Solid matter with atoms arranged in a regular, repeating pattern is called a

Answers

Answer 1

A solid matter with atoms arranged in a regular, repeating pattern is called a crystalline solid. In a crystalline solid, the atoms, ions, or molecules are organized into a highly ordered and periodic structure known as a crystal lattice.

This arrangement leads to unique properties and characteristics, such as distinct melting points, conductivity, and hardness.
There are several types of crystalline solids, including ionic, covalent, metallic, and molecular crystals, each with its unique bonding and structure. Ionic crystals are formed by the electrostatic attraction between oppositely charged ions, while covalent crystals consist of atoms connected by covalent bonds. Metallic crystals are composed of metal atoms with a sea of delocalized electrons, and molecular crystals are held together by intermolecular forces such as hydrogen bonding or van der Waals forces.
The regular arrangement of atoms in a crystalline solid contributes to its stability, as the repeating pattern minimizes the overall energy of the system. This regularity also affects the solid's physical properties, such as its ability to refract light, resulting in various optical phenomena like diffraction and interference.
The study of crystalline solids is an essential aspect of materials science and chemistry, as understanding their structure and properties allows scientists and engineers to design and synthesize materials with specific characteristics for various applications, from electronics to pharmaceuticals.
In contrast to crystalline solids, amorphous solids have atoms that lack a regular, repeating pattern. These disordered structures result in different physical properties and behaviours, distinguishing them from their crystalline counterparts.

To learn more about crystalline solid, refer:-

https://brainly.com/question/28274778

#SPJ11


Related Questions

Define free energy, enthalpy, entropy, equilibrium, exergonic, and endergonic, explaining how they are related to each other in chemical reactions.
LO #4 (Set 3)

Answers

Free energy, enthalpy, entropy, equilibrium, exergonic, and endergonic are all terms related to chemical reactions and energy changes that occur during those reactions.


1. Free energy (G) is the energy available to do work in a system. It determines the spontaneity of a reaction.
2. Enthalpy (H) is the measure of heat content in a system. It represents the change in heat during a reaction at constant pressure.
3. Entropy (S) is the measure of disorder or randomness in a system. It increases when a system becomes more disordered.
4. Equilibrium is the state where the rates of the forward and reverse reactions are equal, and the concentrations of reactants and products remain constant.
5. Exergonic reactions release energy (negative ΔG) and are spontaneous.
6. Endergonic reactions absorb energy (positive ΔG) and are non-spontaneous.



Hence, in chemical reactions, these terms are related in the following way: ΔG = ΔH - TΔS. A reaction will be spontaneous if the change in free energy is negative (exergonic), which can be influenced by enthalpy, entropy, and temperature. Equilibrium is reached when the system's free energy is at its minimum, balancing both forward and reverse reactions.

learn more about enthalpy click here:

https://brainly.com/question/14047927

#SPJ11

Explain how heat in the lava lamp is being transferred by conduction, convection, and radiation

Answers

In a lava lamp, heat is transferred through three different processes: conduction, convection, and radiation.

Conduction: Conduction is the transfer of heat through direct contact between particles or objects. In a lava lamp, the heat from the light bulb at the base of the lamp is conducted to the surrounding liquid and solid materials. The heat energy is transferred from the higher temperature source (light bulb) to the lower temperature materials (liquid and solid) through direct contact. The particles in the solid materials vibrate and transfer their energy to neighboring particles, causing the heat to spread.

Convection: Convection is the transfer of heat through the movement of fluids (liquids or gases). In a lava lamp, the liquid wax or oil in the lamp is heated by conduction from the light bulb. As the liquid near the light bulb heats up, it becomes less dense and rises to the top of the lamp. As it reaches the top, it cools down, becomes denser, and starts to sink back down. This process creates a cycle of rising and sinking motion known as convection currents. Through convection, the heat is transferred from the bottom of the lamp to the top, creating the characteristic flowing and swirling motion of the liquid in the lamp.

Radiation: Radiation is the transfer of heat through electromagnetic waves. In a lava lamp, radiation occurs when the heated light bulb emits thermal radiation in the form of infrared waves. These waves carry heat energy and travel through the air or liquid without the need for physical contact. As the infrared waves reach the surrounding liquid and solid materials, they are absorbed, causing the molecules to gain kinetic energy and increase in temperature.

So, in summary, in a lava lamp, heat is transferred by conduction through direct contact between the light bulb and the surrounding materials, by convection through the movement of the heated liquid creating convection currents, and by radiation through the emission and absorption of thermal radiation.

Learn more about convection

https://brainly.com/question/16635311

#SPJ4

Consider the Bohr model of the atom. Which transition would correspond to the largest wavelength of light absorbed? Select one: O n=2 to n=6 n=6 to n=10 O n=1 to n=5 O n=6 to n=3 O n=4 to n=1

Answers

The transition that would correspond to the largest wavelength of light absorbed is from n=1 to n=5.

According to the Bohr model, when an electron moves from a lower energy level (n=1) to a higher energy level (n=5), it absorbs light with a specific wavelength.

The larger the difference between the energy levels, the longer the wavelength of light absorbed. In this case, the transition from n=1 to n=5 has the largest difference in energy levels, resulting in the largest wavelength of light absorbed.

