Solve the polynomial inequality and graph the solution set on a real number line Express the solution set in interval notation. 7x≤20-3x²2 Use the inequality in the form fix) ≤0 to write the open

Answers

Answer 1

The solution set in interval notation is: (-∞, -10] ∪ [-10, 4/3] .To solve the polynomial inequality 7x ≤ 20 - 3x²/2, we can start by rearranging the inequality: 3x²/2 + 7x - 20 ≤ 0

Now, let's find the critical points of the polynomial by setting it equal to zero: 3x²/2 + 7x - 20 = 0

Multiplying the equation by 2 to eliminate the fraction, we get:3x² + 14x - 40 = 0

Now we can factor or use the quadratic formula to solve for x. Factoring this quadratic equation gives us:(3x - 4)(x + 10) = 0

Setting each factor equal to zero:3x - 4 = 0   or   x + 10 = 0

Solving these equations, we find:x = 4/3   or   x = -10

These are the critical points of the polynomial.

Next, we create a number line and plot the critical points:

---------------------o------o---------------------

-10              4/3

Now we test the polynomial's sign in each interval:

For x < -10, we choose a test point less than -10, let's say x = -11:

3(-11)²/2 + 7(-11) - 20

= 181/2 - 77 - 20

= 42.5 - 77 - 20

= -54.5

Since the result is negative, the polynomial is negative in this interval.

For -10 < x < 4/3, we choose a test point between -10 and 4/3, let's say x = 0:

3(0)²/2 + 7(0) - 20 = -20

Since the result is negative, the polynomial is negative in this interval as well.For x > 4/3, we choose a test point greater than 4/3, let's say x = 2:

3(2)²/2 + 7(2) - 20 = 16

Since the result is positive, the polynomial is positive in this interval.

Therefore, the solution set in interval notation is:

(-∞, -10] ∪ [-10, 4/3]

To know more about Polynomial inequality visit-

brainly.com/question/29068785

#SPJ11


Related Questions

Q.2 Solve x² y" - 3xy' + 3y = 2x²ex.
Q.2 Solve x² y" - 3xy' + 3y = 2x²ex.
Q.1 The function y₁ = ex is the solution of y" - y = 0 on the interval (-[infinity], +[infinity]). Apply an appropriate method to find the second solution y2

Answers

To find the second solution of the given differential equation x²y" - 3xy' + 3y = 2x²ex, we can use the method of variation of parameters. Assuming the second solution in the form of y₂ = u(x)ex, we differentiate y₂ to find y₂' and y₂", substitute them into the original differential equation, and simplify. This leads to a differential equation for u(x), which can be solved using appropriate methods. Once we find u(x), the second solution y₂ is determined as y₂ = u(x)ex.

To find the second solution, we can use the method of variation of parameters. Since y₁ = ex is a solution of the homogeneous equation y" - y = 0, we assume a second solution in the form of y₂ = u(x)ex, where u(x) is an unknown function to be determined. We differentiate y₂ to find y₂' and y₂":

y₂' = u'(x)ex + u(x)ex

y₂" = u''(x)ex + 2u'(x)ex + u(x)ex

Substituting y₂, y₂', and y₂" into the original differential equation, we obtain:

x²(u''(x)ex + 2u'(x)ex + u(x)ex) - 3x(u'(x)ex + u(x)ex) + 3u(x)ex = 2x²ex

Simplifying and rearranging terms, we have:

x²u''(x)ex + (2x² + 2x)u'(x)ex + (x² - 3x + 3)u(x)ex = 2x²ex

To find u(x), we equate the coefficient of ex on both sides of the equation. We obtain the following differential equation for u(x):

x²u''(x) + (2x² + 2x)u'(x) + (x² - 3x + 3)u(x) = 2x²

We can now solve this second-order linear non-homogeneous differential equation for u(x) using appropriate methods such as the method of undetermined coefficients or variation of parameters. Once we find u(x), the second solution y₂ can be determined as y₂ = u(x)ex.

Visit here to learn more about coefficient:

brainly.com/question/1038771

#SPJ11

Suppose that the average height of men in America is approximately normally distributed with mean 74 inches with standard deviation of 3 inches What is the probability that a man from America, cho sen at random will be below 64 inches tall

Answers

The probability that a randomly chosen man from America is below 64 inches tall is 0.1587.

The normal distribution is a bell-shaped curve that is symmetrical around the mean. The standard deviation is a measure of how spread out the data is. In this case, the standard deviation of 3 inches means that 68% of American men have heights that fall within 1 standard deviation of the mean (between 71 and 77 inches). The remaining 32% of men have heights that fall outside of this range. 16% of men are shorter than 71 inches, and 16% of men are taller than 77 inches.

A man who is 64 inches tall is 2 standard deviations below the mean. This means that he falls in the bottom 15.87% of the population. In other words, there is a 15.87% chance that a randomly chosen man from America will be below 64 inches tall.

To learn more about standard deviation here brainly.com/question/13498201

#SPJ11

Let P(Z)=0.43, P(Y)=0.33, and P(ZAY)=0.16. Use a Venn diagram to find (a) P(ZOY'). (b) P(Z UY) (c) P(ZUY) and (d) P(ZnY'). (a) P(Z'NY!) - (Type an integer or a decimal)

Answers

The probability of given values: (a) P(ZOY') = 0.27 (b) P(Z U Y) = 0.60 (c) P(ZUY) = 0.60 (d) P(ZnY') = 0.10.

To find the value of P(ZOY'), we can subtract the probability of the intersection of Z and Y from the probability of Z:

P(ZOY') = P(Z) - P(Z ∩ Y)

Given that P(Z) = 0.43 and P(Z ∩ Y) = 0.16, we can substitute these values into the equation:

P(ZOY') = 0.43 - 0.16 = 0.27

Therefore, P(ZOY') is equal to 0.27.

(b) P(Z U Y) can be found by adding the probabilities of Z and Y and subtracting the probability of their intersection:

P(Z U Y) = P(Z) + P(Y) - P(Z ∩ Y)

Given that P(Z) = 0.43, P(Y) = 0.33, and P(Z ∩ Y) = 0.16, we can substitute these values into the equation:

P(Z U Y) = 0.43 + 0.33 - 0.16 = 0.60

Therefore, P(Z U Y) is equal to 0.60.

(c) P(ZUY) is the probability of the union of Z and Y, which is the same as P(Z U Y). So, P(ZUY) is also equal to 0.60.

(d) P(ZnY') represents the probability of the intersection of Z and the complement of Y. To find this value, we subtract the probability of Y from the probability of Z:

P(ZnY') = P(Z) - P(Y)

Given that P(Z) = 0.43 and P(Y) = 0.33, we can substitute these values into the equation:

P(ZnY') = 0.43 - 0.33 = 0.10

Therefore, P(ZnY') is equal to 0.10.

To know more about probability,

https://brainly.com/question/29685959

#SPJ11

Two buses leave a station at the same time and travel in opposite directions. One bus travels 18 km- h faster than other. if the two buses are 890 kilometers apart after 5 hours, what is the rate of each bus?

Answers

The rate of the slower bus is 80 km/h, and the rate of the faster bus is 80 + 18 = 98 km/h.

We have,

Let's denote the rate of the slower bus as x km/h.

Since the other bus is traveling 18 km/h faster, its rate would be x + 18 km/h.

The distance traveled by the slower bus in 5 hours would be 5x km, and the distance traveled by the faster bus in 5 hours would be 5(x + 18) km.

