show that y=x-2 is a tangent to the curve y=x^3-7x^2+17x-14 and
find the point of tangency
include explanation

Answers

Answer 1

The equation of the tangent to the curve is y = x - 2, and the point of tangency is at (2,0).

The tangent is a straight line that just touches the curve at a given point. The slope of the tangent line is the derivative of the function at that point. The curve y = x³ - 7x² + 17x - 14 is a cubic curve with the first derivative y' = 3x² - 14x + 17. Now let's find the point of intersection of the line (1) with the curve (2). Substitute (1) into (2) to get: x - 2 = x³ - 7x² + 17x - 14. Simplifying, we get:x³ - 7x² + 16x - 12 = 0Now, differentiate the cubic curve with respect to x to find the first derivative: y' = 3x² - 14x + 17. Let's substitute x = 2 into y' to find the slope of the tangent at the point of tangency: y' = 3(2)² - 14(2) + 17= 12 - 28 + 17= 1. Since the equation of the tangent is y = x - 2, we can conclude that the point of tangency is at (2,0). This can be verified by substituting x = 2 into both (1) and (2) to see that they intersect at the point (2,0).Therefore, y = x - 2 is a tangent to the curve y = x³ - 7x² + 17x - 14 at the point (2,0).

To learn more about tangent to curve: https://brainly.com/question/7252502

#SPJ11


Related Questions

On a coordinate plane, point a has coordinates (8, -5) and point b has coordinates (8, 7). which is the vertical distance between the two points?

Answers

The vertical distance between points A and B is 12 units.

The vertical distance between two points on a coordinate plane is found by subtracting the y-coordinates of the two points. In this case, point A has coordinates (8, -5) and point B has coordinates (8, 7).

To find the vertical distance between these two points, we subtract the y-coordinate of point A from the y-coordinate of point B.

Vertical distance = y-coordinate of point B - y-coordinate of point A

Vertical distance = 7 - (-5)
Vertical distance = 7 + 5
Vertical distance = 12

Therefore, the vertical distance between points A and B is 12 units.

learn more about vertical distance here:

https://brainly.com/question/210650

#SPJ11

let a>0 and b be integers (b can be negative). show
that there is an integer k such that b + ka >0
hint : use well ordering!

Answers

Given, a>0 and b be integers (b can be negative). We need to show that there is an integer k such that b + ka > 0.To prove this, we will use the well-ordering principle. Let S be the set of all positive integers that cannot be written in the form b + ka, where k is some integer. We need to prove that S is empty.

To do this, we assume that S is not empty. Then, by the well-ordering principle, S must have a smallest element, say n.This means that n cannot be written in the form b + ka, where k is some integer. Since a>0, we have a > -b/n. Thus, there exists an integer k such that k < -b/n < k + 1. Multiplying both sides of this inequality by n and adding b,

we get: bn/n - b < kna/n < bn/n + a - b/n,

which can be simplified to: b/n < kna/n - b/n < (b + a)/n.

Now, since k < -b/n + 1, we have k ≤ -b/n. Therefore, kna ≤ -ba/n.

Substituting this in the above inequality, we get: b/n < -ba/n - b/n < (b + a)/n,

which simplifies to: 1/n < (-b - a)/ba < 1/n + 1/b.

Both sides of this inequality are positive, since n is a positive integer and a > 0.

Thus, we have found a positive rational number between 1/n and 1/n + 1/b. This is a contradiction, since there are no positive rational numbers between 1/n and 1/n + 1/b.

Therefore, our assumption that S is not empty is false. Hence, S is empty.

Therefore, there exists an integer k such that b + ka > 0, for any positive value of a and any integer value of b.

To know more about integers visit :

https://brainly.com/question/490943

#SPJ11

Vectors (1,2,−1,0) and (3,1,5,−10) are orthogonal True or false

Answers

To determine if two vectors are orthogonal, we need to check if their dot product is equal to zero.

The dot product of two vectors A = (a₁, a₂, a₃, a₄) and B = (b₁, b₂, b₃, b₄) is given by:

A · B = a₁b₁ + a₂b₂ + a₃b₃ + a₄b₄

Let's calculate the dot product of the given vectors:

(1, 2, -1, 0) · (3, 1, 5, -10) = (1)(3) + (2)(1) + (-1)(5) + (0)(-10)

                            = 3 + 2 - 5 + 0

                            = 0

Since the dot product of the vectors is equal to zero, the vectors (1, 2, -1, 0) and (3, 1, 5, -10) are indeed orthogonal.

Therefore, the statement is true.

Learn more about Vector here:

https://brainly.com/question/29740341

#SPJ11

The polynomial function f(x) is a fourth degree polynomial. Which of the following could be the complete list of the roots of f(x)

Answers

Based on the given options, both 3,4,5,6 and 3,4,5,6i could be the complete list of roots for a fourth-degree polynomial. So option 1 and 2 are correct answer.

