Standing at a crosswalk, you hear a frequency of 530 Hz from the siren of an approaching ambulance. After the ambulance passes, the observed frequency of the siren is 424 Hz. Determine the ambulance's speed from these observations.

Answers

Answer 1

Answer:

_s = 37.77 m / s

Explanation:

This is an exercise of the Doppler effect that the change in the frequency of the sound due to the relative speed of the source and the observer, in this case the observer is still and the source is the one that moves closer to the observer, for which relation that describes the process is

                    f ’= f₀  [tex]\frac{v}{v - v_s}[/tex]

where d ’= 530 Make

when the ambulance passes away from the observer the relationship is

                    f ’’ = f₀ [tex]\frac{v}{v + v_s}[/tex]

where d ’’ = 424 beam

let's write the two expressions

               f ’ (v-v_s) = fo v

               f ’’  (v + v_s) = fo v

let's solve the system, subtract the two equations

                v (f ’- f’ ’) - v_s (f’ + f ’’) = 0

                v_s = v [tex]\frac{ f' - f''}{ f' + f''}[/tex]

the speed of sound is v = 340 m / s

let's calculate

                 v_s = 340 [tex](\frac{ 530 -424}{530+424} )[/tex]

                 v_s = 340 [tex](\frac{106}{954}[/tex])

                  v_s = 37.77 m / s


Related Questions

Which is an example of kinetic energy?

A. The energy stored in
ethanol

B. A ball sitting at the top of a ramp

C. A compressed spring

D. A hockey puck sliding across ice

Answers

D . A hockey puck sliding across ice

D. A hockey puck sliding across ice

Which statement is correct?
A. If the electric field is zero everywhere inside a region of space, the potential must also be zero in that region.
B. When the electric field is zero at a point, the potential must also be zero there.
C. If the electrical potential in a region is constant, the electric field must be zero everywhere in that region.
D. If the electric potential at a point in space is zero, then the electric field at that point must also be zero.

Answers

Answer:

The answer is "Choice C ".

Explanation:

The relationship between the E and V can be defined as follows:

[tex]\to E= -\Delta V[/tex]

Let,

[tex]\to E= \frac{\delta V}{\delta x}[/tex]

When E=0

[tex]\to \frac{\delta V}{\delta x}=0[/tex]

v is a constant value

Therefore, In the electric potential in a region is a constant value then the electric-field must be into zero that is everywhere in the given region, that's why in this question the "choice c" is correct.

QUCIK!! SOMEONE PLEASE HELP! I’LL MARK BRAINLIEST!!

Answers

Answer:

A. v = √2gh

B. No! The final velocity does not depend on the mass of the car.

C. Yes! the final velocity depends on the steepness of the hill

D. 3.28 m/s

Explanation:

A. Determination of the final velocity.

½mv² = mgh

Cancel out m

½v² = gh

Cross multiply

v² = 2gh

Take the square root of both side

v = √2gh

B. Considering the formula obtained for the final velocity i.e

v = √2gh

We can see that there is no mass (m) in the formula.

Thus, the final velocity does not depend on the mass of the car.

C. Considering the formula obtained for the final velocity i.e

v = √2gh

We can see that there is height (h) in the formula.

Thus, the final velocity depends on the steepness of the hill

D. Determination of the final velocity.

Height (h) = 0.55 m

Acceleration due to gravity (g) = 9.8 m/s²

Velocity (v) =?

v = √2gh

v = √(2 × 9.8 × 0.55)

v = √10.78

v = 3.28 m/s

A particle move in the xy plane so that its position vector r=bcosQi +bsinQj+ ctk, where b, Q and c are constants. show that the partial move with constant speed.​

Answers

Answer:

The speed of this particle is constantly [tex]c[/tex].

Explanation:

Position vector of this particle at time [tex]t[/tex]:

[tex]\displaystyle \mathbf{r}(t) = b\, \cos(Q)\, \mathbf{i} + b\, \sin(Q) \, \mathbf{j} + c\, t\, \mathbf{k}[/tex].