To know more about Bohr model and wavelength  : https://brainly.com/question/28825274

#SPJ11

All of the following, when mixed in stoichiometrically equal amounts, form a weakly basic solution except Select the correct answer below: O HCIO4 (aq) + LiOH(aq) = LiC104(aq) + H2O(1) O H2CO3(aq) + Ca(OH)2(aq) = CaCO3(aq) + 2H2O(1) O HCN(aq) +KOH(aq) = KCN(aq) + H2O(0) O CH3CO2H(aq) + NaOH(aq) = NaCH3CO2(aq) + H2O(1)

Answers

When HCIO4 and LiOH are mixed in stoichiometrically equal amounts, they form a strongly acidic solution with a pH of less than 7. On the other hand, the other three reactions form weakly basic solutions. Hence the correct option is (A) HCIO4(aq) + LiOH(aq) = LiC104(aq) + H2O(1).

When H2CO3(aq) and Ca(OH)2(aq) are mixed in stoichiometrically equal amounts, they form CaCO3(aq), which is a weak base, and H2O(1). When HCN(aq) and KOH(aq) are mixed in stoichiometrically equal amounts, they form KCN(aq), which is a weak base, and H2O(1).

When CH3CO2H(aq) and NaOH(aq) are mixed in stoichiometrically equal amounts, they form NaCH3CO2(aq), which is a weak base, and H2O(1).

To know more about the acidic solution:

https://brainly.com/question/16926229

#SPJ12

PLEASE HELP WILL REWARD 50 BRAINLY POINTS IF CORRECT!!!!!
If you needed to make 100 mL of a 0.2 M fruit drink solution from the 1.0 M fruit drink solution, how would you do it? (Hint: Use MsVs = MdVd to find the amount of concentrated solution you need, then add water to reach 100 mL.) Show your work.

Answers

You would need to measure a 0.02 liters (or 20 mL) of the 1.0 M fruit drink solution and then add enough water to make the total volume 100 mL in order to obtain a 0.2 M fruit drink solution.

To make 100 mL of a 0.2 M fruit drink solution from a 1.0 M fruit drink solution, we can use the formula for dilution, which is given by:

[tex]M_{S}[/tex][tex]V_{S}[/tex] =[tex]M_{d}[/tex][tex]V_{d}[/tex]

where; [tex]M_{S}[/tex] = molarity of the stock solution (1.0 M)

[tex]V_{S}[/tex]= volume of stock solution to be used

[tex]M_{d}[/tex] = molarity of the diluted solution (0.2 M)

[tex]V_{d}[/tex] = final volume of diluted solution (100 mL)

We need to find [tex]V_{S}[/tex], the volume of the stock solution to be used.

Rearranging the formula to solve for [tex]V_{S}[/tex];

[tex]V_{S}[/tex] = ([tex]M_{d}[/tex] × [tex]V_{d}[/tex]) / [tex]M_{S}[/tex]

Plugging in the given values;

[tex]M_{d}[/tex] = 0.2 M

[tex]V_{d}[/tex] = 100 mL (which needs to be converted to liters by dividing by 1000)

[tex]M_{S}[/tex] = 1.0 M

Converting [tex]V_{d}[/tex] to liters;

[tex]V_{d}[/tex] = 100 mL / 1000 mL/L = 0.1 L

Plugging the values into the formula;

[tex]V_{S}[/tex] = (0.2 M × 0.1 L) / 1.0 M

[tex]V_{S}[/tex]= 0.02 L

Therefore, we need a 0.02 L solution.

To know more about dilution here

https://brainly.com/question/28548168

#SPJ1

design a synthesis of 3-methyl-2-hexene (both e and z isomers) from ethyl bromide and 2-pentanone. 17127q part 1 out of 8 choose the best option for the immediate electrophile precursor to the target molecule. 17127p1 17127p1e 17127p1d 17127p1c 17127p1b

Answers

The best option for the immediate electrophile precursor to the target molecule is ethyl pent-2-en-4-ynoate (17127p1e).

To synthesize 3-methyl-2-hexene (both e and z isomers) from ethyl bromide and 2-pentanone, the following steps can be followed:
1. First, ethyl bromide is reacted with sodium ethoxide (NaOEt) to give ethyl ethoxide.
2. Next, ethyl ethoxide is reacted with 2-pentanone in the presence of a strong base, such as potassium tert-butoxide (KOtBu), to form the β-ketoester intermediate.
3. The β-ketoester intermediate is then reacted with ethyl pent-2-en-4-ynoate (17127p1e) in the presence of a Lewis acid catalyst, such as zinc chloride (ZnCl2), to form the desired 3-methyl-2-hexene (both e and z isomers).
Overall, the synthesis involves a multi-step process that requires careful attention to the reaction conditions and intermediates.

A chemical reaction known as an electrophilic substitution reaction occurs when an electrophile replaces the functional group linked to a molecule. A hydrogen atom is frequently the displaced functional group in electrophilic substitution reactions.

Since nitro groups are electronegative and cause positive charges on carbon atoms, they are not reactive to electrophilic substitution reactions, whereas benzene is described as having a delocalized set of electron clouds that attracts electrophile.

Learn more about electrophilic substitution reaction here

https://brainly.com/question/31182532

#SPJ11

An electrochemical cell that involves the reaction: cd(s) ni2 (aq) → cd2 (aq) ni(s) 1. Ni2 is oxidized and is the reducing agent 2. Cd is oxidized and is the reducing agent

Answers

This electrochemical cell is an example of a redox reaction, where the transfer of electrons between species results in a change in oxidation state.