A fourth-degree polynomial function can have up to four distinct roots. The given options are:

3, 4, 5, 6: This option consists of four real roots, which is possible for a fourth-degree polynomial.3, 4, 5, 6i: This option consists of three real roots (3, 4, and 5) and one complex root (6i). It is also a valid possibility for a fourth-degree polynomial.3, 4, 4+i√x: This option consists of three real roots (3 and 4) and one complex root (4+i√x). However, the presence of the square root (√x) makes it unclear if this is a valid root for a fourth-degree polynomial.3, 4, 5+i, -5+i: This option consists of two real roots (3 and 4) and two complex roots (5+i and -5+i). It is possible for a fourth-degree polynomial to have complex roots.

Therefore, both options 1 and 2 could be the complete list of roots for a fourth-degree polynomial.

The question should be:

The polynomial function f(x) is a fourth degree polynomial. Which of the following could be the complete list of the roots of f(x)

1. 3,4,5,6

2. 3,4,5,6i

3. 3,4,4+i[tex]\sqrt{6}[/tex]

4. 3,4,5+i, 5+i, -5+i

To learn more about fourth degree polynomial: https://brainly.com/question/25827330

#SPJ11

to the reducing-balance method, calculate the annual rate of depreciation. 7.2 Bonang is granted a home loan of R650000 to be repaid over a period of 15 years. The bank charges interest at 11, 5\% per annum compounded monthly. She repays her loan by equal monthly installments starting one month after the loan was granted. 7.2.1 Calculate Bonang's monthly installment.

Answers

Bonang's monthly installment is R7 492,35 (rounded to the nearest cent).

In order to calculate the annual rate of depreciation using the reducing-balance method, we need to know the initial cost of the asset and the estimated salvage value.

However, we can calculate Bonang's monthly installment as follows:

Given that Bonang is granted a home loan of R650 000 to be repaid over a period of 15 years and the bank charges interest at 11,5% per annum compounded monthly.

In order to calculate Bonang's monthly installment,

we can use the formula for the present value of an annuity due, which is:

PMT = PV x (i / (1 - (1 + i)-n)) where:

PMT is the monthly installment

PV is the present value

i is the interest rate

n is the number of payments

If we assume that Bonang will repay the loan over 180 months (i.e. 15 years x 12 months),

then we can calculate the present value of the loan as follows:

PV = R650 000 = R650 000 x (1 + 0,115 / 12)-180 = R650 000 x 0,069380= R45 082,03

Therefore, the monthly installment that Bonang has to pay is:

PMT = R45 082,03 x (0,115 / 12) / (1 - (1 + 0,115 / 12)-180)= R7 492,35 (rounded to the nearest cent)

Therefore, Bonang's monthly installment is R7 492,35 (rounded to the nearest cent).

To know more about installment  visit:

https://brainly.com/question/22622124

#SPJ11

Solve the following inequality. Write the solution set in interval notation. −3(4x−1)<−2[5+8(x+5)] Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is (Type your answer in interval notation. Use integers or fractions for any numbers in the expression.) B. The solution set is ∅.

Answers

A. The solution set is (-∞, -87/4). The solution set for the inequality is x < -87/4.

To solve the inequality −3(4x−1) < −2[5+8(x+5)], we will simplify the expression step by step and solve for x.

First, let's simplify both sides of the inequality:

−3(4x−1) < −2[5+8(x+5)]

−12x + 3 < −2[5+8x+40]

−12x + 3 < −2[45+8x]

Next, distribute the −2 inside the brackets:

−12x + 3 < −90 − 16x

Combine like terms:

−12x + 3 < −90 − 16x

Now, let's isolate the x term by adding 16x to both sides and subtracting 3 from both sides:

4x < −87

Finally, divide both sides of the inequality by 4 (since the coefficient of x is 4 and we want to isolate x):

x < -87/4

So, the solution set for the given inequality is x < -87/4.

In interval notation, this can be expressed as:

A. The solution set is (-∞, -87/4).

Learn more about inequality here

https://brainly.com/question/30238989

#SPJ11

For
all x,y ∋ R, if f(x+y)=f(x)+f(y) then there exists exactly one real
number a ∈ R , and f is continuous such that for all rational
numbers x , show that f(x)=ax

Answers

If f is continuous and f(x+y) = f(x) + f(y) for all real numbers x and y, then there exists exactly one real

number a ∈ R, such that f(x) = ax, where a is a real number.

Given that f(x + y) = f(x) + f(y) for all x, y ∈ R.

To show that there exists exactly one real number a ∈ R and f is continuous such that for all rational numbers x, show that f(x) = ax

Let us assume that there exist two real numbers a, b ∈ R such that f(x) = ax and f(x) = bx.

Then, f(1) = a and f(1) = b.

Hence, a = b.So, the function is well-defined.

Now, we will show that f is continuous.

Let ε > 0 be given.

We need to show that there exists a δ > 0 such that for all x, y ∈ R, |x − y| < δ implies |f(x) − f(y)| < ε.

Now, we have |f(x) − f(y)| = |f(x − y)| = |a(x − y)| = |a||x − y|.

So, we can take δ = ε/|a|.

Hence, f is a continuous function.

Now, we will show that f(x) = ax for all rational numbers x.

Let p/q be a rational number.