Since they are traveling in opposite directions, the total distance between them is the sum of the distances traveled by each bus:

5x + 5(x + 18) = 890

Now, let's solve this equation to find the rate of each bus:

5x + 5x + 90 = 890

10x + 90 = 890

10x = 800

x = 80

Thus,

The rate of the slower bus is 80 km/h, and the rate of the faster bus is 80 + 18 = 98 km/h.

Learn more about speed here:

https://brainly.com/question/7359669

#SPJ1

Write the system of linear equations represented by the
augmented matrix to the right. Use x, y, and z for the
variables.

7 0 4 | -14
0 1 -4 | 13
5 2 0 | 6

Write the equation represented by the first row.
Write the equation represented by the second row.
Write the equation represented by the third row.

Answers

The given augmented matrix represents a system of linear equations. The equations represented by the rows are as follows: 7x + 0y + 4z = -140, 1x - 4y + 0z = 135, and 2x + 0y + 0z = 6.

The given augmented matrix is:

[7 0 4 | -140]

[1 -4 0 | 135]

[2 0 0 | 6]

To convert the augmented matrix into a system of linear equations, we consider each row separately.

The first row represents the equation 7x + 0y + 4z = -140. This equation shows that the coefficient of x is 7, the coefficient of y is 0 (implying that y is not present in the equation), and the coefficient of z is 4. The right side of the equation is -140.

The second row represents the equation 1x - 4y + 0z = 135. Here, the coefficient of x is 1, the coefficient of y is -4, and the coefficient of z is 0. The right side of the equation is 135.

The third row represents the equation 2x + 0y + 0z = 6. In this equation, the coefficient of x is 2, while y and z are not present (having coefficients of 0). The right side of the equation is 6.

By writing out these equations, we can analyze the system and solve for the variables x, y, and z if needed.

Learn more about coefficient here:

https://brainly.com/question/29993529

#SPJ11

Complete the following the integrals _
a) fn dx I
b) fx dx _
c) fex dx _
d) fbx dx _
e) f/ dx
f) f sin x dx
g) f cos x dx
h) ftan x dx _
i) f cotx dx
j) f secx dx _
k) fcscx dx _
I) √ √ ¹2 dx √1-x _
m) Sdx 1+x² _
n) Sdx

Answers

The given set of problems involves evaluating various indefinite integrals. Each integral represents the antiderivative of a specific function or expression. We will provide a brief explanation for each integral.

a) ∫fn dx: The integral of the function fn with respect to x requires knowing the specific form of the function to evaluate it.

b) ∫fx dx: Similar to the previous integral, the evaluation of this integral depends on the specific form of the function fx.

c) ∫ex dx: The integral of the exponential function ex is simply ex + C, where C is the constant of integration.

d) ∫fbx dx: To evaluate this integral, we need to know the specific form of the function fbx.

e) ∫f/ dx: The evaluation of this integral depends on the specific form of the function f/.

f) ∫sin x dx: The antiderivative of the sine function sin(x) is -cos(x) + C.

g) ∫cos x dx: The antiderivative of the cosine function cos(x) is sin(x) + C.

h) ∫tan x dx: The antiderivative of the tangent function tan(x) is -ln|cos(x)| + C.

i) ∫cot x dx: The antiderivative of the cotangent function cot(x) is ln|sin(x)| + C.

j) ∫sec x dx: The antiderivative of the secant function sec(x) is ln|sec(x) + tan(x)| + C.

k) ∫csc x dx: The antiderivative of the cosecant function csc(x) is -ln|csc(x) + cot(x)| + C.

l) ∫√(√(1-x)) dx: This integral requires more specific information about the expression under the square root to evaluate it.

m) ∫1/(1+x²) dx: This integral can be evaluated using techniques like trigonometric substitution or partial fraction decomposition.

n) ∫dx: The integral of a constant function 1 with respect to x is simply x + C, where C is the constant of integration.

To know more about  integrals click here : brainly.com/question/31059545

#SPJ11

A researcher is interested in determining whether a sample of 16 participants will gain weight after 8 weeks of excessive calorie intake. The researcher decides to use a non-parametric procedure because the basic assumption of normality was violated. Below is the JASP output of the analysis. What can the researcher conclude if p<.001

Measure1 Measure 2 W df p

Weight before Weight after 0.0000 <0.001

Wilcoxon -signed test

8 weeks of excessive caloric intake produces a statistically significant increase in weight gain

8 weeks of excessive caloric intake produces a non-significant increase in weight gain

Answers

The researcher can conclude that after 8 weeks of excessive calorie intake, there is a statistically significant increase in weight gain among the participants (p < .001).

The JASP output indicates that a non-parametric Wilcoxon signed-rank test was conducted to compare the weight before and after the 8-week period of excessive caloric intake. The p-value obtained from the analysis is less than .001, indicating that the difference in weight before and after the intervention is highly significant. This means that the excessive calorie intake led to a substantial increase in weight among the participants.

The use of a non-parametric test suggests that the assumption of normality was violated, which could be due to the small sample size or the nature of the data distribution. Nevertheless, the violation of normality does not invalidate the findings. The low p-value suggests strong evidence against the null hypothesis, supporting the conclusion that the 8-week period of excessive calorie intake resulted in a statistically significant weight gain.

To learn more about hypothesis click here: brainly.com/question/32562440

#SPJ11

Which of the following topics is generally outside the field of OB? absenteeism Otherapy O productivity O job satisfaction employment turnover

Answers

The topic generally outside the field of OB (Organizational Behavior) is Otherapy. Option A.

Organizational Behavior (OB) is a field of study that focuses on understanding and managing individuals and groups within organizations. It examines various aspects of human behavior, attitudes, and performance in the workplace. The primary goal of OB is to enhance organizational effectiveness and employee well-being.

Among the options provided, absenteeism, productivity, job satisfaction, and employment turnover are all topics that fall within the scope of OB. Let's briefly discuss each topic:

Absenteeism: This refers to the pattern of employees being absent from work without a valid reason. OB examines the causes and consequences of absenteeism and explores strategies to manage and reduce it.

Productivity: OB investigates the factors that influence individual and group productivity within an organization. It looks at how motivation, leadership, organizational culture, and other variables impact productivity levels.

Job Satisfaction: OB focuses on understanding the factors that contribute to employees' job satisfaction, including job design, work environment, compensation, and interpersonal relationships. It explores how satisfied employees are more likely to be engaged and perform well.

Employment Turnover: OB examines employee turnover, which refers to the rate at which employees leave an organization. It investigates the reasons behind turnover, such as job dissatisfaction, lack of opportunities, and organizational culture, and suggests strategies for retention.

However, "Otherapy" does not align with the typical topics studied in OB. It is not a recognized term or concept within the field. Therefore, Otherapy can be considered outside the scope of OB. So Option A is correct.

For more question on field of OB (Organizational Behavior) visit:

https://brainly.com/question/17743028

#SPJ8

Note this question belongs to the subject Business

Let X denote the amount of time for which a book on 2-hour reserve at a college library is checked out by a randomly selected student and suppose that X has density function Jkx, f(x) = if 0≤x≤1 otherwise. a. Find the value of k. Calculate the following probabilities: b. P(X ≤ 1), P(0.5 ≤X ≤ 1.5), and P(1.5 ≤X)

Answers

a. The value of k is 2.

b.  The probabilities are

i.P(X ≤ 1) = 1

ii. P(0.5 ≤ X ≤ 1.5) = 2

iii. P(1.5 ≤ X) = ∞ (since it extends to infinity)

a. To find the value of k, we need to ensure that the density function f(x) integrates to 1 over its entire range.