Oxidation state, also known as oxidation number, is a concept in chemistry that describes the relative degree of electron loss or gain by an atom in a compound or ion. It is represented by a positive or negative number that indicates the number of electrons that an atom has lost or gained in a chemical reaction.

The oxidation state of an atom is determined by several factors, including its electronegativity, the number of valence electrons it has, and the number and types of bonds it forms with other atoms. In general, an atom with a higher electronegativity will have a more negative oxidation state, while an atom with a lower electronegativity will have a more positive oxidation state.

To learn more about Oxidation state visit here:

brainly.com/question/31688257

#SPJ4

Measure the initial temperature of the water to the

nearest 0. 1°C. Record in the data table.

Initial temperature of metal=

Initial temperature water=

Final temperature of both=

Answers

The temperature changes of a metal like copper can be recorded by putting it in the water and using a thermometer. therefore, the initial temperature of metal comes to be 100°C.

The temperature of any object or a substance when it has not undergone any reaction or change and has not tolerated any physical causes like pressure, etc. is known to be its initial temperature. Initial temperature of water on putting a copper metal rod is found to be 22.4°C and that of metal is 100°C.

The temperature of any substance or an object when the reaction has finally got over is called its final temperature. In our case, the final temperature, comes out to be 21°C. Thus, there is a decrease in temperature.

To know more about temperature, refer:

https://brainly.com/question/16257814

#SPJ4

which statement best describes how the universe expands

Answers

The Big Bang Theory describes the formation of the universe, which scientists believe happened 13.7 billion years ago. The Big Bang Theory is a theory that explains the formation of the observable universe.

Under the Big Bang theory, the universe began as a very hot, very dense point in space that began expanding outward. It still expands today. This model describes the universe as a super ball with a very high density and temperature that explodes and is still expanding until today.

The Big Bang is a scientific theory about how the universe started and then made of group of stars known as the galaxies we see today.

To know more about Big Bang theory, visit;

https://brainly.com/question/17209127

#SPJ1

which of the following statements about the characteristics of minerals are correct? 1.) minerals will have the same streak color 2.) a mineral with a higher hardness value will scratch one with a lower value 3.) metallic minerals will usually have a shiny luster 4.) minerals with cleavage will split in clean cuts without jagged edges answers: 2,3 and 4 only or 1,2 and 3 only or 1,3 or 4 only or 1, 2 and 4 only

Answers

The earth is composed of mineral elements either alone or in the combinations called the compounds. A mineral is composed of a single element or compound. Among the given statements, the correct statements are 1, 2 and 3 only. The correct option is B.

The naturally occurring inorganic solid with a definite chemical composition and a crystalline structure is defined as the mineral. The different minerals found under the surface of earth are characterized by the shape, hardness, luster, size, etc.

Each mineral has a unique lustre like silky, glossy, etc. some minerals have a characteristic colour, streak is the shade of a mineral when it is crushed into a fine powder. Hardness depends on the strength of bonds in minerals.

Thus the correct option is B.

To know more about minerals, visit;

https://brainly.com/question/15844293

#SPJ1

Find the pH and the volume (mL) of 0.407 M HNO3 needed to reach the equivalence point in the titration of 2.65 L of 0.0750 M pyridine (C5H5N, Kb = 1.7 × 10−9).Volume = mL HNO3pH =

Answers

The balanced chemical equation for the reaction between [tex]HNo_{3}[/tex] and pyridine ([tex]C_{5} H_{5}N[/tex]) is:

[tex]HNo_{3}[/tex] + [tex]C_{5} H_{5}N[/tex]→ [tex]C_{5} H_{5}N[/tex]+[tex]No_{3}[/tex]-

Step 1: Calculate the moles of pyridine present in 2.65 L of 0.0750 M pyridine:

moles of pyridine = (0.0750 mol/L) x 2.65 L = 0.1988 mol

Step 2: Determine the amount of [tex]HNo_{3}[/tex] required to react with all the pyridine present. Since [tex]HNo_{3}[/tex] is a strong acid, it will react completely with pyridine in a 1:1 ratio:

moles of [tex]HNo_{3}[/tex] required = 0.1988 mol

Step 3: Calculate the volume of 0.407 M [tex]HNo_{3}[/tex] required to provide 0.1988 mol of [tex]HNo_{3}[/tex] :

0.407 mol/L = 0.1988 mol / V

V = 0.488 L = 488 mL

Therefore, the volume of 0.407 M [tex]HNo_{3}[/tex] needed to reach the equivalence point is 488 mL.

Step 4: To calculate the pH at the equivalence point, we need to determine the concentration of the resulting salt, [tex]C_{5} H_{5}N[/tex]+[tex]No_{3}[/tex]-. At the equivalence point, moles of pyridine = moles of [tex]HNo_{3}[/tex]. Therefore, the moles of [tex]C_{5} H_{5}N[/tex]+NO3- formed is also 0.1988 mol. The total volume of the solution is 2.65 L + the volume of [tex]HNo_{3}[/tex] added (0.488 L).