Write [tex]\mathbf{r}(t)[/tex] as a column vector to distinguish between the components:

[tex]\mathbf{r}(t) = \begin{bmatrix}b\, \cos(Q) \\ b\, \sin(Q) \\ c\, t\end{bmatrix}[/tex].

Both [tex]b[/tex] and [tex]Q[/tex] are constants. Therefore, [tex]b\, \cos(Q)[/tex] and [tex]b \sin (Q)[/tex] would also be constants with respect to [tex]t[/tex]. Hence, [tex]\displaystyle \frac{d}{dt}[b\, \cos(Q)] = 0[/tex] and [tex]\displaystyle \frac{d}{dt}[b\, \sin(Q)] = 0[/tex].

Differentiate [tex]\mathbf{r}(t)[/tex] (component-wise) with respect to time [tex]t[/tex] to find the velocity vector of this particle at time [tex]t\![/tex]:

[tex]\begin{aligned}\mathbf{v}(t) &= \frac{\rm d}{{\rm d} t} [\mathbf{r}(t)] \\ &=\frac{\rm d}{{\rm d} t} \left(\begin{bmatrix}b\, \cos(Q) \\ b\, \sin(Q) \\ c\, t\end{bmatrix}\right) \\ &= \begin{bmatrix}\displaystyle \frac{d}{dt}[b\, \cos(Q)] \\[0.5em] \displaystyle \frac{d}{dt}[b\, \sin(Q)]\\[0.5em]\displaystyle \frac{d}{dt}[c \cdot t]\end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ c\end{bmatrix}\end{aligned}[/tex].

The speed [tex]v[/tex] (a scalar) of a particle is the magnitude of its velocity :

[tex]\begin{aligned}v(t) &= \| \mathbf{v}(t) \| \\ &= \left\|\begin{bmatrix}0 \\ 0 \\ c\end{bmatrix}\right\| \\ &= \sqrt{0^2 + 0^2 + c^2} = c\end{aligned}[/tex].

Therefore, the speed of this particle is constantly [tex]c[/tex] (a constant.)

- .
?



y

(っ◔◡◔)っ ♥ chose the answer with the question marks ♥

Answers

Answer:

okay I'm a bit confused but I like the little emoji dudw

Answer:

?

Explanation:

.

Which statement best compares potential and kinetic energy?
O Objects always have more potentiał energy than kinetic energy.
O Kinetic energy increases and potential energy decreases when the velocity of an object increases
O Only potential energy decreases when an object's height increases.
O Objects always have more kinetic energy than potential energy.

Answers

Answer:

Kinetic energy increases and potential energy decrease when velocity of an object increase.

Please help 25 points!

Three waves with frequencies of 1 Hertz (Hz), 3 Hz, and 9Hz travel at the same speed. Which of the following statements is correct?

A. The 1 Hz wave contains the most energy.

B. The crests of all three waves are of equal height.

C. The wavelength of the 9Hz wave is three times that of the 3 Hz wave.

D. The 1 Hz wave has the longest wavelength.

Answers

Answer:

B

Explanation:

The crest of all three waves are of equal height

List down the types of centripetal force?

Answers

Answer: Just a few examples are the tension in the rope on a tether ball, the force of Earth's gravity on the Moon, friction between roller skates and a rink floor, a banked roadway's force on a car, and forces on the tube of a spinning centrifuge. Any net force causing uniform circular motion is called a centripetal force.

Answer:

roller skates and a rink floor, a banked roadway's force on a car, and forces on the tube of a spinning centrifuge

Explanation:

What is the acceleration of a car that goes from 0 MS to 60 MS and six seconds

Answers

a = Δv/Δt
a = v2-v1/t2-t1
a = 60MS - 0MS / 6 seconds
a = 60 MS/ 6 seconds
a = 10 m/s^2

Calculate the magnitude of the gravitational force exerted by Mercury on a 70 kg human standing on the surface of Mercury. (The mass of Mercury is 3.31023 kg and its radius is 2.4106 m.)

