relationship: CD = F/0.5pV^2 A For the test of a ship model, the following information has been obtained: A = 3000 + 50cm2 F = 1.70 + 0.05kN V = 30.0 + 0.2 m/s p = 1.18 + 0.01kg/m3 Determine the value of Cp and the maximum possible error.

Answers

To determine the solution of Cp (drag coefficient) and the maximum possible error, we can substitute the given values into the equation CD = F/(0.5pV^2A) and perform the necessary calculations.

The drag coefficient is given by:CD

Convert the given values to SI units:

A = (3000 + 50) * 10^(-4) m^2

F = (1.70 + 0.05) * 10^3 N

V = 30.0 + 0.2 m/s

p = 1.18 + 0.01 kg/m^3

Calculate CD using the given formula:

CD = F / (0.5 * p * V^2 * A)

Substituting the values:

CD = [(1.70 + 0.05) * 10^3 N] / [0.5 * (1.18 + 0.01) kg/m^3 * (30.0 + 0.2 m/s)^2 * ((3000 + 50) * 10^(-4) m^2)]

Calculate the maximum possible error:

To find the maximum possible error, we need to consider the uncertainties in the measurements. Let's assume the uncertainties for each variable as follows:

Uncertainty in A: ΔA = 0.05 cm^2

Uncertainty in F: ΔF = 0.01 kN

Uncertainty in V: ΔV = 0.1 m/s

Uncertainty in p: Δp = 0.01 kg/m^3

Using error propagation, we can calculate the maximum possible error in CD:

ΔCD = CD * sqrt((ΔF / F)^2 + (Δp / p)^2 + (2 * ΔV / V)^2 + (ΔA / A)^2)

Substituting the values and uncertainties:

Now, you can calculate the value of Cp by substituting CD in the drag coefficient formula. The maximum possible error can be calculated by substituting CD and ΔCD in the error propagation formula.

To know more about the solution here:

brainly.com/question/30198131

#SPJ11

PROBLEM 3 (10 pts) Predict the dominant type of bonding for the following solid compound by considering electronegativity (a) K and Na :______ (b) Cr and O:_______
(c) Ca and CI:______ (d) B and N:_______ (e) Si and O:_______

Answers

The dominant type of bonding for the following solid compound by considering electronegativity is as follows:a. K and Na: metallic bondingb. Cr and O: ionic bondingc. Ca and Cl: ionic bondingd. B and N: covalent bondinge. Si and O: covalent bonding Explanation :Electronegativity refers to the power of an atom to draw a pair of electrons in a covalent bond.

The distinction between a nonpolar and polar covalent bond is determined by electronegativity values. An electronegativity difference of less than 0.5 between two atoms indicates that the bond is nonpolar covalent. An electronegativity difference of between 0.5 and 2 indicates a polar covalent bond. An electronegativity difference of over 2 indicates an ionic bond.1. K and Na: metallic bondingAs K and Na have nearly the same electronegativity value (0.8 and 0.9 respectively), the bond between them will be metallic.2. Cr and O: ionic bondingThe electronegativity of Cr is 1.66, whereas the electronegativity of O is 3.44.

As a result, the electronegativity difference is 1.78, which implies that the bond between Cr and O will be ionic.3. Ca and Cl: ionic bondingThe electronegativity of Ca is 1.00, whereas the electronegativity of Cl is 3.16. As a result, the electronegativity difference is 2.16, which indicates that the bond between Ca and Cl will be ionic.4. B and N: covalent bondingThe electronegativity of B is 2.04, whereas the electronegativity of N is 3.04. As a result, the electronegativity difference is 1.00, which implies that the bond between B and N will be covalent.5. Si and O: covalent bondingThe electronegativity of Si is 1.9, whereas the electronegativity of O is 3.44.

To know more about electronegativity visit :-

https://brainly.com/question/3393418

#SPJ11

A drive system consists of single strand Roller chain with a * inch pitch running on a 17 tooth drive input sprocket with a speed ratio of 2.7: 1 (The output shaft rotates 2.7 times faster than the input). Use the accepted initial design parameter for roller chains, Center distance D+ (0.5)d Find Required number of teeth on driven sprocket Sprocket pitch diameters (driver and driven) Total Chain Length in inches Chain Velocity in Feet per minute if the drive sprocket is attached to a 3600 rpm three phase electric motor.

Answers

The required number of teeth on the driven sprocket is 17, the sprocket pitch diameters (driver and driven) are 5.411 in, the total chain length in inches is 21.644 in and the chain velocity is 897.3 ft/min.

Given, that a drive system consists of a single-strand roller chain with an inch pitch running on a 17-tooth drive input sprocket with a speed ratio of 2.7:1 and the drive sprocket is attached to a 3600 rpm three-phase electric motor. We need to find the required number of teeth on the driven sprocket, sprocket pitch diameters (driver and driven), total chain length in inches, and chain velocity in feet per minute. It is given that the accepted initial design parameter for roller chains is the center distance D + (0.5)d.