Total volume of the solution = 2.65 L + 0.488 L = 3.138 L

Concentration of [tex]C_{5} H_{5}N[/tex]+[tex]No_{3}[/tex]- = moles / volume = 0.1988 mol / 3.138 L = 0.0633 M

Since [tex]C_{5} H_{5}N[/tex]is a weak base and [tex]HNo_{3}[/tex] is a strong acid, the salt [tex]C_{5} H_{5}N[/tex]+[tex]No_{3}[/tex]- is acidic. To calculate the pH, we need to determine the concentration of H+ ions in the solution. The balanced chemical equation for the dissociation of [tex]C_{5} H_{5}N[/tex]+[tex]No_{3}[/tex]- is:

[tex]C_{5} H_{5}N[/tex]+[tex]No_{3}[/tex]- + H2O → [tex]C_{5} H_{5}N H[/tex]+ [tex]HNo_{3}[/tex]+ H+

The equilibrium constant for this reaction is:

Kw / Kb = (H+)([tex]C_{5} H_{5}N[/tex]) / ([tex]C_{5} H_{5}N H[/tex]+[tex]No_{3}[/tex]-)

where Kw is the ion product constant for water (1.0 × 10^-14 at 25°C), and Kb is the base dissociation constant for pyridine (1.7 × 10^-9).

Solving for [H+], we get:

[H+] = (Kw / Kb) x ([tex]C_{5} H_{5}N H[/tex]+[tex]No_{3}[/tex]-) / ([tex]C_{5} H_{5}N[/tex])

[H+] = (1.0 × 10^-14) / (1.7 × 10^-9) x (0.0633 M) / (0.0750 M)

[H+] = 3.33 × 10^-6 M

pH = -log[H+] = -log(3.33 × 10^-6) = 5.48

Therefore, the pH at the equivalence point is 5.48.

To know more about strong acid

brainly.com/question/31143763

#SPJ11

What do we call a substance composed of atoms of more than one element that are held together by chemical bonds?
Compound
Crystal
Salt
Ion

Answers

A substance composed of atoms of more than one element that are held together by chemical bonds is called a compound. Therefore the correct option is option A.

A compound is a pure material that is created by chemically combining two or more distinct components in a specific order. Chemical bonds, which can be ionic or covalent, hold the atoms of a substance together.

The characteristics of compounds are distinct from the characteristics of the constituent parts.

For instance, sodium is a soft metal and chlorine is a greenish-yellow gas; nevertheless, when these two elements combine to produce sodium chloride (table salt), they create a white crystalline solid that is far more stable than the constituent parts of each element alone. Therefore the correct option is option A.

For such more question on chemical bond:

https://brainly.com/question/819068

#SPJ11

For ungrouped binary data, explain why when # is near 1 , residuals are necessarily 1< either small and positive or large and negative. What happens when %; is near O?

Answers

For ungrouped binary data, when the proportion (#) is near 1, residuals are necessarily either small and positive or large and negative. This is because binary data can only take on two values, such as 0 and 1. When the proportion is near 1, it means that most of the data points are positive (1), and only a few are negative (0).

In this case, the residuals will be small and positive for the data points close to 1, as their predicted values are close to the actual values. However, the residuals for the data points close to 0 will be large and negative, as their predicted values are far from the actual values.

On the other hand, when the proportion (%) is near 0, it means that most of the data points are negative (0), and only a few are positive (1). In this case, the residuals will be small and negative for the data points close to 0, as their predicted values are close to the actual values. However, the residuals for the data points close to 1 will be large and positive, as their predicted values are far from the actual values.

To know more about the binary data refer here :

https://brainly.com/question/27752107#

#SPJ11

the co2 produced during cellular respiration can react with water to form the acid carbonic acid. thus, one can measure the rate of cellular respiration by using the ph indicator phenolphthalein. in procedure 12.3, what color is the solution expected to be after the ph indicator is first added? according to the experimental protocol, how should the naoh be added and how much should be added to the solution?

Answers

In procedure 12.3, when the pH indicator phenolphthalein is first added, the solution is expected to be colorless. This is because phenolphthalein is a colorless compound in acidic solutions and only turns pink or red in basic solutions.

To measure the rate of cellular respiration using phenolphthalein, we need to add a small amount of NaOH to the solution after adding the pH indicator. The NaOH will react with the carbonic acid produced by the cellular respiration, increasing the pH of the solution and causing the phenolphthalein to turn pink or red.
According to the experimental protocol, we should add 1-2 drops of NaOH at a time while monitoring the color change of the solution. We should continue adding NaOH until the solution turns pink or red, indicating that the pH has become basic. However, we should be careful not to add too much NaOH, as this could cause the pH to become too basic and interfere with the accuracy of our measurements.
Overall, by using phenolphthalein as a pH indicator and carefully adding NaOH, we can accurately measure the rate of cellular respiration and better understand the metabolic processes occurring within living organisms.

for more such questions on  phenolphthalein

https://brainly.com/question/2815636

#SPJ11

By convention, when writing a chemical equation the are listed on the left side of the arrow and the are listed on the right side of the arrow.

Answers

When writing a chemical equation, it is convention to list the reactants on the left side of the arrow and the products on the right side of the arrow.

This helps to show the direction of the reaction and the relationship between the reactants and products. The arrow represents the conversion of reactants into products and can be read as "yields" or "produces." It is important to balance the equation to ensure that the same number of atoms and charges are present on both sides of the equation.

By convention, when writing a chemical equation, the reactants are listed on the left side of the arrow and the products are listed on the right side of the arrow.

To know more about chemical reaction, refer

https://brainly.com/question/25769000

#SPJ11

Answer: When writing a chemical equation, it is a convention to list the reactants on the left side of the arrow and the products on the right side of the arrow.