Answers

Answer:

2.66×10⁻⁹ N.

Explanation:

From the question,

Applying newton's law of universal gravitation,

Fg = GMm/r²............................... Equation 1

Where Fg = gravitational force, G = universal constant, M = mass of the mercury, m = mass of the human, r = radius of Mercury

Given: M = 3.31023 kg, M = 70 kg, r = 2.4106

Constant: G = 6.67×10⁻¹¹ Nm²/kg²

Substitute these values into equation 1

Fg = 6.67×10⁻¹¹(70×3.31023)/(2.4106²)

Fg = 2.66×10⁻⁹ N.

A storage tank has the shape of an inverted circular cone with height 12 m and base radius of 4 m. It is filled with water to a height of 10 m. Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is 1000 kg/m3. Assume g

Answers

Answer:

Work required to empty the tank by pumping all of the water to the top of the tank = 1674700 Kgm/s^2

Explanation:

Volume of Circular cone = V = (1/3)πr2h

where r is the radius in meters

and h is the height in meters

Substituting the given values in above equation, we get -

V = [tex]\frac{1}{3} * 3.14 * 4^2 * 10 = 167.47[/tex] cubic  meters.

The force required will be equal to the mass of water in the cone

[tex]= 167.47 * 1000[/tex]

= 167470 Kg

Weight = Mass * g

= 167470 * 10

= 1674700 Kgm/s^2

If you have a 0.125 kg lead piece at
20.0°C, how much heat must you
add to melt it? (Remember, you
must warm it to its melting point
first.)
Material
Lead
Melt Pt (°C)
327
L (1/kg)
2.32.104
Boil Pt (°C) Lv (1/kg)
1750 8.59.105
c (1/(kg*c)
128
(Unit = J)

Answers

Answer:

7,812 J

Explanation:

Using the relation:

Q = mcΔθ

Q = quantity of heat

C = specific heat capacity of lead

Δθ = temperature change (T2 - T1)

M = mass of substance

Q = mass * specific heat * Δθ

Q = 0.125kg * 128 * (327 – 20)

Q = 0.125 * 128 * 307

Q = 4912 J

For melting:

Q = mass * Hf

0.125 * (2.32 * 10^4)

= 2,900 J

Total = 4,912 J + 2,900 J = 7,812 J

The current flow in the light bulb is 0.5A
a.Calculate the amount of electric charge that flow through the bulb in 2 hour
b.If one election carries a
charge 1.6 x 10-14 c Find the number of election through the bulb in 2 hour?

Answers

Answer:

Explanation:

Given that,

The current in the light bulb, I = 0.5 A

(a) We know that,

Electric current = charge/time

or

Q = It

Put t = 2 hours = 7200 s

So,

Q = 0.5 × 7200

Q = 3600 C

(b) Charge on one electron, [tex]Q=1.6\times 10^{-19}\ C[/tex]

Let there are n electrons flow through the bulb in 2 hours.

I = Q/t

Since, Q = ne

So,

I = ne/t

[tex]n=\dfrac{I\times t}{e}\\\\n=\dfrac{0.5\times 7200}{1.6\times 10^{-19}}\\\\n=2.25\times 10^{22}[/tex]

Hence, this is the required solution.

If the diameter of a moose eye is 40 mm, what is the total refractive power of the anterior portion of the eye?

Answers

Answer:

-the ratio of the speed of light

in air to the speed of light in the substance.

-speed of light in air 300,000 km/sec, which decreases when it passes through a transparent substance.

-e.g.. speed of light in substance = 200,000 km/sec, R.I. = 300,000/200,000 = 1.5

Explanation:

Two identical conducting spheres are placed with their centers 0.30 m apart. One is given a charge of 12 X10^-9 C and the other is given a charge of -18 X 10^-9 C. a. Find the electric force exerted on one sphere by the other. b. The sphere are connected by a conducting wire. After equilibrium has occurred, find the electric force between the two spheres.