∫f(x) dx = ∫[0,1] kx dx = k ∫[0,1] x dx

Using the definite integral of x from 0 to 1:

∫[0,1] x dx = (1/2)

Setting this equal to 1:

k ∫[0,1] x dx = 1

k * (1/2) = 1

k = 2

Therefore, the value of k is 2.

b. We can calculate the probabilities using the density function f(x).

i. P(X ≤ 1)

P(X ≤ 1) = ∫[0,1] f(x) dx

Substituting the density function:

P(X ≤ 1) = ∫[0,1] 2x dx

Evaluating the integral:

P(X ≤ 1) = [x²] from 0 to 1

P(X ≤ 1) = 1² - 0²

P(X ≤ 1) = 1 - 0

P(X ≤ 1) = 1

ii. P(0.5 ≤ X ≤ 1.5)

P(0.5 ≤ X ≤ 1.5) = ∫[0.5,1.5] f(x) dx

Substituting the density function:

P(0.5 ≤ X ≤ 1.5) = ∫[0.5,1.5] 2x dx

Evaluating the integral:

P(0.5 ≤ X ≤ 1.5) = [x²] from 0.5 to 1.5

P(0.5 ≤ X ≤ 1.5) = (1.5)² - (0.5)²

P(0.5 ≤ X ≤ 1.5) = 2.25 - 0.25

P(0.5 ≤ X ≤ 1.5) = 2

iii. P(1.5 ≤ X)

P(1.5 ≤ X) = ∫[1.5,∞] f(x) dx

Substituting the density function:

P(1.5 ≤ X) = ∫[1.5,∞] 2x dx

Evaluating the integral:

P(1.5 ≤ X) = [x²] from 1.5 to ∞

P(1.5 ≤ X) = ∞ - (1.5)²

P(1.5 ≤ X) = ∞ - 2.25

P(1.5 ≤ X) = ∞ (since it extends to infinity)

Note: The probability P(1.5 ≤ X) is infinite because the density function is not defined beyond x = 1. The probability that X is greater than or equal to 1.5 is not finite in this case.

For more questions on probabilities density function at:

brainly.com/question/30318892

#SPJ11

1. Suppose that John and Tom are sitting in a classroom containing 9 students in total. A teacher randomly divides these 9 students into two groups: Group I with 4 students, Group II with 5 students (a) What is the probability that John is in Group I? (b) If John is in Group I, what is the probability that Tom is also in Group I? (c) What is the probability that John and Tom are in the same group?

Answers

In a classroom with 9 students divided into two groups, we can calculate the probabilities related to John and Tom's placement. This includes the probability of John being in Group I, the probability of Tom being in Group I given that John is in Group I, and the probability of John and Tom being in the same group.

(a) The probability of John being in Group I can be calculated by dividing the number of ways John can be in Group I by the total number of possible outcomes: Probability(John in Group I) = Number of ways John in Group I / Total number of outcomes = 4 / 9.

To learn more about probability here : brainly.com/question/23648662

#SPJ11

Determine the following with explanations: (a) All irreducible polynomials of degree 5 and degree 6 in Z_{2}[x] (integers mod 2) (b) All irreducible polynomials of degree 1, degree 2, degree 3, and degree 4 in Z_{3}[x] (integers mod 3)

Answers

(a) All irreducible polynomials of degree 5 and degree 6 in Z_{2}[x] (integers mod 2)

Degree 5:

Degree 5 polynomials can be written as x^5 + a(x^4) + b(x^3) + c(x^2) + d(x) + e, where a, b, c, d, and e are elements in Z2.

If we can factor this polynomial into two polynomials of degree 2 and degree 3, then it is reducible.

Therefore, we can say that the irreducible polynomials of degree 5 are:

x^5 + x^2 + 1x^5 + x^3 + 1x^5 + x^4 + 1

Degree 6:

Degree 6 polynomials can be written as x^6 + a(x^5) + b(x^4) + c(x^3) + d(x^2) + e(x) + f, where a, b, c, d, e, and f are elements in Z2.

If we can factor this polynomial into two polynomials of degree 2 and degree 4 or degree 3 and degree 3, then it is reducible.

Therefore, we can say that the irreducible polynomials of degree 6 are:

x^6 + x^5 + x^2 + x + 1x^6 + x^5 + x^3 + x^2 + 1x^6 + x^5 + x^4 + x^2 + 1

(b) All irreducible polynomials of degree 1, degree 2, degree 3, and degree 4 in Z_{3}[x] (integers mod 3)

Degree 1:

Degree 1 polynomials are simply linear functions that can be written in the form ax + b, where a and b are elements in Z3.

There is only one such polynomial, which is x + a, where a is an element in Z3.

Degree 2:

Degree 2 polynomials can be written as ax^2 + bx + c, where a, b, and c are elements in Z3.

We can factor out a from the first two terms and set it equal to 1 without loss of generality. After doing so, we get the polynomial x^2 + bx + c/a.

There are two cases to consider:

c/a is a quadratic residue, or it is a non-quadratic residue.

If c/a is a quadratic residue, then x^2 + bx + c/a is reducible, and we can write it in the form (x + d)(x + e) for some elements d and e in Z3.

We can then solve for b by equating the coefficients of x, which yields b = d + e.

Therefore, if x^2 + bx + c/a is reducible, then b is the sum of two elements in Z3.

If c/a is a non-quadratic residue, then x^2 + bx + c/a is irreducible.

Therefore, we can say that the irreducible polynomials of degree 2 are:

x^2 + x + 1x^2 + x + 2

Degree 3:

Degree 3 polynomials can be written as ax^3 + bx^2 + cx + d, where a, b, c, and d are elements in Z3. We can factor out a from the first term and set it equal to 1 without loss of generality. After doing so, we get the polynomial x^3 + bx^2 + cx + d. There are several cases to consider:

If the polynomial has a root in Z3, then it is reducible, and we can factor it into a product of a degree 1 and a degree 2 polynomial.

Therefore, we only need to consider polynomials that do not have a root in Z3.

If the polynomial has three distinct roots in Z3, then it is reducible, and we can factor it into a product of three degree 1 polynomials.

Therefore, we only need to consider polynomials that have at most two distinct roots in Z3.

If the polynomial has two distinct roots in Z3, then it is reducible if and only if the sum of the roots is 0.

Therefore, we can say that the irreducible polynomials of degree 3 are:

x^3 + x + 1x^3 + x^2 + 1

Degree 4:

Degree 4 polynomials can be written as ax^4 + bx^3 + cx^2 + dx + e, where a, b, c, d, and e are elements in Z3.

We can factor out a from the first term and set it equal to 1 without loss of generality. After doing so, we get the polynomial x^4 + bx^3 + cx^2 + dx + e.

There are several cases to consider:

If the polynomial has a root in Z3, then it is reducible, and we can factor it into a product of a degree 1 and a degree 3 polynomial.

Therefore, we only need to consider polynomials that do not have a root in Z3.

If the polynomial has four distinct roots in Z3, then it is reducible, and we can factor it into a product of four degree 1 polynomials.

Therefore, we only need to consider polynomials that have at most three distinct roots in Z3.