Explanation:

How many grams of NaCI (sodium chloride) (molar mass = 58.0 g/mol) would be needed
to prepare 40 ml of 0.25 M NaCI solution?

I need the steps…

Answers

We must first determine the number of moles of sodium chloride we require in order to respond to this issue. To accomplish this, we can apply the molarity formula: Molarity is calculated as moles of solute/volume of solution.

The molarity in this instance is 0.25 M, the solute's molecular weight is unknown, and the solution's volume is 40 mL. To solve for moles of solute, we can change the formula: moles of solute = molarity x volume of solution.

As a result, 10 moles of solute are equal to 0.25 M times 40 mL. Since we now know how many moles of sodium chloride are required, we can use its molar mass (58.0 g/mol) to determine how many grammes are required. The following equation might be used: mass of solute = moles of solute x.

Mass of solute = moles of solute x molar mass of solute is the formula we can apply. Mass of solute is therefore equal to 10 moles times 58.0 g/mol, or 580 grammes. In conclusion, 40 mL of a 0.25 M NaCI solution requires 580 grammes of sodium chloride.

Learn more about  moles  at:

https://brainly.com/question/26416088

#SPJ1

Polymers can possess different regions, which are characterized by the degree of order in the polymer chains. Regions of the polymer that are very ordered are called _____ regions, whereas regions of the polymer that are very disordered are called _____ regions.

Answers

The answer is that regions of the polymer that are very ordered are called crystalline regions, whereas regions of the polymer that are very disordered are called amorphous regions.

Polymers are long chains of repeating units called monomers. The degree of order in the polymer chains can vary depending on factors such as the type of monomers used and the processing conditions during polymerization. When the polymer chains are arranged in a regular, repeating pattern, they form crystalline regions, which have a high degree of order.

These regions tend to be more rigid and have higher melting points compared to the amorphous regions. On the other hand, when the polymer chains are arranged in a random, disordered pattern, they form amorphous regions, which have a low degree of order. These regions tend to be more flexible and have lower melting points compared to the crystalline regions. The balance between crystalline and amorphous regions in a polymer can affect its mechanical properties, such as strength and flexibility.

To know more about polymerization visit:

brainly.com/question/27354910

#SPJ11

Directions: For each of the following problems, find the unknown AH and show the reactions
adding up to the overall reaction. On the lines to the left of each reaction, indicate the
change that was made.
1. Calculate the AH for the reaction
Fe,0,- 2 Fe + ALO,
2 Al
Using the following information:
2 Al ¹,0, ALO,
2 Fe+,0, Fe,0,
Unit: Thermochemistry
"Hess's Law" - HW
H₂O₂ H₂O₂
H₂ + 1/2O₂ H₂O
2. Calculate the AH for the following reaction:
2 H₂O,
2 H₂O + O₂
Using the following information:
3. Determine the AH for the reaction:
NO
½ 0₂
NO₂
Using the following information:
½/2N₂ + 1/2O₂ - NO
½/2 N₂ + O₂
NO₂
4
AH = 1670 KJ
AH--824 KJ
AH = -188 kJ
AH = -286 kJ
AH = + 90.0 kJ
AH = + 34.0 kJ

Answers

The ΔH for the given reactions are:

+846 kJ.+308 kJ.-146.0 kJ.

How to calculate ΔH of reactions?

To find the ΔH for the given reaction, using Hess's Law, which states that the ΔH of an overall reaction is equal to the sum of the ΔH values for each individual reaction involved in the process:

2 Al + (3/2) O₂ → Al₂O₃ ΔH=-1670 kJ (multiplied by 2)

Fe₂O₃ → 2 Fe + (3/2) O₂ ΔH=+824 kJ (reversed)

2 Fe + (3/2) O₂ → Fe₂O₃ ΔH=-824 kJ (multiplied by 2)

2 Al2O₃ → 4 Al + (3/2) O₂ ΔH=+3340 kJ (reversed)

Adding the two equations obtained above, then the overall reaction:

2 Al + Fe₂O₃ → 2 Fe + Al₂O₃ ΔH=+1670-824=+846 kJ

Therefore, the ΔH for the given reaction is +846 kJ.

To find the ΔH for the given reaction, to use the same approach as above. Write the required reactions and their corresponding ΔH values as follows:

H₂ + O₂ → H₂O₂ ΔH=-188 kJ (multiplied by 2)

H₂O₂ → 2 H₂O + O₂ ΔH=+496 kJ (reversed)

Adding the two equations obtained above, then the overall reaction:

2 H₂O₂ → 2 H₂O + 2 O₂ ΔH=+308 kJ

Therefore, the ΔH for the given reaction is +308 kJ.

To find the ΔH for the given reaction, use the same approach as above:

1/2 N₂ + 1/2 O₂ → NO ΔH=+90.0 kJ (multiplied by 2)

2 NO → N₂ + 2 O₂ ΔH=-180.0 kJ (reversed)

1/2 N₂ + O₂ → NO₂ ΔH=+34.0 kJ

Adding the two equations obtained above, then the overall reaction:

NO + 1/2 O₂ → NO₂ ΔH=-146.0 kJ

Therefore, the ΔH for the given reaction is -146.0 kJ.