Then, f(p/q) = f(1/q + 1/q + ... + 1/q) = f(1/q) + f(1/q) + ... + f(1/q) (q times) = a/q + a/q + ... + a/q (q times) = pa/q.

Hence, f(x) = ax for all rational numbers x.

To learn more about continuous functions visit:

https://brainly.com/question/18102431

#SPJ11

a commercial cat food is 120 kcal/cup. a cat weighing 5 lb fed at a rate of 40 calories/lb/day should be fed how many cups at each meal if you feed him twice a day?

Answers

A cat weighing 5 lb and fed at a rate of 40 calories/lb/day should be fed a certain number of cups of commercial cat food at each meal if fed twice a day. We need to calculate this based on the given information that the cat food has 120 kcal/cup.

To determine the amount of cat food to be fed at each meal, we can follow these steps:

1. Calculate the total daily caloric intake for the cat:

  Total Calories = Weight (lb) * Calories per lb per day

                 = 5 lb * 40 calories/lb/day

                 = 200 calories/day

2. Determine the caloric content per meal:

  Since the cat is fed twice a day, divide the total daily caloric intake by 2:

  Caloric Content per Meal = Total Calories / Number of Meals per Day

                          = 200 calories/day / 2 meals

                          = 100 calories/meal

3. Find the number of cups needed per meal:

  Caloric Content per Meal = Calories per Cup * Cups per Meal

  Cups per Meal = Caloric Content per Meal / Calories per Cup

                = 100 calories/meal / 120 calories/cup

                ≈ 0.833 cups/meal

Therefore, the cat should be fed approximately 0.833 cups of commercial cat food at each meal if fed twice a day.

To learn more about number  Click Here: brainly.com/question/3589540

#SPJ11

I need help with this
You are told that \( 159238479574729 \equiv 529(\bmod 38592041) \). Use this information to factor 38592041 . Justify each step.

Answers

The given congruence to show that 38592041 is divisible by 529.

To factor the number 38592041 using the given congruence 159238479574729≡529(mod38592041), we can utilize the concept of modular arithmetic and the fact that a≡b(modn) implies that a−b is divisible by n.

Let's go step by step:

1. Start with the congruence 159238479574729≡529(mod38592041).

2. Subtract 529 from both sides: 159238479574729−529≡529−529(mod38592041).

3. Simplify: 159238479574200≡0(mod38592041).

4. Since 159238479574200 is divisible by 38592041, we can conclude that 38592041 is a factor of

159238479574200

5. Divide 159238479574200 by 38592041 to obtain the quotient, which will be another factor of 38592041.

By following these steps, we have used the given congruence to show that 38592041 is divisible by 529. Further steps are needed to fully factorize 38592041, but without additional information or using more advanced factorization techniques, it may be challenging to find all the prime factors.

To learn more about congruence

https://brainly.com/question/24770766

#SPJ11

A candy company claims that the colors of the candy in their packages are distributed with the (1 following percentages: 16% green, 20% orange, 14% yellow, 24% blue, 13% red, and 13% purple. If given a random sample of packages, using a 0.05 significance level, what is the critical value for the goodness-of-fit needed to test the claim?

Answers

The critical value for the goodness-of-fit test needed to test the claim is approximately 11.07.

To determine the critical value for the goodness-of-fit test, we need to use the chi-square distribution with (k - 1) degrees of freedom, where k is the number of categories or color options in this case.

In this scenario, there are 6 color categories, so k = 6.

To find the critical value, we need to consider the significance level, which is given as 0.05.

Since we want to test the claim, we perform a goodness-of-fit test to compare the observed frequencies with the expected frequencies based on the claimed distribution. The chi-square test statistic measures the difference between the observed and expected frequencies.

The critical value is the value in the chi-square distribution that corresponds to the chosen significance level and the degrees of freedom.

Using a chi-square distribution table or statistical software, we can find the critical value for the given degrees of freedom and significance level. For a chi-square distribution with 5 degrees of freedom and a significance level of 0.05, the critical value is approximately 11.07.

For more such questions on critical value

https://brainly.com/question/14040224

#SPJ4

Find the sorface area a) The band cut from paraboloid x 2+y 2 −z=0 by plane z=2 and z=6 b) The upper portion of the cylinder x 2+z 2 =1 that lier between the plane x=±1/2 and y=±1/2

Answers

a. The surface area of the band cut from the paraboloid is approximately 314.16 square units.

b.  We have:

S = ∫[-π/4,π/4]∫[-π/4,π/4] √(tan^2 θ/2 + 1) sec^2 θ/2 dθ dφ

a) To find the surface area of the band cut from the paraboloid x^2 + y^2 - z = 0 by planes z = 2 and z = 6, we can use the formula for the surface area of a parametric surface:

S = ∫∫ ||r_u × r_v|| du dv

where r(u,v) is the vector-valued function that describes the surface, and r_u and r_v are the partial derivatives of r with respect to u and v.

In this case, we can parameterize the surface as:

r(u, v) = (u cos v, u sin v, u^2)

where 0 ≤ u ≤ 2 and 0 ≤ v ≤ 2π.