Answers

Answer:

Explanation:

Force between two charged conducting sphere

= k x Q₁ x Q₂ / r² ,  k is a constant  Q₁ and Q₂ are charges and   r is distance between them .

= 9 x 10⁹ x 12 x 10⁻⁹ x 18 x 10⁻⁹ / .30²

= 21600 x 10⁻⁹

= 2.16 x 10⁻⁵ N .

b )

After the spheres are joined together , there is redistribution of charge and remaining charge will be equally shared by them .

Charge on each sphere = (12 - 18 ) x 10⁻⁹ / 2

= - 3 x 10⁻⁹ C .

Force = 9 x 10⁹ x 3 x 10⁻⁹ x 3 x 10⁻⁹ / .30²

= 900 x 10⁻⁹ N .

Given that Carbon-14 has a half-life of 5700 years, determine how long it would take for
this reduction to occur.

Answers

Answer:It will take about 3000 years

Explanation:

An object is dropped from a bridge. A second object is thrown downwards 1.0 s later. They both reach the water 20 m below at the same instant. What was the initial speed of the second object? Neglect air resistance.

Answers

Answer:

Explanation:
Kinematics equation for first Object:

but:
The initial velocity is zero

it reach the water at in instant, t1, y(t)=0:


Kinematics equation for the second Object:
The initial velocity is zero

but:

it reach the water at in instant, t2, y(t)=0. If the second object is thrown 1s later, t2=t1-1=1.02s


The velocity is negative, because the object is thrown downwards

Flying insects such as bees may accumulate a small positive electric charge as they fly. In one experiment, the mean electric charge of 50 bees was measured to be +(30±5)pC+(30±5)pC per bee. Researchers also observed the electrical properties of a plant consisting of a flower atop a long stem. The charge on the stem was measured as a positively charged bee approached, landed, and flew away. Plants are normally electrically neutral, so the measured net electric charge on the stem was zero when the bee was very far away. As the bee approached the flower, a small net positive charge was detected in the stem, even before the bee landed. Once the bee landed, the whole plant became positively charged, and this positive charge remained on the plant after the bee flew away. By creating artificial flowers with various charge values, experimenters found that bees can distinguish between charged and uncharged flowers and may use the positive electric charge left by a previous bee as a cue indicating whether a plant has already been visited (in which case, little pollen may remain). What is the best explanation for the observation that the electric charge on the stem became positive as the charged bee approached (before it landed)?
(a) Because air is a good conductor, the positive charge on the bee’s surface flowed through the air from bee to plant.
(b) Because the earth is a reservoir of large amounts of charge, positive ions were drawn up the stem from the ground toward the charged bee.
(c) The plant became electrically polarized as the charged bee approached.
(d) Bees that had visited the plant earlier deposited a positive charge on the stem.

Answers

Answer:

a) True

Explanation:

There are several possible explanations for this positive charge

* The explanation of the small positive charge in the plant when the bee approaches is like a defense system of the plants,

to prevent the bees from taking the pollen, but the flowers need the bees to transport the pollen for fertilization, so this possibility is not correct

* The air is conductive so the bee indexes a charge in the nearby air, this charge must be negative and this charge induced in the air induces a charge on the flower that must be positive.

When reviewing the different statements we have

a) True, it agrees with the second explanation of the phenomenon

b) False. The earth is a deposit of negative charge

c) false. If this is the case the charge should be negative

d) False. This residual charge from the other bees is quickly neutralized by the charge from the Earth.

Answer:

Explanation:

.

Help plsssssssssss I write it 100 time no one answer

Answers

Answer:

1.93×10²⁸ s

Explanation:

From the question given above, the following data were obtained:

Number of electron (e) = 2×10²⁴

Current (I) = 10 A

Time (t) =?