If the polynomial has three distinct roots in Z3, then it is reducible if and only if the sum of the roots is 0.

Therefore, we can say that the irreducible polynomials of degree 4 are:

x^4 + x + 1x^4 + x^3 + 1x^4 + x^3 + x^2 + x + 1

To summarize, we have found all the irreducible polynomials of degrees 1 to 6 in Z2[x] and Z3[x].

The irreducible polynomials of degree 5 and degree 6 in Z2[x] are

x^5 + x^2 + 1,

x^5 + x^3 + 1,

x^5 + x^4 + 1 and

x^6 + x^5 + x^2 + x + 1,

x^6 + x^5 + x^3 + x^2 + 1,

x^6 + x^5 + x^4 + x^2 + 1.

The irreducible polynomials of degree 1, degree 2, degree 3, and degree 4 in Z3[x] are

x + a,

x^2 + x + 1,

x^2 + x + 2,

x^3 + x + 1,

x^3 + x^2 + 1,

x^4 + x + 1,

x^4 + x^3 + 1,

x^4 + x^3 + x^2 + x + 1.

To know more about polynomials visit:

brainly.com/question/25566088

#SPJ11

Number Theory
1. Find all primitive Pythagorean triples (a,b,c) such that c = a + 2.

Answers

A Pythagorean triple is a set of three integers (a,b,c) that satisfy the equation a² + b² = c². A primitive Pythagorean triple is a triple in which a, b, and c have no common factors. The triples are called primitive because they cannot be made smaller by dividing all three of them by a common factor.

What is Number Theory?

Number theory is a branch of mathematics that deals with the properties of numbers, particularly integers. Number theory has many subfields, including algebraic number theory, analytic number theory, and computational number theory. It is considered one of the oldest and most fundamental areas of mathematics. Now, let's solve the given problem.Find all primitive Pythagorean triples (a,b,c) such that c = a + 2.To solve the problem, we can use the formula for Pythagorean triples.

The formula for Pythagorean triples is given as: a = 2mn, b = m² − n², c = m² + n²Here, m and n are two positive integers such that m > n.a = 2mn ............ (1)b = m² − n² .......... (2)c = m² + n² .......... (3)Given c = a + 2. Substitute equation (1) in (3).m² + n² = 2mn + 2Now, subtract 2 from both sides.m² + n² - 2 = 2mnRearrange the terms.m² - 2mn + n² = 2Factor the left side.(m - n)² = 2Notice that 2 is not a perfect square; therefore, 2 cannot be the square of any integer. This means that there are no solutions to this equation. As a result, there are no primitive Pythagorean triples (a,b,c) such that c = a + 2.

#spj11

https://brainly.com/question/31433117


Convert 117.2595° to DMS (° ' "): Answer
Give your answer in format 123d4'5"
Round off to nearest whole second (")
If less than 5 - round down
If 5 or greater - round up

Answers

117.2595° rounded off to nearest whole second is: 117° 15' 57".

Given: Angle = 117.2595°

To convert 117.2595° to DMS format (° ' "), we can follow the following steps:

Step 1: We know that 1° = 60'. So, we can write, 117.2595° = 117° + 0.2595°

Step 2: We know that 1' = 60". So, we can write, 0.2595° = 0°.2595 x 60' = 15'.57" (round off to nearest whole second)

Hence, 117.2595° = 117° 15' 57" (rounded off to nearest whole second as 117° 15' 57")

Therefore, the required answer is: 117° 15' 57".

Learn more about Angles: https://brainly.com/question/17039091

#SPJ11

A regular die has six faces, numbered 1 to 6. Roll the die sic times consecutively, and record the ordered) sequence of die rolls; we call that an outcome. (a) How many outcomes are there in total? (b) How many outcomes are there where 5 is not present? (c) How many outcomes are there where 5 is present exactly once? (d) How many outcomes are there where 5 is present at least twice?

Answers

A regular die has six faces, each of them marked with one of the numbers from 1 to 6. Rolling a die is a common game of chance. A single roll of a die can lead to six potential outcomes.

The six-sided dice are typically used in games of luck and gambling. They are also used in board games like snakes and ladders and other mathematical applications.What is an outcome?An outcome is a possible result of a random experiment, such as rolling a die, flipping a coin, or spinning a spinner.

In the given scenario, rolling a die six times consecutively, and recording the ordered sequence of die rolls is called an outcome.How many outcomes are there in total?The number of outcomes possible when rolling a die six times consecutively is the product of the number of outcomes on each roll.

Since there are six outcomes on each roll, there are 6 × 6 × 6 × 6 × 6 × 6 = 46656 possible outcomes in total.b. How many outcomes are there where 5 is not present?

There are 5 possible outcomes on each roll when 5 is not present. As a result, the number of outcomes in which 5 is not present in any of the six rolls is 5 × 5 × 5 × 5 × 5 × 5 = 15625.

c. How many outcomes are there where 5 is present exactly once?We must choose one roll of the six in which 5 appears and choose one of the five other possible outcomes for that roll. As a result, there are 6 × 5 × 5 × 5 × 5 × 5 = 93750 possible outcomes where 5 is present exactly once.

d. How many outcomes are there where 5 is present at least twice?There are a few ways to count the number of outcomes in which 5 appears at least twice. To avoid having to count the possibilities separately, it is simpler to subtract the number of outcomes in which 5 is not present at all from the total number of outcomes and the number of outcomes where 5 appears only once from this figure. The number of outcomes where 5 is present at least twice is 46656 - 15625 - 93750 = 37281.

For more such questions on six faces

https://brainly.com/question/24116810

#SPJ8


Solve the following mathematical equation for T. Please show
steps.
690 =
1.5946T0.252.25T

Answers

Solving the following mathematical equation for T, 690 =  1.5946T^0.252 + 2.25T, the value of T is 57.93.

The given mathematical equation is: 690 = 1.5946T^0.252 + 2.25T. This equation needs to be solved for T. Let's attempt to answer the following equation:

Rearrange the terms in the given equation. 1.5946T^0.252 + 2.25T = 690

Subtract 2.25T from both sides. 1.5946T^0.252 = 690 - 2.25T

Raise both sides to the power of 1/0.252. (1.5946T^0.252)^(1/0.252) = (690 - 2.25T)^(1/0.252)T = (690 - 2.25T)^(1/0.252) / 1.5946^(1/0.252)

Simplify the above expression using a calculator to get the value of T. T = 57.93

Therefore, the value of T is 57.93.

More on mathematical equations: https://brainly.com/question/19037377

#SPJ11

You are working as a Junior Engineer for a small motor racing team. You have been given a proposed mathematical model to calculate the velocity of a car accelerating from rest in a straight line. The equation is: v(t) = A (1 e tmaxspeed) v(t) is the instantaneous velocity of the car (m/s) t is the time in seconds tmaxspeed is the time to reach the maximum speed inseconds A is a constant. In your proposal you need to outline the problem and themethods needed to solve it. You need to include how to 1. Identify the units of the coefficient A/ physical meaning of A velocity of the car at t = 0 asymptote of this function as t→→ [infinity]o? 2. Sketch a graph of velocity vs. time.

Answers

To solve the problem, we need to understand the mathematical model for calculating the velocity of a car and determine the units and physical meaning of the coefficient A.