Required number of teeth on the driven sprocket

= N1P1

= N2P2N2

= (N1P1)/P2N2

= (17 × 1)/1N2

= 172

Sprocket pitch diameters Driver pitch diameter

PD1 = (N1 × P)/πPD1

= (17 × 1)/πPD1

= 5.411 in Driven pitch diameter PD2

= (N2 × P)/πPD2

= (17 × 1)/πPD2

= 5.411 in 3.

Total Chain Length in inches

D + (0.5)d = C/2

= (PD1 + PD2)/2

= (5.411 + 5.411)/2

= 5.411 inC

= 2 × D+ (0.5)dC

= 2 × 5.411C

= 10.822 in Total chain length

= 2C + (N2 - N1) × (P/2)

Total chain length

= 2 × 10.822 + (17 - 17) × (1/2)

Total chain length = 21.644 in 4.

Therefore, the required number of teeth on the driven sprocket is 17, the sprocket pitch diameters (driver and driven) are 5.411 in, the total chain length in inches is 21.644 in and the chain velocity is 897.3 ft/min.

To know more about velocity please refer:

https://brainly.com/question/80295

#SPJ11

Kilograms of Saturated water liquid at 200kPa is in a constant pressure piston cylinder. At this state the piston is 0.1 m from the cylinder bottom. The water is heated to occupy 200 times the original volume:
a) initial volume in m3
b) initial temperature in C
c) final volume in m3
d) final quality X2

Answers

To solve the given problem, we can use the properties of saturated water in a constant pressure piston-cylinder system. Here's how we can approach each part of the problem:

a) To find the initial volume, we need to determine the specific volume (v) of saturated water at 200 kPa. The specific volume can be obtained from the saturated water table. Let's assume the initial specific volume is v1.

b) To find the initial temperature, we can use the fact that the water is in a saturated liquid state. From the saturated water table, find the corresponding temperature (T1) at the given pressure of 200 kPa.

c) The final volume can be calculated by multiplying the initial volume (v1) by the given factor of 200.

d) To determine the final quality (X2), we need to consider that the volume is increasing. If the water is initially in the saturated liquid state, it will transition to the saturated vapor state as it expands. Thus, the final quality (X2) will be 1.0, indicating that the water has completely vaporized.

Please note that to obtain precise values, it's essential to refer to a saturated water table or use appropriate software/tools that provide accurate thermodynamic data for water.

To know more about thermodynamic, visit

https://brainly.com/question/1368306

#SPJ11

9. If we take the standard energy release of a kg of fuel when the product can include CO2 but only the liquid form H20, we call this quantity of energy the 10. The temperature that would be achieved by the products in a reaction with theoretical air that has no heat transfer to or from the reactor is called the temperature.

Answers

9. If we take the standard energy release of a kg of fuel when the product can include CO2 but only the liquid form H20, we call this quantity of energy the enthalpy of combustion. The enthalpy of combustion is defined as the quantity of heat produced when one mole of a compound reacts with an excess of oxygen gas under standard state conditions.

10. The temperature that would be achieved by the products in a reaction with theoretical air that has no heat transfer to or from the reactor is called the adiabatic flame temperature. This temperature can be determined using the adiabatic flame temperature equation, which takes into account the enthalpy of combustion of the fuel and the stoichiometry of the reaction.

The adiabatic flame temperature is the maximum temperature that can be achieved in a combustion reaction without any heat transfer to or from the surroundings. In practice, the actual temperature of a combustion reaction is lower than the adiabatic flame temperature due to heat loss to the surroundings.

To know more about temperature, visit:

https://brainly.com/question/7510619

#SPJ11

Other Questions
In the process of filtering and amplifying the ECG, I understand that if I receive power from the power supply, I have to use a notch filter to remove 60Hz noise. Is it appropriate to use a notch filter that removes 60Hz noise even if I receive power from the battery? Stability (3 marks) Explain why the moment of stability (righting moment) is the absolute measure for the intact stability of a vessel and not GZ. In a steady flow combustor, H2 gas (fuel) enters at 25 C and 100 kPa, and is oxidized by O2 gas, entering the combustor at 25 C and 100 kPa. The products contain only H2O (in vapor state) and H2 gas. Products leave at 2000 K and 100 kPa. The oxygen to fuel ratio by mass is,O 1.9O 1.7O 1.5O 1.3O 1.0 In 2040,if our GDP we're $40trillion, estimate our level ofconsumption.Answer : $ billion A certain company contains three balanced three-phase loads. Each of the loads is connected in delta and the loads are:Load 1: 20kVA at 0.85 pf laggingLoad 2: 12kW at 0.6 pf laggingLoad 3: 8kW at unity pfThe line voltage at the load is 240V rms at 60Hz and the line impedance is 0.5 + j0.8 ohms. Determine the line currents and the complex power delivered to the loads. State one possible hypothesis that can explain the global distribution of lactase persistence (lactose tolerance) and lactase nonpersistance (lactose intolerance). Be sure to include the following keywords in your explanation; selection, fitness, survival. 1. The movement of Na+ out of a nerve cell following a depolarization event is? True or False?-True-False2. Which ion channels are open and responsible for membrane rapid repolarization of a nerve fiber?-Na+-K+-Ca++-No answers provided3. Excitatory graded potentials are the results of? -opening of voltage gated sodium channels -opening of receptors operated sodium channels -efflux of potassium through leakage channels -opening of voltage gated chloride channels You currently have $39,471 in an account that pays 5 percent interest. You plan to deposit in this account $3581 at the end of each year until the account reaches $124578. How long would that take? Enter your answer in 4 decimals (e.g. 5.1234). topic is depression among international students. i need answerfor the following headings.conclusionrecommendationsreference list 2. Enterobius vermicularis is infective in___ form and causes ____a. larval; pinwormb. egg; hookwormc. egg; pinworm d.larval; hookworm 3. The reproductive structure of Taenia is a a.hook b.proglottid c. scolex d.heterocyst4. Trichinella spiralis is transmitted bya. ingestion of a cyst b. ingestion of a larvac. ingestion of an egg d.a vector 5. Which type of sample would be used to aid in diagnosis of a Clonorchis infection? a. Fecal smear b.Sputum samplec. Skin scraping d.Blood sample How do you know when you have made a morally good decision? Take the system \( x^{\prime}=10 x^{2}+7 y^{2}+4 x y, \quad y^{\prime}=e^{10 x}+7 y^{2} \) The Jacobian matrix is Why taxonomic nomenclature is important? It provides the unified language for communication about biological diversity. It reflects evolutionary relatedness of taxa. Scientific names often capture important characteristics of the animals. It documents the history of science. All of the above. 15) UTI's with microbial etiology include: A. cystitus. B. Urethritis C. Leptospirosis D. A and B E. A, B and C 16) The cause of gonorrhea is a member of the genus: A. Borrelia B. treponema C. Neisseria D. Mycobacterium E. plasmodium 17) Which antibody is most import in immediate hypersensitivity reactions: A. IgG B. IgM C. IgA D. ISE 18) Which is true. Of. HPV (papillomavirus) A. Only two strains. Effect humans B. It can cause genital warts C. Less than 1% of women are effected D. No vaccine is available 19). Trichomonal. Vaginitis is caused by: A. Yeast B. Bacteria C. Protozoan D. Chlamydia E. A virus 20) Lyme disease A. Is highly contagious B. Early symptoms include rash and flu like symptoms etiology D. Mosquito vector C. Viral problem 1 onlyPROBLEM 1: A car travels a 10-degree inclined road at a speed of 20 ft/s. The driver then applies the break and tires skid marks were made on the pavement at a distance "s". If the coefficient of kinetic friction between the wheels of the 3500-pound car and the road is 0.5, determine the skid mark distance. PROBLEM 2: On an outdoor skate board park, a 40-kg skateboarder slides down the smooth curve skating ramp. If he starts from rest at A, determine his speed when he reaches B and the normal reaction the ramp exerts the skateboarder at this position. Radius of Curvature of the Achondroplasia is caused by mutations in the Fibroblast growth factor receptor 3 gene. It is a disorder of bone growth that prevents the changing of cartilage to bone. O Statement 1 is correct. Statement 2 is incorrect Both statements are incorrect Statement 1 is incorrect. Statement 1 is correct. Both statements are correct Neurofibromatosis 1 is considered an autosomal dominant disorder because the gene is located on the long arm of chromosome 17. It is caused by microdeletion at the long arm of chromosome 17 band 11 sub-band 2 involving the NF1 gene. Both statements are incorrect O Both statements are correct O Statement 1 is correct. Statement 2 is incorrect O Statement 1 is incorrect, statement 2 is correct Genetic disorder is a disease that is caused by an abnormality in an individual's DNA. Range from a small mutation in DNA or addition or subtraction of an entire chromosome or set of chromosomes. O Both statements are correct Statement 1 is correct. Statement 2 is incorrect O Statement 1 is incorrect, statement 2 is correct O Both statements are incorrect. : A total of 500 mm of rain fell on a 75 ha watershed in a 10-h period. The average intensity of the rainfall is: a)500 mm, b) 50mm/h, c)6.7 mm/ha d)7.5 ha/h Identify the correct statement. For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a convergent-divergent nozzle. O A gas can always expand isentropically from subsonic to supersonic speeds, independently of the geometry O For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a convergent nozzle. O For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a divergent nozzle. A proposed approximate velocity profile for a boundary layer is a 3rd order polynomial:, wherea) Determine the skin friction coefficient Cf as a function of the local Reynolds number.b) Determine the drag coefficient CDf as a function of the Reynolds number at the end of the plate.c) Determine the total drag force on both sides of the plate The total microscopic scattering cross-section of a certain element with A= 29 at 1 eV is 24.2 barn while it's scattering microscopic scattering cross-section is 5.7 barn. Estimate the diffusion coefficient of this element at this energy (in cm). Assume the atomic density of 0.08023X10