To find the partial derivatives, we have:

r_u = (cos v, sin v, 2u)

r_v = (-u sin v, u cos v, 0)

Then, we can calculate the cross product:

r_u × r_v = (2u^2 cos v, 2u^2 sin v, -u)

and its magnitude:

||r_u × r_v|| = √(4u^4 + u^2)

Therefore, the surface area of the band is:

S = ∫∫ √(4u^4 + u^2) du dv

We can evaluate this integral using polar coordinates:

S = ∫[0,2π]∫[2,6] √(4u^4 + u^2) du dv

= 2π ∫[2,6] u √(4u^2 + 1) du

This integral can be evaluated using the substitution u^2 = (1/4)(4u^2 + 1) - 1/4, which gives:

S = 2π ∫[1/2,25/2] (√(u^2 + 1/4))^3 du

= π/2 [((25/2)^2 + 1/4)^{3/2} - ((1/2)^2 + 1/4)^{3/2}]

≈ 314.16

Therefore, the surface area of the band cut from the paraboloid is approximately 314.16 square units.

b) To find the surface area of the upper portion of the cylinder x^2 + z^2 = 1 that lies between the planes x = ±1/2 and y = ±1/2, we can also use the formula for the surface area of a parametric surface:

S = ∫∫ ||r_u × r_v|| du dv

where r(u,v) is the vector-valued function that describes the surface, and r_u and r_v are the partial derivatives of r with respect to u and v.

In this case, we can parameterize the surface as:

r(u, v) = (x(u, v), y(u, v), z(u, v))

where x(u,v) = u, y(u,v) = v, and z(u,v) = √(1 - u^2).

Then, we can find the partial derivatives:

r_u = (1, 0, -u/√(1 - u^2))

r_v = (0, 1, 0)

And calculate the cross product:

r_u × r_v = (u/√(1 - u^2), 0, 1)

The magnitude of this cross product is:

||r_u × r_v|| = √(u^2/(1 - u^2) + 1)

Therefore, the surface area of the upper portion of the cylinder is:

S = ∫∫ √(u^2/(1 - u^2) + 1) du dv

We can evaluate the inner integral using trig substitution:

u = tan θ/2, du = (1/2) sec^2 θ/2 dθ

Then, the limits of integration become θ = atan(-1/2) to θ = atan(1/2), since the curve u = ±1/2 corresponds to the planes x = ±1/2.

Therefore, we have:

S = ∫[-π/4,π/4]∫[-π/4,π/4] √(tan^2 θ/2 + 1) sec^2 θ/2 dθ dφ

This integral can be evaluated using a combination of trig substitutions and algebraic manipulations, but it does not have a closed form solution in terms of elementary functions. We can approximate the value numerically using a numerical integration method such as Simpson's rule or Monte Carlo integration.

Learn more about   area from

https://brainly.com/question/28020161

#SPJ11

credit card of america (cca) has a current ratio of 3.5 and a quick ratio of 3.0. if its total current assets equal $73,500, what are cca’s (a) current liabilities and (b) inventory?

Answers

a. CCA's current liabilities are approximately $21,000. b. CCA's inventory is approximately $10,500.

To find the current liabilities and inventory of Credit Card of America (CCA), we can use the current ratio and quick ratio along with the given information.

(a) Current liabilities:

The current ratio is calculated as the ratio of current assets to current liabilities. In this case, the current ratio is 3.5, which means that for every dollar of current liabilities, CCA has $3.5 of current assets.

Let's assume the current liabilities as 'x'. We can set up the following equation based on the given information:

3.5 = $73,500 / x

Solving for 'x', we find:

x = $73,500 / 3.5 ≈ $21,000

Therefore, CCA's current liabilities are approximately $21,000.

(b) Inventory:

The quick ratio is calculated as the ratio of current assets minus inventory to current liabilities. In this case, the quick ratio is 3.0, which means that for every dollar of current liabilities, CCA has $3.0 of current assets excluding inventory.

Using the given information, we can set up the following equation:

3.0 = ($73,500 - Inventory) / $21,000

Solving for 'Inventory', we find:

Inventory = $73,500 - (3.0 * $21,000)

Inventory ≈ $73,500 - $63,000

Inventory ≈ $10,500

Therefore, CCA's inventory is approximately $10,500.

Learn more about current liabilities here

https://brainly.com/question/31912654

#SPJ11

9. Solve x 1/4
=3x 1/8
. 10. (1 point) Solve ∣4x−8∣=∣2x+8∣. 3. Solve using the zero-factor property x 2
+3x−28=0

Answers

The solutions to the equation x² + 3x - 28 = 0 are x = -7 and x = 4.

1. Solve x^(1/4) = 3x^(1/8):

To solve this equation, we can raise both sides to the power of 8 to eliminate the fractional exponent:

(x^(1/4))⁸ = (3x^(1/8))⁸

x² = 3⁸ * x

x² = 6561x

Now, we'll rearrange the equation and solve for x:

x² - 6561x = 0

x(x - 6561) = 0

From the zero-factor property, we set each factor equal to zero and solve for x:

x = 0 or x - 6561 = 0

x = 0 or x = 6561

So the solutions to the equation x^(1/4) = 3x^(1/8) are x = 0 and x = 6561.