The mathematical model for the velocity of a car is given by [tex]v(t) = A (1 - e^{t/t_{maxspeed}})[/tex]. The coefficient A represents a scaling factor in the equation and determines the overall magnitude of the velocity. Its units and physical meaning depend on the context of the problem. For example, if the units of v(t) are in meters per second (m/s) and t is in seconds (s), then A would have units of m/s. The physical meaning of A could be related to the maximum achievable velocity of the car or the acceleration rate.

At t = 0, we can evaluate the velocity equation to find the velocity of the car. Substituting t = 0 into the equation, we have

[tex]v(0) = A (1 - e^{0/t_{maxspeed}})[/tex].

Since [tex]e^0[/tex] = 1, the velocity simplifies to v(0) = A (1 - 1) = 0.

Therefore, the velocity of the car at t = 0 is 0 m/s, indicating that the car is at rest initially.

As t approaches infinity, the term [tex]e^{t/t_{maxspeed}}[/tex]approaches 1, and the velocity equation becomes v(t) = A (1 - 1) = 0. This means that the velocity of the car approaches 0 as t increases indefinitely. Therefore, the asymptote of the velocity function as t approaches infinity is 0 m/s.

To sketch a graph of velocity vs. time, we plot the values of v(t) for different values of t. The graph will depend on the values of A and tmaxspeed. By analyzing the behavior of the equation, we can determine the initial velocity, the maximum velocity, and how the velocity changes over time.

To learn more about mathematical models:

https://brainly.com/question/14724933

#SPJ11

Find the area bounded by the parabola x=8+2y-y², the y-axis, y=-1, and y=3 92/3 s.u. 92/4 s.u. (C) 92/6 s.u. D) 92/5 s.u

Answers

To find the area bounded by the parabola, the y-axis, and the given y-values, we need to integrate the absolute value of the curve's equation with respect to y.

The equation of the parabola is given as x = 8 + 2y - y².

To find the limits of integration, we need to determine the y-values at the points of intersection between the parabola and the y-axis, y = -1, and y = 3.

Setting x = 0 in the parabola equation, we get:

0 = 8 + 2y - y²

Rearranging the equation:

y² - 2y - 8 = 0

Factoring the quadratic equation:

(y - 4)(y + 2) = 0

Therefore, the points of intersection are y = 4 and y = -2.

To calculate the area, we integrate the absolute value of the equation of the parabola with respect to y from y = -2 to y = 4:

Area = ∫[from -2 to 4] |8 + 2y - y²| dy

Splitting the integral into two parts based on the intervals:

Area = ∫[from -2 to 0] -(8 + 2y - y²) dy + ∫[from 0 to 4] (8 + 2y - y²) dy

Simplifying the integrals:

Area = -∫[from -2 to 0] (y² - 2y - 8) dy + ∫[from 0 to 4] (y² - 2y - 8) dy

Integrating each term:

Area = [-1/3y³ + y² - 8y] from -2 to 0 + [1/3y³ - y² - 8y] from 0 to 4

Evaluating the definite integrals:

Area = [(-1/3(0)³ + (0)² - 8(0)) - (-1/3(-2)³ + (-2)² - 8(-2))] + [(1/3(4)³ - (4)² - 8(4)) - (1/3(0)³ - (0)² - 8(0))]

Simplifying further:

Area = [0 - (-16/3)] + [(64/3 - 16 - 32) - (0 - 0 - 0)]

Area = [16/3] + [(16/3) - 48/3]

Area = 16/3 - 32/3

Area = -16/3

The area bounded by the parabola, the y-axis, and the y-values y = -1 and y = 3 is -16/3 square units.

Therefore, the answer is D) 92/5 square units.

know more about absolute value: brainly.com/question/17360689

#SPJ11







Find the general solutions to the following difference and differential equations. (3.1) Un+1 = Un +7 (3.2) Un+1 = un-8, u = 2 (3.3) d = 3tP5 - p5 dP dt (3.4) d=3-P+ 3t - Pt dt

Answers

Given difference equations are:Un+1 = Un +7 …… (3.1)

Un+1 = un-8, u = 2 ….. (3.2)

The given differential equations are:d/dt (3tP5 - p5 dP/dt) ….. (3.3)

d/dt (3-P+ 3t - Pt) ….. (3.4)

Solution to difference equation Un+1 = Un +7 …… (3.1)

The given difference equation is a linear homogeneous difference equation.

Therefore, its general solution is of the form:

Un = A(1)n + B

Where, A and B are constants and can be determined from the initial values.

Solution to difference equation Un+1 = un-8, u = 2 ….. (3.2)

The given difference equation is a linear non-homogeneous difference equation with constant coefficients.

Therefore, its general solution is of the form:

Un = An + Bn + C

Where, A, B, and C are constants and can be determined from the initial values.

Solution to differential equation d/dt (3tP5 - p5 dP/dt) ….. (3.3)

The given differential equation is a first-order linear differential equation.

Its solution can be obtained by integrating both sides as follows:

d/dt (3tP5 - p5 dP/dt) = 3tP5 - p5 dP/dt = 0

Integrating both sides w.r.t. t, we get:

∫(3tP5 - p5 dP/dt) dt = ∫0 dt3/2 (t2P5) - p5P = t3/2/ (3/2) - t + C

Again integrating both sides, we get:

P = (2/5) t5/2 - (2/3) t3/2 + Ct + K

Where C and K are constants of integration.

Solution to differential equation d/dt (3-P+ 3t - Pt) ….. (3.4)

The given differential equation is a first-order linear differential equation.

Its solution can be obtained by integrating both sides as follows:

d/dt (3-P+ 3t - Pt) = 3 - P - P + 3

Integrating both sides w.r.t. t, we get:

∫(3-P+ 3t - Pt) dt = ∫3 dt - ∫P dt - ∫P dt + ∫3t dt

= 3t - (1/2) P2 - (1/2) P2 + (3/2) t2 + C1

Again integrating both sides, we get:

P = -t2 + 3t - 2C1/2 + K

Where C1 and K are constants of integration.

To learn more please click on the link below

https://brainly.com/question/29073472

#SPJ11

Find an equation for the plane tangent to the graph of f(x,y) = x+y²,
(a) at (x, y) = (0,0),
(b) at (x, y) = (1,2).

Answers

The equations for the tangent planes are:

(a) At (0,0): z = x

(b) At (1,2): z = x + 4y - 7

(a) At the point (0,0), the partial derivatives are fₓ = 1 and fᵧ = 2y = 0. Plugging these values into the equation of the tangent plane, we get z = 0 + 1(x-0) + 0(y-0), which simplifies to z = x.

(b) At the point (1,2), the partial derivatives are fₓ = 1 and fᵧ = 2y = 4. Plugging these values into the equation of the tangent plane, we get z = 1 + 1(x-1) + 4(y-2), which simplifies to z = x + 4y - 7.

For more information on equation of tangents visit: brainly.com/question/32306829

#SPJ11


Find particular solution
y" + 3y' +2y=(− 4x² − x + 1)cos 2x − (2x² + 2x+1)sin 2x

Answers

To find the particular solution for the given second-order linear differential equation y" + 3y' + 2y = (−4x² − x + 1)cos 2x − (2x² + 2x + 1)sin 2x, the method of undetermined coefficients can be applied.

We assume a solution in the form of a linear combination of the complementary solution and a particular solution, which involves determining the coefficients for the trigonometric terms and polynomial terms separately.

For the given differential equation, the complementary solution can be found by solving the associated homogeneous equation, which is obtained by setting the right-hand side of the equation to zero. After finding the complementary solution, we assume a particular solution that consists of the sum of a polynomial term and a trigonometric term.