Find out more on Hess's law here: https://brainly.com/question/9530080

#SPJ1

1. Fâ
Express your answer in complete form, in order of increasing orbital. For example, 1s22s21s22s2 would be entered as 1s^22s^2.
2. P3â
Express your answer in complete form, in order of increasing orbital. For example, 1s22s21s22s2 would be entered as 1s^22s^2.
3.Li+
Express your answer in complete form, in order of increasing orbital. For example, 1s22s21s22s2 would be entered as 1s^22s^2.
4.Al3+
Express your answer in complete form, in order of increasing orbital. For example, 1s22s21s22s2 would be entered as 1s^22s^2.

Answers

1. F⁻

The electron configuration of F⁻ is: 1s²2s²2p⁶.

2. P³⁻

The electron configuration of P³⁻ is: 1s²2s²2p⁶3s²3p⁶.

3. Li⁺

The electron configuration of Li⁺ is: 1s².

4. Al³⁺

The electron configuration of Al³⁺ is: 1s²2s²2p⁶. Note that Al³⁺ has lost three electrons from its neutral state, which has an electron configuration of 1s²2s²2p⁶3s²3p¹.

Here a brief summary of the electron configurations of the given ions:

F⁻: gained one electron, electron configuration is 1s²2s²2p⁶.

P³⁻: gained three electrons, electron configuration is 1s²2s²2p⁶3s²3p⁶.

Li⁺: lost one electron, electron configuration is 1s².

Al³⁺: lost three electrons, electron configuration is 1s²2s²2p⁶.

To know more about the electron configurations refer here :

https://brainly.com/question/30257751#

#SPJ11

Be sure to answer all parts.

Determine the partial pressure and number of moles of each gas in a 14.75−L vessel at 30.0°C containing a mixture of xenon and neon gases only. The total pressure in the vessel is 4.70 atm, and the mole fraction of xenon is 0.701.

What is the partial pressure of xenon?

atm

What is the number of moles of xenon?

mol

What is the partial pressure of neon?

atm

What is the number of moles of neon?

mol

Answers

The partial pressure of xenon is 3.29 atm.

The number of moles of xenon is 5.45 mol.

The partial pressure of neon is 1.41 atm.

The number of moles of neon is 9.24 mol.

Using Dalton's law of partial pressures, the total pressure is the sum of the partial pressures of each gas. Let P_Xe and P_Ne be the partial pressures of xenon and neon, respectively. Then we have:

P_Xe + P_Ne = 4.70 atm

The mole fraction of xenon is given as 0.701, which means that the mole fraction of neon is 0.299. Therefore, we can write:

Xe moles / Total moles = 0.701Ne moles / Total moles = 0.299

We can solve for the number of moles of each gas:

Xe moles = 0.701 × Total molesNe moles = 0.299 × Total moles

We can substitute these expressions into the equation for partial pressures:

P_Xe = Xe moles / Total moles × Total pressureP_Ne = Ne moles / Total moles × Total pressure

Plugging in the given values, we get:

P_Xe = 0.701 × 4.70 atm = 3.29 atmXe moles = 0.701 × 14.75 L / 0.08206 L·atm/mol·K × (30.0°C + 273.15) K = 5.45 molP_Ne = 0.299 × 4.70 atm = 1.41 atmNe moles = 0.299 × 14.75 L / 0.08206 L·atm/mol·K × (30.0°C + 273.15) K = 9.24 mol

To learn more about partial pressure, here

https://brainly.com/question/31214700

#SPJ1

What do the circles represent? in room tempeture water

Answers

The little circles or spheres in room-temperature water represent water molecules.

What are molecules?

A molecule is the smallest unit of a substance that possesses all of that substance's physical and chemical characteristics

The smallest unit of a substance, a molecule is made up of two or more atoms joined together by chemical bonds while maintaining the substance's composition and qualities.

Examples of molecules are water molecules. In water molecules, the mobility of molecules is constant. The pulls that water molecules have on one another keep them in close proximity.

Learn more about water molecules at: https://brainly.com/question/1313076

#SPJ1

The most essential compound needed to sustain life as we know it is ________.
A) carbon dioxide
B) water
C) ozone
D) oxygen
E) carbohydrates

Answers

The most essential compound needed to sustain life as we know it is water. Therefore the correct option is option B.

Water is necessary for life for a number of reasons. It makes up a sizable portion of the human body and is essential for a variety of internal processes, such as controlling temperature, transferring nutrients and waste, and lubricating joints. Many other organisms depend on water for survival, and plants use it for photosynthesis.

Although it is likewise essential for life as we know it, oxygen is not regarded as a compound. Many species, including humans, require oxygen, an element, in order to breathe. Therefore the correct option is option B.

For such more question on  compound:

https://brainly.com/question/28872356

#SPJ11

Physical, Chemical, or Therapeutic Incompatibility?:
Antagonism between warfarin and phytonadione.

Answers

The incompatibility between warfarin and phytonadione is chemical, as they have opposite effects on blood clotting.

Warfarin is a blood thinner that inhibits the synthesis of vitamin K-dependent clotting factors, while phytonadione (also known as vitamin K1) is a clotting factor that reverses the effects of warfarin. However, this chemical incompatibility can have therapeutic benefits in certain situations, such as when a patient on warfarin experiences excessive bleeding and needs an antidote to reverse the blood-thinning effects.


The antagonism between warfarin and phytonadione represents a therapeutic incompatibility. Warfarin is an anticoagulant that works by inhibiting the synthesis of clotting factors, while phytonadione (vitamin K) is essential for the production of these factors. Thus, they have opposing effects in the body.