2. Solve |4x - 8| = |2x + 8|:

To solve this equation, we'll consider two cases based on the absolute value.

Case 1: 4x - 8 = 2x + 8

Solving for x:

4x - 2x = 8 + 8

2x = 16

x = 8

Case 2: 4x - 8 = -(2x + 8)

Solving for x:

4x - 8 = -2x - 8

4x + 2x = -8 + 8

6x = 0

x = 0

Therefore, the solutions to the equation |4x - 8| = |2x + 8| are x = 0 and x = 8.

3. Solve using the zero-factor property x² + 3x - 28 = 0:

To solve this equation, we can factor it:

(x + 7)(x - 4) = 0

Setting each factor equal to zero and solving for x:

x + 7 = 0 or x - 4 = 0

x = -7 or x = 4

To know more about solutions click on below link :

https://brainly.com/question/31041234#

#SPJ11

The best sports dorm on campus, Lombardi House, has won a total of 12 games this semester. Some of these games were soccer games, and the others were football games. According to the rules of the university, each win in a soccer game earns the winning house 2 points, whereas each win in a football game earns the house 4 points. If the total number of points Lombardi House earned was 32, how many of each type of game did it win? soccer football ​
games games ​

Answers

Lombardi House won 8 soccer games and 4 football games, found by following system of equations.

Let's assume Lombardi House won x soccer games and y football games. From the given information, we have the following system of equations:

x + y = 12 (total number of wins)

2x + 4y = 32 (total points earned)

Simplifying the first equation, we have x = 12 - y. Substituting this into the second equation, we get 2(12 - y) + 4y = 32. Solving this equation, we find y = 4. Substituting the value of y back into the first equation, we get x = 8.

Therefore, Lombardi House won 8 soccer games and 4 football games.

Learn more about equations here:

brainly.com/question/20067450

#SPJ11

Given the following data:
x = [ -1 0 2 3]
y = p(x) = [ -4 -8 2 28]
Provide the Cubic Polynomial Interpolation Function using each of the following methods:
Polynomial Coefficient Interpolation Method
Outcome: p(x) = a4x3 + a3x2 + a2x + a1
Newton Interpolation Method
Outcome: p(x) = b1 + b2(x-x1) + b3(x-x1)(x-x2) + b4(x-x1)(x-x2)(x-x3)
Lagrange Interpolation Method
Outcome: p(x) = L1f1 + L2f2 + L3f3 + L4f4

Answers

The cubic polynomial interpolation function for the given data using different methods is as follows:

Polynomial Coefficient Interpolation Method: p(x) = -1x³ + 4x² - 2x - 8

Newton Interpolation Method: p(x) = -8 + 6(x+1) - 4(x+1)(x-0) + 2(x+1)(x-0)(x-2)

Lagrange Interpolation Method: p(x) = -4((x-0)(x-2)(x-3))/((-1-0)(-1-2)(-1-3)) - 8((x+1)(x-2)(x-3))/((0-(-1))(0-2)(0-3)) + 2((x+1)(x-0)(x-3))/((2-(-1))(2-0)(2-3)) + 28((x+1)(x-0)(x-2))/((3-(-1))(3-0)(3-2))

Polynomial Coefficient Interpolation Method: In this method, we find the coefficients of the polynomial directly. By substituting the given data points into the polynomial equation, we can solve for the coefficients. Using this method, the cubic polynomial interpolation function is p(x) = -1x³ + 4x² - 2x - 8.

Newton Interpolation Method: This method involves constructing a divided difference table to determine the coefficients of the polynomial. The divided differences are calculated based on the given data points. Using this method, the cubic polynomial interpolation function is p(x) = -8 + 6(x+1) - 4(x+1)(x-0) + 2(x+1)(x-0)(x-2).

Lagrange Interpolation Method: This method uses the Lagrange basis polynomials to construct the interpolation function. Each basis polynomial is multiplied by its corresponding function value and summed to obtain the final interpolation function. The Lagrange basis polynomials are calculated based on the given data points. Using this method, the cubic polynomial interpolation function is p(x) = -4((x-0)(x-2)(x-3))/((-1-0)(-1-2)(-1-3)) - 8((x+1)(x-2)(x-3))/((0-(-1))(0-2)(0-3)) + 2((x+1)(x-0)(x-3))/((2-(-1))(2-0)(2-3)) + 28((x+1)(x-0)(x-2))/((3-(-1))(3-0)(3-2)).

These interpolation methods provide different ways to approximate a function based on a limited set of data points. The resulting polynomial functions can be used to estimate function values at intermediate points within the given data range.

Learn more about cubic polynomial interpolation here:

https://brainly.com/question/31494775

#SPJ11

More Addition / Subtraction 1) 0.12+143= 2) 0.00843+0.0144= 3) 1.2×10 −3
+27= 4) 1.2×10 −3
+1.2×10 −4
= 5) 2473.86+123.4=

Answers

Here are the solutions to the given problems :

1. 0.12 + 143 = 143.12 (The answer is 143.12)

2. 0.00843 + 0.0144 = 0.02283 (The answer is 0.02283)

3. 1.2 × 10^(-3) + 27 = 27.0012 (The answer is 27.0012)

4. 1.2 × 10^(-3) + 1.2 × 10^(-4) = 0.00132 (The answer is 0.00132)

5. 2473.86 + 123.4 = 2597.26 (The answer is 2597.26)

Hence, we can say that these are the answers of the given problems.