Next, we shall determine the quantity of electricity flowing through pasing through the point. This can be obtained as follow:

1 e = 96500 C

Therefore,

2×10²⁴ e = 2×10²⁴ e × 96500 / 1 e

2×10²⁴ e = 1.93×10²⁹ C

Thus, 1.93×10²⁹ C of electricity is passing through the point.

Finally, we shall determine the time. This can be obtained as follow:

Current (I) = 10 A

Quantity of electricity = 1.93×10²⁹ C

Time (t) =?

Q = it

1.93×10²⁹ = 10 × t

Divide both side by 10

t = 1.93×10²⁹ / 10

t = 1.93×10²⁸ s

Thus, it took 1.93×10²⁸ s for 2×10²⁴ electrons to pass through the point

A student is conducting an experiment to compare the resistivity of two unknown materials by using two wires, each made of one of the materials and each connected in a circuit. The student measures the potential difference across and current in the wires. What must be the same to be able to compare the resistivities using just the potential difference and current measurements?

Answers

Answer:

is there a. b.  c  or d?

Explanation:


2. Using a giant screw, a crew does 650 J of work to drill a hole into a rock.
The screw does 65 J of work. What is the efficiency of the screw? Show your
work. Hellpppp

Answers

yeah un jsjsjsjjsos isnsisoowam

Answer:

42,250

Explanation:

It goes inside=

Displacemt

It does work=

Work done

To find efficiency of jule we do=

Dicplacement × Work done

650 × 65

42,250

Please mark me as a brainlist

You are standing on the bottom of a lake with your torso above water. Which statement is correct?

a. You feel a buoyant force only when you momentarily jump up from the bottom of the lake.
b. There is a buoyant force that is proportional to the weight of your body below the water level.
c. There is a buoyant force that is proportional to the volume of your body that is below the level of the water.
d. There is no buoyant force on you since you are supported by the lake bottom.

Answers

Answer:

c. There is a buoyant force that is proportional to the volume of your body that is below the level of the water.

Explanation:

Buoyancy can be defined as a force which is created by the water displaced by an object.

Simply stated, buoyancy is directly proportional to the amount of water that is being displaced by an object.

Hence, the greater the amount of water an object displaces; the greater is the force of buoyancy pushing the object up.

The buoyancy of an object is given by the formula;

[tex] Fb = pgV [/tex]

[tex] But, \; V = Ah [/tex]

[tex] Hence, \; Fb = pgAh [/tex]

Where;

Fb = buoyant force of a liquid acting on an object.

g = acceleration due to gravity.

p = density of the liquid.

v = volume of the liquid displaced.

h = height of liquid (water) displaced by an object.

A = surface area of the floating object.

The unit of measurement for buoyancy is Newton (N).

In this scenario, you are standing on the bottom of a lake with your torso above water. Thus, there is a buoyant force that is proportional to the volume of your body that is below the level of the water.

A 450.0 kg roller coaster is traveling in a circle with radius 15.0m. Its speed at point A is 28.0m/s and its speed at point B is 14.0 m/s. At point A the cart is already moving with circular motion. a) Draw free bodydiagramsfor the cartatpointsAand B(two separate free body diagrams). b) Calculate the acceleration of the cartat pointsAandB(magnitude and direction). c) Calculate the magnitude of the normal force exerted by the trackson the cartat point A. d) Calculate the magnitude of the normal force exerted by the tracks on the cart at point B.