To know more about body click here

brainly.com/question/15803339

#SPJ1

Notice that the bond strength for lithium bonded with any of the anions is larger than the bond strength of potassium bonded with any of the same anions. Propose a scientifically sound explanation for this.

Answers

The bond strength between a metal cation and an anion is determined by several factors, including the charge of the ions, their sizes, and their electronic configurations. In this case, we are comparing the bond strengths of lithium and potassium with the same anions.

Lithium has a smaller atomic radius and a lower ionization energy than potassium. These properties suggest that lithium cations will have a stronger attraction to anions than potassium cations. This is because the smaller size of lithium allows for a stronger electrostatic interaction with the anion, and the lower ionization energy of lithium means that it is easier to remove an electron from lithium, resulting in a more positively charged cation that is more strongly attracted to the anion.

Learn more about the lithium bond here.

https://brainly.com/question/25760965

#SPJ1

When comparing the titration curve for a weak acid- strong base titration and a strong acid- strong base titration the following differences are found.-the curve for the weak acid- strong base titration rises gradually before the steep rise to the equivalence point.-the pH at the equivalence point is about 7.00 for the weak acid- strong base titration.

Answers

The differences in the acid dissociation constants (pKa) of the weak and strong acids are what cause the observed changes in the titration curve between a weak acid-strong base titration and a strong acid-strong base titration.

What is titration?

Titration, also referred to as titrimetry, is a method for calculating the concentration of an analyte in a mixture that is used in chemical qualitative analysis. Titration, which is also known as volumetric analysis, is a crucial analytical chemistry technique.

The differences observed in the titration curve between a weak acid-strong base titration and a strong acid-strong base titration are due to the difference in the acid dissociation constants (pKa) of the weak and strong acids.

In a weak acid-strong base titration, the weak acid dissociates only partially in water, resulting in a smaller concentration of H+ ions. At the beginning of the titration, the solution contains mostly the weak acid, and the pH of the solution is determined by the weak acid dissociation constant (pKa) and the concentration of the acid.

As the strong base is added, it reacts with the weak acid to form its conjugate base and water. The pH of the solution gradually increases as the concentration of the weak acid decreases.

The pH rises gradually until it reaches the buffering region of the titration curve, where the pH changes only slightly despite the addition of more base. The pH then rises rapidly as the strong base neutralizes the remaining weak acid, leading to the steep rise in the titration curve.

The equivalence point is reached when all the weak acid has been neutralized, resulting in a solution containing only the conjugate base of the weak acid and the strong base. At the equivalence point, the pH of the solution is approximately 7.00 because the conjugate base of the weak acid is a weak base and reacts with water to produce hydroxide ions.

In a strong acid-strong base titration, the strong acid dissociates completely in water, resulting in a high concentration of H+ ions. At the beginning of the titration, the solution contains mostly the strong acid, and the pH of the solution is determined by the concentration of the acid. As the strong base is added, it reacts with the strong acid to form salt and water. The pH of the solution increases rapidly as the concentration of H+ ions decreases, leading to the steep rise in the titration curve.

The equivalence point is reached when all the strong acid has been neutralized, resulting in a solution containing only the salt and the strong base. At the equivalence point, the pH of the solution depends on the acid dissociation constant (pKa) of the conjugate acid of the strong base. If the conjugate acid is weaker than the strong acid, the pH will be greater than 7.00. If the conjugate acid is stronger than the strong acid, the pH will be less than 7.00.

Learn more about titration on:

https://brainly.com/question/13307013

#SPJ11

During a chemical reaction, the substances we start out with are called_______ and the substances we end up with are called______

Answers

The substances we start out with in a chemical reaction are called reactants, and the substances we end up with are called products.



A chemical reaction is a process where atoms are rearranged to form new substances.

The reactants are the initial substances that undergo the reaction, while the products are the resulting substances that are formed.

In a chemical equation, the reactants are usually written on the left-hand side of the arrow, while the products are written on the right-hand side.



Hence , reactants are the substances we start out with in a chemical reaction, and products are the substances we end up with.

learn more about chemical reaction click here:

https://brainly.com/question/11231920

#SPJ11

explain the effect of concentration on reaction rate in terms of collisions between molecules: when the concentration of reactants increases, the reaction time , because increasing the of molecules or ions in solution increases the rate of between them.

Answers

The effect of concentration on reaction rate can be explained in terms of collisions between molecules. When the concentration of reactants increases, the reaction time decreases, because increasing the number of molecules or ions in solution increases the rate of collisions between them. This is because an increase in concentration means that there are more molecules or ions in a given volume, which increases the likelihood of collisions between them. When there are more collisions, there is a higher probability that the reactants will collide with enough energy and in the correct orientation to form products. Therefore, an increase in concentration leads to an increase in the reaction rate.

please help me do your best please

Answers

The subunit that makes up the extended structure is option C

What is the meaning of subunits in a solid structure?

Subunits are the smallest units that make up the overall structure in a solid structure. These building blocks may be atoms, molecules, ions, or even more substantial entities like crystals.

The overall structure and characteristics of the solid are determined by how these subunits are arranged.

The building blocks of a metal are atoms organized in a crystal lattice. The metal's characteristics, such as its ductility, conductivity, and strength, depend on how the atoms are arranged.

Learn more about solid structure:https://brainly.com/question/12890484

#SPJ1

which one of the following is most likely to be an ionic compound? multiple choice clf3 fecl3 nh3 pf3 so3

Answers

Among the given choices, FeCl3 is most likely to be an ionic compound.