To know more about solutions refer here:

https://brainly.com/question/30665317

#SPJ11

Consider the following. v=(3,4,0) Express v as a linear combination of each of the basis vectors below. (Use b 1

,b 2

, and b 3

, respectively, for the vectors in the basis.) (a) {(1,0,0),(1,1,0),(1,1,1)}

Answers

V= (3,4,0) can be expressed as a linear combination of the basis vectors {(1, 0, 0), (1, 1, 0), (1, 1, 1)} as v = (-1, 0, 0) + 4 * (1, 1, 0).

To express vector v = (3, 4, 0) as a linear combination of the basis vectors {(1, 0, 0), (1, 1, 0), (1, 1, 1)}, we need to find the coefficients that satisfy the equation:

v = c₁ * (1, 0, 0) + c₂ * (1, 1, 0) + c₃ * (1, 1, 1),

where c₁, c₂, and c₃ are the coefficients we want to determine.

Setting up the equation for each component:

3 = c₁ * 1 + c₂ * 1 + c₃ * 1,

4 = c₂ * 1 + c₃ * 1,

0 = c₃ * 1.

From the third equation, we can directly see that c₃ = 0. Substituting this value into the second equation, we have:

4 = c₂ * 1 + 0,

4 = c₂.

Now, substituting c₃ = 0 and c₂ = 4 into the first equation, we get:

3 = c₁ * 1 + 4 * 1 + 0,

3 = c₁ + 4,

c₁ = 3 - 4,

c₁ = -1.

Therefore, the linear combination of the basis vectors that expresses v is:

v = -1 * (1, 0, 0) + 4 * (1, 1, 0) + 0 * (1, 1, 1).

So, v = (-1, 0, 0) + (4, 4, 0) + (0, 0, 0).

v = (3, 4, 0).

To learn more about linear combination visit:

https://brainly.com/question/30480973

#SPJ11

Akul’s new barn is 26 feet wide and 36 feet deep. He wants to put 7 coops (each the same size) for his chicks along two sides of the barn, as shown in the picture to the right. If the area of the new coops is to be half of the area of the barn, then how far from the barn will the coops extend straight out from the barn?

Answers

Therefore, the coops will extend straight out from the barn approximately 23.12 feet.

To find how far the coops will extend straight out from the barn, we need to determine the size of each coop and divide it by 2.

The area of the barn is 26 feet * 36 feet = 936 square feet.

To have the coops cover half of this area, each coop should have an area of 936 square feet / 7 coops:

= 133.71 square feet.

Since the coops are rectangular, we can find the width and depth of each coop by taking the square root of the area:

Width of each coop = √(133.71 square feet)

≈ 11.56 feet

Depth of each coop = √(133.71 square feet)

≈ 11.56 feet

Since the coops are placed along two sides of the barn, the total extension will be twice the width of each coop:

Total extension = 2 * 11.56 feet

= 23.12 feet.

To know more about straight,

https://brainly.com/question/15898112

#SPJ11

3. Sketch the functions sin(x) and cos(x) for 0≤x≤2π.

Answers

The functions sin(x) and cos(x) are periodic functions that represent the sine and cosine of an angle, respectively. When plotted on the interval 0≤x≤2π, the graph of sin(x) starts at the origin, reaches its maximum at π/2, returns to the origin at π, reaches its minimum at 3π/2, and returns to the origin at 2π. The graph of cos(x) starts at its maximum value of 1, reaches its minimum at π, returns to 1 at 2π, and continues in a repeating pattern.

The function sin(x) represents the ratio of the length of the side opposite to an angle in a right triangle to the length of the hypotenuse. When plotted on the interval 0≤x≤2π, the graph of sin(x) starts at the origin (0,0) and oscillates between -1 and 1 as x increases. It reaches its maximum value of 1 at π/2, returns to the origin at π, reaches its minimum value of -1 at 3π/2, and returns to the origin at 2π.

The function cos(x) represents the ratio of the length of the side adjacent to an angle in a right triangle to the length of the hypotenuse. When plotted on the interval 0≤x≤2π, the graph of cos(x) starts at its maximum value of 1 and decreases as x increases. It reaches its minimum value of -1 at π, returns to 1 at 2π, and continues in a repeating pattern.

Both sin(x) and cos(x) are periodic functions with a period of 2π, meaning that their graphs repeat after every 2π.

Learn more about interval here:

https://brainly.com/question/11051767

#SPJ11

Find the cylindrical coordinates (r,θ,z) of the point with the rectangular coordinates (0,3,5). (Use symbolic notation and fractions where needed. Give your answer as point coordinates in the form (∗,∗,∗). Take r>0 and 0≤θ≤2π.) Find the rectangular coordinates (x,y,z) of the point with the cylindrical coordinates (4, 6


,7). (Give your answer in the form (∗,∗,∗). Express numbers in exact form. Use symbolic notation and fractions where needed.)