Answers

Answer:

b)  a = 52.26 m / s², a ’= 13.06 m / s², c) N = 2.79 10⁴ N, d) N = 1.89 10³ N

Explanation:

a) In the attached we can see the free body diagrams for the two positions, position A in the lower part of the circle and position B in the upper part of the circle

b) Let's start at point A

Let's use that the acceleration is centripetal

           a = v² / r

let's calculate

            a = 28² / 15.0

            a = 52.26 m / s²

as they relate it is centripetal it is directed towards the center of the circle, therefore for this point it is directed vertically upwards

Point B

           a ’= 142/15

           a ’= 13.06 m / s²

in this case the acceleration is vertical downwards

c) The values ​​of the normal force

point A

let's use Newton's second law

           ∑ F = m a

           N- W = m a

           N = mg + ma

           N = m (g + a)

           N = 450.0 (9.8 + 52.25)

           N = 2.79 10⁴ N

d) Point B

            -N -W = m (-a)

             N = ma -m g

             N = m (a-g)

             N = 450.0 (14.0 - 9.8)

             N = 1.89 10³ N

39. What is the change in momentum for a 5,000 kg ship in

outer space that experiences no net force over a 1 hr

period?

Answers

Answer:

Change in momentum is zero.

Explanation:

The following data were obtained from the question:

Mass (m) = 5000 kg

Time (t) = 1 h

Net force (F) = 0

Change in momentum =?

Force = Rate of change of momentum

0 = change in momentum

Change in momentum = 0

We can see from the above illustration that the net force is zero. Thus, the change in momentum is also zero.

A soccer ball was kicked over the edge of a wall and traveled 35 m horizontally at a speed of 5.6m/s. Calculate the vertical height of the wall.

Answers

Answer:

Are you sure it was soccer ball? Or meine hearts

Explanation:

The masses of astronauts are monitored during long stays in orbit, such as when visiting a space station. The astronaut is strapped into a chair that is attached to the space station by springs and the period of oscillation of the chair in a friction-less track is measured.
(a) The period of oscillation of the 10.0 kg chair when empty is 0.750 s. What is the effective force constant of the springs?
(b) What is the mass of an astronaut who has an oscillation period of 2.00 s when in the chair?
(c) The movement of the space station should be negligible. Find the maximum displacement of the 100,000 kg sace station if the astronaut's motion has an amplitude of 0.100 m.

Answers

Answer:

a)  k = 701.8 N / m, b)  m_{ast} = 61.1 kg, c)  v ’= -1.3 10⁻⁴ m / s

Explanation:

a) For this exercise let's use the relationship of the angular velocity

         w = [tex]\sqrt{ \frac{k}{m} }[/tex]

          k = w² m

the angular velocity is related to the period

          w = 2π / T

we substitute

          k = 4 π²    [tex]\frac{m}{T^2}[/tex]

let's calculate

          k = 4 π²   10 /0.75²

          k = 701.8 N / m

b) now repeat the measurement with an astronaut on the chair

         w = [tex]\sqrt{ \frac{k}{m} }[/tex]

where the mass Month the mass of the chair plus the mass of the astronaut

        M = m + [tex]m_{ast}[/tex]

       

          M = k / w²

          w = 2π / T

let's calculate

           w = 2π / 2

            w = π rad / s

           

            M = 701.8 /π²

            M = 71,111 kg

now we use that

          M = m + m_{ast}

          m_{ast} = M - m

          m_{ast} = 71.111 - 10.0

          m_{ast} = 61.1 kg

c) if the astronaut's movement is simple harmonic

          x = A cos wt

therefore the speed is

         v = [tex]\frac{dx}{dt}[/tex]

         v = -Aw sin wt

maximum speed is

          v = - Aw

          v = 0.100 π

          v = 0.31416 m / s

we can suppose that the movement of the space station and the astronaut  is equivalent to division of the same

         

initial instant. Before the move

         p₀ = 0

final instant. When the astronaut is moving

        p_f = M_station v’+ m_{ast} v

the moment is preserved

         p₀ = pf

         0 = M__{station} v ’+ m_{ast} v

         v ’= - [tex]\frac{m_{ast} }{M_{station} } \ v[/tex]

we substitute

         v ’= [tex]\frac{61.1 }{ 100000 } \ 0.31416[/tex]

         v ’= -1.3 10⁻⁴ m / s

the negative sign indicates that the station is moving in the opposite direction from the astronaut

how many pennies can 4 folds of a paper hold?