For the polynomial term, we assume a quadratic function with undetermined coefficients, and for the trigonometric term, we assume a combination of sine and cosine functions with undetermined coefficients. We substitute this assumed particular solution into the original differential equation and equate the coefficients of the corresponding terms.

By solving the resulting system of equations, we can determine the values of the coefficients and obtain the particular solution. Adding the particular solution to the complementary solution gives the complete solution to the differential equation.

To know more about  differential equations click here: brainly.com/question/25731911

#SPJ11

Find the limit. Use l'Hospital's Rule if appropriate. Use INF to represent positive infinity, NINF for negative infinity, and D for the limit does
lim x-0 10√x ln x = __________

Answers

To find the limit of the expression as x approaches 0, we can apply l'Hôpital's Rule since we have an indeterminate form of ∞ * 0.

Let's differentiate the numerator and denominator separately:

lim x→0 10√x ln x

Take the derivative of the numerator:

d/dx (10√x ln x) = 10 (1/2√x) ln x + 10√x (1/x)

Simplifying further:

= 5/√x ln x + 10

Take the derivative of the denominator, which is just 1:

d/dx (1) = 0

Now, let's re-evaluate the limit using the derivatives:

lim x→0 (5/√x ln x + 10) / (0)

Since the denominator is 0, this is an indeterminate form. We can apply l'Hôpital's Rule again by differentiating the numerator and denominator one more time:

Take the derivative of the numerator:

d/dx (5/√x ln x + 10) = (5/√x) (1/x) ln x + 5/√x (1/x) + 0

Simplifying further:

= 5/√x (1/x) ln x + 5/√x (1/x)

Take the derivative of the denominator, which is still 0:

d/dx (0) = 0

Now, let's re-evaluate the limit using the second set of derivatives:

lim x→0 (5/√x (1/x) ln x + 5/√x (1/x)) / (0)

Once again, we have an indeterminate form. We can continue applying l'Hôpital's Rule by taking the derivatives again, but it becomes evident that the process will repeat indefinitely.

Therefore, in this case, l'Hôpital's Rule is not applicable. However, we can still find the limit by analyzing the behavior of the expression as x approaches 0.  

To know more about l'Hôpital's Rule:- https://brainly.com/question/29252522

#SPJ11








Find the exact length of the polar curve described by: r = 3e=0 on the interval ≤0 ≤ 5.

Answers

The exact length of the polar curve described by r = 3e^θ on the interval 0 ≤ θ ≤ 5 is approximately 51.5152 units.

To find the length of a polar curve, we use the arc length formula for polar curves:

L = ∫√(r^2 + (dr/dθ)^2) dθ

In this case, the polar curve is defined by r = 3e^θ. We calculate the derivative of r with respect to θ, which is dr/dθ = 3e^θ. Substituting these values into the arc length formula, we get the integral:

L = ∫√(r^2 + (dr/dθ)^2) dθ

 = ∫√((3e^θ)^2 + (3e^θ)^2) dθ

 = ∫√(18e^(2θ)) dθ

We simplify the integral and evaluate it to obtain:

L = √18 ∫e^θ dθ

 = √18 (e^θ + C)

To find the exact length, we substitute the upper and lower limits of the interval (0 and 5) into the expression and calculate the difference:

L = √18 (e^5 - e^0)

After evaluating the exponential terms, we find that the exact length is approximately 51.5152 units.

To know more about polar curve, click here: brainly.com/question/28976035

#SPJ11

In how many ways can we arrange the integers 1, 2, 3, 4, 5 in a line so that there are no occurrence of the patterns 12, 23, 34, 45, 51?
a. 45
b. 40
C. 50
d. 60
e. None of the mentioned

Answers

To arrange the integers 1, 2, 3, 4, 5 in a line without any occurrence of the patterns 12, 23, 34, 45, 51, the number of possible arrangements can be determined. The options given are a) 45, b) 40, c) 50, d) 60, or e) None of the mentioned. correct answer is e) None of the mentioned.

To solve this problem, we can consider the given patterns as "forbidden" patterns. We need to count the number of arrangements where none of these forbidden patterns occur. One approach is to use complementary counting. There are 5! = 120 total possible arrangements of the integers 1, 2, 3, 4, 5. However, out of these, there are 5 arrangements where each forbidden pattern occurs once. Hence, the number of valid arrangements is 120 - 5 = 115. However, none of the given options matches this result, so the correct answer is e) None of the mentioned.

to learn more about  patterns click here; brainly.com/question/30571451

#SPJ11

In an experiment, two 6-faced dice are rolled. The relevant sample space is ......................
In an experiment, two 6-faced dice are rolled. The probability of getting the sum of 7 is ......................

Answers

When two 6-faced dice are rolled, the sample space consists of all possible outcomes of rolling each die. There are 36 total outcomes in the sample space. The probability of obtaining a sum of 7 when rolling the two dice is 6/36 or 1/6. This means that there is a 1 in 6 chance of getting a sum of 7.

In this experiment, each die has 6 faces, numbered from 1 to 6. To determine the sample space, we consider all the possible combinations of outcomes for both dice. Since each die has 6 possible outcomes, there are 6 x 6 = 36 total outcomes in the sample space.

To calculate the probability of obtaining a sum of 7, we need to count the number of outcomes that result in a sum of 7. These outcomes are (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1), making a total of 6 favorable outcomes.

The probability is obtained by dividing the number of favorable outcomes by the total number of outcomes in the sample space. In this case, the probability of getting a sum of 7 is 6 favorable outcomes out of 36 total outcomes, which simplifies to 1/6.

Therefore, the probability of obtaining a sum of 7 when rolling two 6-faced dice is 1/6, meaning there is a 1 in 6 chance of getting a sum of 7.

learn more about probability here:brainly.com/question/31828911

#SPJ11

The estimated annual bond default rate is 0.107.
a. What is the probability of bond survival rate (non-default)?
b. Determine the number of expected defaults in a bond portfolio with 25 issues.
c. Estimate the standard deviation of the number of defaults over the coming year d. What is the probability of observing more than 1 default?

Answers

An estimated annual bond default rate of 0.107, we can calculate various probabilities and statistics related to bond defaults. Firstly, we can find the probability of bond survival by subtracting the default rate from 1. Secondly, we can determine the expected number of defaults in a bond portfolio with 25 issues by multiplying the default rate by the number of issues. Thirdly, we can estimate the standard deviation of the number of defaults by using the formula for the standard deviation of a binomial distribution. Lastly, we can calculate the probability of observing more than 1 default by summing the probabilities of 2 or more defaults occurring.

The probability of bond survival (non-default) can be calculated by subtracting the default rate from 1. Therefore, the probability of bond survival is 1 - 0.107 = 0.893.

To determine the expected number of defaults in a bond portfolio with 25 issues, we multiply the default rate by the number of issues. The expected number of defaults is 0.107 * 25 = 2.675 (rounded to three decimal places).

The standard deviation of the number of defaults can be estimated using the formula for the standard deviation of a binomial distribution, which is sqrt(np(1-p)). Here, n is the number of issues (25) and p is the default rate (0.107). Therefore, the estimated standard deviation of the number of defaults is sqrt(25 * 0.107 * (1 - 0.107)) = 1.589 (rounded to three decimal places).