An ionic compound is formed between a metal and a non-metal, where electrons are transferred from the metal to the non-metal, creating positive and negative ions that attract each other.

This is because Fe (iron) is a metal and Cl (chlorine) is a non-metal. In FeCl3, iron loses 3 electrons to form Fe3+ ion, while each chlorine atom gains 1 electron to form 3 Cl- ions. The attraction between these oppositely charged ions forms an ionic bond, resulting in the ionic compound FeCl3.

To know more about ionic compound : https://brainly.com/question/2687188

#SPJ11

KNO3 with AgCH3COO will produce
a. No visible reaction
b. Precipitate (solid)
c. Precipitate (solid) and Bubbles (g) Bubbles (g)
d. No visible reaction but will neutralize each other

Answers

The products formed are KCH3COO (potassium acetate) and AgNO3 (silver nitrate). Silver nitrate is known to be slightly soluble in water, so it will form a precipitate (solid) when the reaction occurs. Therefore, the correct answer is:
b. Precipitate (solid).

The reaction between KNO3 (potassium nitrate) and AgCH3COO (potassium nitrate) is a double displacement reaction. In a double displacement reaction, the cations and anions of the two compounds switch places to form two new compounds. In this case, the reaction can be written as:
KNO3 (aq) + AgCH3COO (aq) → KCH3COO (aq) + AgNO3 (s)

The products formed are KCH3COO (potassium acetate) and AgNO3 (silver nitrate). Silver nitrate is known to be slightly soluble in water, so it will form a precipitate (solid) when the reaction occurs. Precipitate (solid)
To summarize, the reaction between KNO3 and AgCH3COO results in the formation of a solid precipitate (AgNO3). This is due to the double displacement reaction that takes place, causing the cations and anions to switch places and create new compounds. The observed outcome indicates the formation of a solid product, making option b the accurate response.

learn more about potassium nitrate Refer: https://brainly.com/question/30618191

#SPJ11

Other Questions
You want your anmeter to have high or low resistance?A) highB) low Many of the most historically recent devastating volcanic eruptions have occurred ______. Explain why an aluminum ball and a steel ball of similar size and shape, dropped from the same height, reach the ground at the same time. Why did some Americans believe the New Deal had gone too far?They wanted Social Security to include fewer benefits.They objected to intervention by the Federal government.They wanted the New Deal to include the ideas of Father Coughlin. In order to enhance a client's response to medication for chest pain from acute angina, the nurse should emphasize which approach?a. Eat smaller mealsb. Limiting alcohol usec. Avoiding passive smoked. Learning relaxation techniques What process, performed frequently, helps ensure high product quality? Mr. Farris was recommended to purchase tetrahydrozoline eye drops. Whats the brand name for tetrahydrozoline eye drops? Combigan Cosopt Patanol Visine Construct a phrase-structure grammar for the set of all fractions of the form a/b, where a is a signed integer in decimal notation and b is a positive integer. 1. Construct the Backus-Naur rules/form for this grammar? e. Construct a derivation tree for +311/17 to prove that it is a valid symbol in the grammar Quadrilateral EFGH is a square. What is the value of x? The UCC was designed to include items such as software and information. true/false Covan, Inc, is expected to have the following free cash flows: Year FCF 10 12 13 14 Grow by 4% per year a. Covan has 8 million shares outstanding, $3 million in excess cash, and it has no debt. If its cost of capital is 12%, what should its stock price be? b. Covan reinvests all its FCF and has no plans to add debt or change its cash hold- ings. If you plan to sell Covan at the beginning of year 2, what should you expect its price to be? c. Assume you bought Covan stock at the beginning of year 1. What is your expected return from holding Covan stock until year 2? What does collocation and osmotic communication enhance among team members? Identify each statement about glaciers as expressing indigenous Athapaskan and Tlingit views, or modern scientific views.Indigenous Athapaskan and Tlingit ViewsGlaciers are sensitive to smells, and can listen.Glaciers can make moral judgments.Modern Scientific ViewsGlaciers are natural forces, separate from humans.Glaciers are valuable records of historical climate change Jean Vigo's masterpiece........ was banned by the censors from 1933 to 1946. Vigo was an anarchist by instinct, who regularly characterized authority figures as grotesques. Overall cost leadership requires a tight set of interrelated tactics that include:1. aggressive construction of efficient-scale facilities.2. vigorous pursuit of cost reductions from experience.3. tight cost and overhead control.4. avoidance of marginal customer accounts.5. cost minimization in all activities in the firm's value chain, such as R&D, service, sales force, and advertising. sandhill inc. had pretax financial income of $144,700 in 2025. included in the computation of that amount is insurance expense of $3,700 which is not deductible for tax purposes. in addition, depreciation for tax purposes exceeds accounting depreciation by $10,800. Prepare Shetland's journal entry to record 2014 taxes, assuming a tax rate of 30%. _________________ is metabolized by nonspecific plasma and tissue esterases. Name the 3 red flags for spinal fracture. a firm in a competitive market has the following cost structure: output atc 0 -- 1 $10 2 $8 3 $7 4 $8 5 $10 if the firm's fixed cost of production is $4, and the market price is $12, how many units will the firm produce? group of answer choices 1 unit 3 units 4 units 2 units How much is this? Pls help me Ill make u brainlesss! Steam Workshop Downloader