Answers

A lot I don’t really under stand the question

A solar panel is used to collect energy from the sun and change it into other forms of energy. The picture below shows some solar panels on the roof of a building. Which form of energy to collected by the solar panels?

A. Wind

B. sound

C. Magnetic

D. Light

Answers

C I’m pretty sure!!!!!

You and a friend each hold a lump of wet clay. Each lump has a mass of 30 grams. You each toss your lump of clay into the air, where the lumps collide and stick together. Just before the impact, the velocity of one lump was < 3, 3, -3 > m/s, and the velocity of the other lump was < -4, 0, -4 > m/s. What is the velocity of the stuck-together lump just after the collision

Answers

Answer:

[tex]<-0.5, 1.5, -3.5>\ \text{m/s}[/tex]

Explanation:

[tex]u_1[/tex] = Velocity of one lump = [tex]3x+3y-3z[/tex]

[tex]u_2[/tex] = Velocity of the other lump = [tex]-4x+0y-4z[/tex]

m = Mass of each lump = [tex]30\ \text{g}[/tex]

The collision is perfectly inelastic as the lumps stick to each other so we have the relation

[tex]mu_1+mu_2=(m+m)v\\\Rightarrow m(u_1+u_2)=2mv\\\Rightarrow v=\dfrac{u_1+u_2}{2}\\\Rightarrow v=\dfrac{3x+3y-3z-4x+0y-4z}{2}\\\Rightarrow v=-0.5x+1.5y-3.5z=<-0.5, 1.5, -3.5>\ \text{m/s}[/tex]

The velocity of the stuck-together lump just after the collision is [tex]<-0.5, 1.5, -3.5>\ \text{m/s}[/tex].



help please i will mark brainlist!!!

Answers

Answer:

.50 M

Explanation:

5*.50=2.5 + 2*.25=.5 = 3n

6*.50= 3N

Final answer is .50M

Other Questions
factor of 9x2 18x + 8?Factor of 9x^2-18x+8 Know what atomic mass and atomic number represent How do I simplify fractions ? Bob wants to buy a TV that costs $100. He plans to save $5 per week. How many weeks w will it take Bob to save $100? Which of the following planets could be accurately described as rocky, terrestrial, and relatively close to the Sun?AJupiterBNeptuneCMarsDSaturn Which apparatus allows us to appreciate the cell internal structures more clearly? 3. Find the rule for the functiontable. 4 = ? How did the Schenck v. United States case impact us? WHAT IS A PLAGUE? WHAT CAUSES A PLAGUE? full sentences please Sidebar 4 suggests that A Earharts main focus was on flying her airplane, instead of eating B Earhart did not plan for the flight to take as long as it did C Earhart ate big meal before taking off from Canada D Earhart could not bring many items with her onto the airplane A student is studying the levels of organization in living things and creates a table to give examples of the different levels.Which of these should the student write as an example of the organism level of organization?A. sparrowB. stomachC. muscle tissue D. culture of bacteria Liliana and Marcus are playing a word game. Liliana spells a word incorrectly and loses 18 points. Then Marcusspells a word correctly and has the opposite score. Which is the correct way to represent the opposite ofLiliana's score is equal to Marcus's score"?0 -18-18O-(-18) --18-(18) --18-(-18) - 18 relate diffusion and equilibruim 25 POINTS RNNow, choose one of the qualities you selected. In one or two sentences, explain why it's an important part of leadership. Metals are amazing, and they are all around us. You can probably easily identify them by their shiny surfaces and tinny sound when you tap them.a. Trueb. False What did Peter the Great build? And why? what are the desirable properties of base period respond if you got a min to help me with my problem if x stands for am number what is the mathematical phrase that represents three more than the number (3.2 + 6.8)x - (36 divided by 4)x PLEASE HELPPP