Answers

The rectangular coordinates of the point (4,6π/7,7) are (4cos(6π/7), 4sin(6π/7), 7).

Now, For the first problem, we need to convert the given rectangular coordinates (0,3,5) into cylindrical coordinates (r,θ,z).

We know that:

r = √(x² + y²)

θ = tan⁻¹(y/x)

z = z

Substituting the given coordinates, we get:

r = √(0² + 3²) = 3

θ = tan⁻¹(3/0) = π/2

(since x = 0)

z = 5

Therefore, the cylindrical coordinates of the point (0,3,5) are (3,π/2,5).

For the second problem, we need to convert the given cylindrical coordinates (4, 6π/7, 7) into rectangular coordinates (x,y,z).

We know that:

x = r cos(θ)

y = r sin(θ)

z = z

Substituting the given coordinates, we get:

x = 4 cos(6π/7)

y = 4 sin(6π/7)

z = 7

Therefore, the rectangular coordinates of the point (4,6π/7,7) are (4cos(6π/7), 4sin(6π/7), 7).

Learn more about the coordinate visit:

https://brainly.com/question/24394007

#SPJ4

consider the equation below. (if an answer does not exist, enter dne.) f(x) = 9 cos2(x) − 18 sin(x), 0 ≤ x ≤ 2

Answers

The given equation is `f(x) = 9cos²(x) - 18sin(x), 0 ≤ x ≤ 2π`.We can find the maximum value of `f(x)` between `0` and `2π` by using differentiation.

We get,`f′(x)

= -18cos(x)sin(x) - 18cos(x)sin(x)

= -36cos(x)sin(x)`We equate `f′(x)

= 0` to find the critical points.`-36cos(x)sin(x)

= 0``=> cos(x)

= 0 or sin(x)

= 0``=> x = nπ + π/2 or nπ`where `n` is an integer. To determine the nature of the critical points, we use the second derivative test.`f″(x)

= -36(sin²(x) - cos²(x))``

=> f″(nπ) = -36`

`=> f″(nπ + π/2)

= 36`For `x

= nπ`, `f(x)` attains its maximum value since `f″(x) < 0`. For `x

= nπ + π/2`, `f(x)` attains its minimum value since `f″(x) > 0`.Therefore, the maximum value of `f(x)` between `0` and `2π` is `f(nπ)

= 9cos²(nπ) - 18sin(nπ)

= 9`. The minimum value of `f(x)` between `0` and `2π` is `f(nπ + π/2)

= 9cos²(nπ + π/2) - 18sin(nπ + π/2)

= -18`.Thus, the maximum value of the function `f(x)

= 9cos²(x) - 18sin(x)` on the interval `[0, 2π]` is `9` and the minimum value is `-18`.

To know more about value visit:
https://brainly.com/question/30145972

#SPJ11

8) Choose the correct answers using the information in the box below. Mr. Silverstone invested some money in 3 different investment products. The investment was as follows: a. The interest rate of the annuity was 4%. b. The interest rate of the annuity was 6%. c. The interest rate of the bond was 5%. d. The interest earned from all three investments together was $950. Which linear equation shows interest earned from each investment if the total was $950 ? a+b+c=950 0.04a+0.06b+0.05c=9.50 0.04a+0.06b+0.05c=950 4a+6b+5c=950

Answers

Given information is as follows:Mr. Silverstone invested some amount of money in 3 different investment products. We need to determine the linear equation that represents the interest earned from each investment if the total was $950.

To solve this problem, we will write the equation representing the sum of all interest as per the given interest rates for all three investments.

Let the amount invested in annuity with 4% interest be 'a', the amount invested in annuity with 6% interest be 'b' and the amount invested in bond with 5% interest be 'c'. The linear equation that shows interest earned from each investment if the total was $950 is given by : 0.04a + 0.06b + 0.05c = $950

We need to determine the linear equation that represents the interest earned from each investment if the total was $950.Let the amount invested in annuity with 4% interest be 'a', the amount invested in annuity with 6% interest be 'b' and the amount invested in bond with 5% interest be 'c'. The total interest earned from all the investments is given as $950. To form an equation based on given information, we need to sum up the interest earned from all the investments as per the given interest rates.

The linear equation that shows interest earned from each investment if the total was $950 is given by: 0.04a + 0.06b + 0.05c = $950
The linear equation that represents the interest earned from each investment if the total was $950 is 0.04a + 0.06b + 0.05c = $950.

To know more about linear equation :

brainly.com/question/32634451

#SPJ11

Write the trigonometric expression as an algebraic expression in u. CSC(COS^1u)=

Answers

The algebraic expression in u for CSC(COS⁻¹(u)) is 1/√(1 - u²).

Here, we have,

To write the trigonometric expression CSC(COS⁻¹(u)) as an algebraic expression in u,

we can use the reciprocal identities of trigonometric functions.

CSC(theta) is the reciprocal of SIN(theta), so CSC(COS⁻¹(u)) can be rewritten as 1/SIN(COS⁻¹(u)).