To calculate the probability of observing more than 1 default, we need to sum the probabilities of 2 or more defaults occurring. This can be done using the binomial distribution formula or by finding the complement of the probability of observing 1 or fewer defaults. The probability of observing more than 1 default is 1 - P(X ≤ 1), where X follows a binomial distribution with n = 25 and p = 0.107. By evaluating this expression, we can find the desired probability.

In conclusion, with an estimated annual bond default rate of 0.107, we can calculate the probability of bond survival, the expected number of defaults in a bond portfolio, the standard deviation of the number of defaults, and the probability of observing more than 1 default. These calculations provide insights into the likelihood of defaults and help assess the risk associated with the bond portfolio.

learn more about annual bond here:brainly.com/question/31254007

#SPJ11

ex: use green th. to evaluate the line integral ∫c (x^2, y^2) dx + (x^2 - y^2) dy, where с is (0,0), (0,1), and (2,1) postivly oriented

Answers

In this problem, we are given a line integral ∫c (x^2, y^2) dx + (x^2 - y^2) dy, where с is the curve formed by the points (0,0), (0,1), and (2,1), and it is specified to be positively oriented. We are asked to evaluate this line integral using Green's theorem.

Green's theorem relates a line integral around a closed curve to a double integral over the region enclosed by the curve. It states that for a vector field F = (P, Q), the line integral ∫c P dx + Q dy along a positively oriented curve c is equal to the double integral ∬R (Q_x - P_y) dA over the region R enclosed by c.

In our problem, the vector field is F = (x^2, y^2) and the curve c is defined by the points (0,0), (0,1), and (2,1). To apply Green's theorem, we need to find the region R enclosed by the curve c.

The curve c forms a triangle with vertices at (0,0), (0,1), and (2,1). We can see that this triangle is bounded by the x-axis and the line y = x. Thus, R is the region enclosed by the x-axis, the line y = x, and the line y = 1.

Applying Green's theorem, we calculate the double integral ∬R (Q_x - P_y) dA, where P = x^2 and Q = x^2 - y^2. After evaluating the integral, the result will give us the value of the line integral ∫c (x^2, y^2) dx + (x^2 - y^2) dy.

Since the calculation of the double integral requires specific values for the region R, further calculations are necessary to provide the exact value of the line integral using Green's theorem.

To learn more about Green's theorem, click here:

brainly.com/question/30763441

#SPJ11

Suppose A (1 mark) 6 -6 0 w/1 R₂ R₁, 3R3, R₁-2R₂ WIN 1 1 0 2 0 0 3 5 -1 . What is the determinant of A?

Answers

Given the matrix A=1 6-6 0We are to find the determinant of A. For this, we will find the value of the determinant of A by using elementary row operations as shown below.

Step 1: Applying the row operation [tex]R2-R1 to get1 6-6 00-6 6 0[/tex]

Step 2: Applying the row operation [tex]R3-3R1 to get1 6-6 00-6 6 0 0 -18 3[/tex]Step 3: Applying the row operation [tex]R3+(1/3)R2 to get1 6-6 00-6 6 0 0 -18 0[/tex]

Now, the matrix is in an upper triangular form, hence the determinant of the matrix A is given by the product of diagonal elements. Thus, [tex]det(A)=1×(-6)×0=0[/tex]

Therefore, the determinant of matrix A is 0. This is because the matrix A is singular (non-invertible) since its determinant is 0.

Hence, a matrix with zero determinant is a non-invertible matrix with dependent rows/columns.

To know more about row operations visit -

brainly.com/question/30514221

#SPJ11

There was an epidemic of jaundice in a slum area in a large city. Of the 15000 residents in the area 1000 came down with jaundice. Ten of them died. During the year the crude death rate was 10/1000. What was the overall attack rate for jaundice? What was the case fatality rate for jaundice? o What was the cause specific mortality for jaundice? What was the proportionate mortality for jaundice? Only 1000 cases occurred. Water was the most likely transmission route? What explanations can be given for the rest not coming down with the illness?

Answers

The overall attack rate for jaundice in the slum area was 6.67%.

What was the epidemic's impact?

The overall attack rate for jaundice in the slum area was 6.67%. This means that approximately 6.67% of the residents in the area contracted jaundice during the epidemic. The attack rate is calculated by dividing the number of cases (1000) by the total population (15,000) and multiplying by 100.

he relatively low attack rate suggests that the transmission of jaundice was not widespread within the slum area. It is possible that the transmission was primarily occurring through a specific route, such as contaminated water, as indicated by the most likely transmission route being water.

However, it is also important to consider other factors that may have influenced the lower number of cases, such as variations in individual susceptibility, differences in hygiene practices, or limited exposure to the infectious agent.

Further investigation would be necessary to understand the specific reasons why the majority of residents did not contract the illness.

Learn more about area

brainly.com/question/30307509

#SPJ11

1 5 marks
You should be able to answer this question after studying Unit 3.
Use a table of signs to solve the inequality
4x + 5/ 9 – 3x ≥ 0.
Give your answer in interval notation.

Answers

The answer in interval notation, is [-5/9, +∞).

To solve the inequality 4x + 5/9 - 3x ≥ 0, we can follow these steps:

1. Combine like terms on the left-hand side of the inequality:

  4x - 3x + 5/9 ≥ 0

  x + 5/9 ≥ 0

2. Find the critical points by setting the expression x + 5/9 equal to zero:

  x + 5/9 = 0

  x = -5/9

3. Create a sign table to determine the intervals where the expression is positive or non-negative:

  Interval          |  x + 5/9

  -------------------------------------

  x < -5/9         |    (-)  

  x = -5/9         |    (0)  

  x > -5/9         |    (+)  

4. Analyze the sign of the expression x + 5/9 in each interval:

  - In the interval x < -5/9, x + 5/9 is negative (-).

  - At x = -5/9, x + 5/9 is zero (0).

  - In the interval x > -5/9, x + 5/9 is positive (+).

5. Determine the solution based on the sign analysis:

  Since the inequality states x + 5/9 ≥ 0, we are interested in the intervals where x + 5/9 is non-negative or positive.

  The solution in interval notation is: [-5/9, +∞)

To know more about interval notation,

https://brainly.com/question/29252068#

#SPJ11


Convert 52.3796° to DMS (° ' "): Answer
Give your answer in format 123d4'5"
Round off to nearest whole second (")
If less than 5 - round down
If 5 or greater - round up

Answers

52.3796° in Degree Minute Second(DMS) (° ' ") format is 52° 22' 47".

To convert 52.3796° to DMS (° ' "), we need to follow the steps given below:

We know that,1° = 60'1' = 60"

Thus,52.3796° can be expressed as follows:

Whole Degree = 52Minutes = (0.3796 × 60) = 22.776Seconds = (0.776 × 60) = 46.56 ≈ 47 seconds

Thus,52.3796° = 52° 22' 47" (rounded to the nearest whole second as per the given condition)

Therefore, 52.3796° in DMS (° ' ") format is 52° 22' 47".

earn more about Angles: https://brainly.com/question/17039091

#SPJ11

Other Questions
Suppose the rule [(2,1)+4(2,0)+ (2,1)+(2,1)+4(2,0)+(2,1)] is applied to 12 solve (x, y) dx dy. Describe the form of the function (x, y) that are integrated -1-2 exactly by this rule and obtain the result of the integration by using this form. Question 3 (20 marks)Hermione Ltd. produces magical wands. The budgeted productionequals 500 magical wands and the budgeted fixed productionoverheads equals 282,000. The actual production level w 1. How did Egyptian artists use difference in scale?a) To portray the differences in the social hierarchy of each figure in their art.b) To show their own technical skills.c) To emphasize the importance of natural objects.d) They did not use it intentionally.2. Which of the following is NOT one way that Egyptian artists decorated their pottery?a) By using steatite to carve small vases and amuletsb) By using enamel to cover potteryc) With abstract, geometric designsd) By carving the image of a deity to curry favor in the after life3. How do art historians characterize Egyptian art?a) Representationalb) Formal and abstractc) Chaoticd) Naturalistic4. What distinguishes Egyptian statues made of wood?a) They are quite closed off, with arms held to close to their sides.b) They are expressive, with limbs opened up to create a more realistic look.c) They have limited positions.d) The back pillar is exceedingly strong.5. Why has African tribal art had a major influence on western art?a) Its exoticismb) Its visual impact, due to traditional techniques that result in a distinctive type of realism and perspectivec) Its size and scoped) The subjects it portrays Question 7 (10 points) A normal distribution has a mean of 100 and a standard deviation of 10. Find the z- scores for the following values. a. 110 b. 115. c. 100 d. 84 explain the observed changes when 1 m sodium acetate is added to 0.1 m acetic acid ( methyl orange). Regarding individual investor behaviour, which of the following is FALSE? Individual investors are more likely to invest in firms that they are familiar with. Individual investors are more likely to sell stocks recently covered by media. Individual investors tend to be overconfident when making trading decisions, which leads them to trade too much. Individual investors trading decisions tend to be affected by their personal experiences. FOR EACH SEQUENCE OF NUMBERS, (i) WRITE THE nTH TERM EXPRESSION AND (ii) THE 100TH TERM.a. -3, -7, -11, -15, . . . (i) .................... (ii) ....................b. 10, 4, -2, -8, . . . (i) .................... (ii) ....................c. -9, 2, 13, 24, . . . (i) .................... (ii) ....................d. 4, 5, 6, 7, . . . (i) .................... (ii) ....................e. 12, 9, 6, 3, . . . (i) .................... (ii) .................... Q1 Write a case study on any of the topics below then determine if there is a problem that needs to be addressed from the topic you have selected. Make suggestions, recommendation (practical solution), and implementation plan to the issues you have identified. Write between 1500 to 2500 words.Tax formulation and tax admirationTax Structure, government spending and economic growth in ZambiaInformal sector taxation and economic growthTrade tax incentive and economic growthTax transparency and tax evasionTaxation of the mining sectorAny other topical taxation topic of your choice. Which of the following species are capable of hydrogen bonding among themselves?A) KFB) HIC) C2H6D) HFE) BeH2F) CH3COOHG) NH3 What are the first 3 iterates of f(x) = 5x + 4 for an initial value of x = 3? A 3, -11, 59 B-11, 59, -291 I C -1, -6, -11 D 59.-291. 1459 Liabilities and Net Worth Securities (A) Currency in Circulation (B) Loans to Banks (C) Reserves (D) Assets Liabilities and Net Worth Reserves (E) Deposits (F) Borrowings (H) Securities (G) Loans (1) Bank Capital (J) Assets Liabilities and Net Worth Currency in Circulation (K) Loans (L) Deposits (M) Securities (N) Net Worth (0) The above figure shows the three balance sheets by the players in the money supply process. These are aggregate balance sheets. For example, the deposits in the non-bank-public balance sheet is the sum of all the deposits owned by individuals and businesses. An event occurs. You need to figure out which one of the above entries will change as a result of this event, all else the same. Consider only the immediate effects. Don't assume any subsequent decisions by the players. Place a 1 in the box if the entry will change, 0 otherwise. No commas or decimals, just 0 and 1. Event: Households borrow a total of $100 million from banks. The Fed A = B = ,C= ,D= Banks E = F = G= H= Non-Bank Public K= ,N= | = L = The Fed Assets Banks Non-Bank Public , J= , M= What is a bureaucracy (related to management andorganization behavior?) Maps M Gal IPIP NEO Narrative Seved Help Save & Exit Submit SUD & VISI 1. FastQ Company, a specialist in printing, has established 500 convenience copying centers throughout the country. In order to upgrade its services, the company is considering three new models of laser copying machines for use in producing high-quality copies. These high-quality copies would be added to the growing list of products offered in the FastQ shops. The selling price to the customer for each laser copy would be the same, no matter which machine is installed in the shop. The three models of laser copying machines under consideration are 10245, a small-volume model; 1024M, a medium-volume model; and 1024G, a large-volume model. The annual rental costs and the operating costs vary with the size of each machine. The machine capacities and costs are as follows Copier Model 1024M 350,000 10245 100,000 Annual capacity (copies) 10240 800,000 Costs: Annual machine rental $ 6,000 $ 11,000 $ 19,000 Direct material and direct labor Variable overhead costs 8.02 0.12 0.82 8.87 0.02 0.03 a Calculate the volume level in copies where FastQ Company would be indifferent to acquiring either the small-volume model laser copier, 1024S, or the medium-volume model laser copier, 1024M. b. The management of FastQ Company is able to estimate the number of copies to be sold at each establishment Present a decision rule that would enable FastQ Company to select the most profitable machine without having to make a separate cost calculation for each establishment. (Hint: To specify a decision rule, determine the volume at which FastQ would be indifferent between the small and medium copiers. Then determine the volume at which FastQ would be indifferent between the medium and large coplers.) #10 KATI Saved Help Save & Exit Required information Complete this question by entering your answers in the tabs below. Required 1A Required 18 The management of FastQ Company is able to estimate the number of copies to be sold at each establishment. Present a decision rule that would enable FastQ Company to select the most profitable machine without having to make a separate cost calculation for each establishment. (Hint: To specify a decision rule, determine the volume at which FastQ would be indifferent between the small and medium copiers. Then determine the volume at which FastQ would be indifferent between the medium and large copiers.) Show less A Anticipated Annual Volume At least But not more than i Optimal Model Choice 800,000 Submit shows the cross-section of a hollow cylinder of inner radius a = 25.0 mm and = 60.0 mm. A non-uniform current density J = J_0 r^2 flows through the shaded region parallel to its axis. J_0 is a constant equal to 5 mA/cm^4. (da = rdrd theta) Calculate the total current through the cylinder. Be careful to choose proper limits Calculate the magnitude of the magnetic field at a distance of d = 2 cm from the axis of the cylinder. Provide arguments why should policymakers use fiscal andmonetary instruments to control aggregate demand and stabilize theeconomy. If so, when? If not, why not? minimum 50 words. a precipitate forms when mixing solutions of sodium fluoride (naf) and lead ii nitrate (pb(no3)2). complete and balance the net ionic equation for this reaction by filling in the blanks. MAX z = 7x1 + 14x2subject to7x1 + 14x2 Jefferson's recently paid an annual dividend of $8 per share. The dividend is expected to decrease by 5% each year. How much should you pay for this stock today if your required return is 15% (in $ do Let r(t)= (3.-6.-20)+1(0.-4,-4) and r(s) = (15, 10,-16)+ s(4,0,-4). Find the point of intersection, P, of the two lines r and r. P = Given that X is a normally distributed random variable with a mean of 50 and a standard deviation of 2, the probability that X is between 46 and 54 is A.0.9544 B. 04104 C. 0.0896 D. 0.5896