Now, let's use the definition of inverse trigonometric functions to rewrite the expression:

COS⁻¹(u) = theta

COS(theta) = u

From the right triangle definition of cosine, we have:

Adjacent side / Hypotenuse = u

Adjacent side = u * Hypotenuse

Now, consider the right triangle formed by the angle theta and the sides adjacent, opposite, and hypotenuse.

Since COS(theta) = u, we have:

Adjacent side = u

Hypotenuse = 1

Using the Pythagorean theorem, we can find the opposite side:

Opposite side = √(Hypotenuse² - Adjacent side²)

Opposite side = √(1² - u²)

Opposite side =√(1 - u²)

Now, we can rewrite the expression CSC(COS^(-1)(u)) as:

CSC(COS⁻¹(u)) = 1/SIN(COS⁻¹(u))

CSC(COS⁻¹)(u)) = 1/(Opposite side)

CSC(COS⁻¹)(u)) = 1/√(1 - u²)

Therefore, the algebraic expression in u for CSC(COS⁻¹(u)) is 1/√(1 - u²).

To learn more about trigonometric relations click :

brainly.com/question/14450671

#SPJ4

Find an approximation for the area below f(x)=3e x
and above the x-axis, between x=3 and x=5. Use 4 rectangles with width 0.5 and heights determined by the right endpoints of their bases.

Answers

An approximation for the area f(x)=3eˣ. is 489.2158.

Given:

f(x)=3eˣ.

Here, a = 3 b = 5 and n = 4.

h = (b - a) / n =(5 - 3)/4 = 0.5.

Now, [tex]f (3.5) = 3e^{3.5}.[/tex]

[tex]f(4) = 3e^{4}[/tex]

[tex]f(4.5) = 3e^{4.5}[/tex]

[tex]f(5) = 3e^5.[/tex]

Area = h [f(3.5) + f(4) + f(4.5) + f(5)]

[tex]= 0.5 [3e^{3.5} + e^4 + e^{4.5} + e^5][/tex]

[tex]= 1.5 (e^{3.5} + e^4 + e^{4.5} + e^5)[/tex]

Area = 489.2158.

Therefore, an approximation for the area f(x)=3eˣ. is 489.2158.

Learn more about area of function here:

https://brainly.com/question/32199459

#SPJ4

Consider the vector v=(8,8,10). Find u such that the following is true. (a) The vector u has the same direction as v and one-half its length. u= (b) The vector u has the direction opposite that of v and one-fourth its length. u= (c) The vector u has the direction opposite that of v and twice its length. u=

Answers

(a) The vector u such that it has the same direction as v and one-half its length is u = (4, 4, 5)

(b) The vector u such that it has the direction opposite that of v and one-fourth its length is u = (-2, -2, -2.5)

(c) The vector u such that it has the direction opposite that of v and twice its length is u = (-16, -16, -20)

To obtain vector u with specific conditions, we can manipulate the components of vector v accordingly:

(a) The vector u has the same direction as v and one-half its length.

To achieve this, we need to scale down the magnitude of vector v by multiplying it by 1/2 while keeping the same direction. Therefore:

u = (1/2) * v

  = (1/2) * (8, 8, 10)

  = (4, 4, 5)

So, vector u has the same direction as v and one-half its length.

(b) The vector u has the direction opposite that of v and one-fourth its length.

To obtain a vector with the opposite direction, we change the sign of each component of vector v. Then, we scale down its magnitude by multiplying it by 1/4. Thus:

u = (-1/4) * v

  = (-1/4) * (8, 8, 10)

  = (-2, -2, -2.5)

Therefore, vector u has the direction opposite to that of v and one-fourth its length.

(c) The vector u has the direction opposite that of v and twice its length.

We change the sign of each component of vector v to obtain a vector with the opposite direction. Then, we scale up its magnitude by multiplying it by 2. Hence:

u = 2 * (-v)

  = 2 * (-1) * v

  = -2 * v

  = -2 * (8, 8, 10)

  = (-16, -16, -20)

Thus, vector u has the direction opposite to that of v and twice its length.

To know more about vector refer here:

https://brainly.com/question/32228906#

#SPJ11

Let a, b, p = [0, 27). The following two identities are given as cos(a + B) = cosa cosß-sina sinß, cos²p+ sin²p=1, (a) Prove the equations in (3.2) ONLY by the identities given in (3.1). cos(a-B) = cosa cosß+ sina sinß, sin(a-B)=sina-cosß-cosa sinß. Hint: sin = cos (b) Prove that as ( 27 - (a− p)) = cos((2-a) + B). sin (a-B)= cos cos²a= 1+cos 2a 2 " (c) Calculate cos(7/12) and sin (7/12) obtained in (3.2). sin² a 1-cos 2a 2 (3.1) (3.2) (3.3) (3.4) respectively based on the results

Answers

Identities are given as cos(a + B) = cosa cosß-sina sinß, cos²p+ sin²p=1,(a) cos(a+B) =cosa cosß + sina sinß (b)  (27 - (a− p)) = cos((2-a) + B)=cos(2-a + B) (c) sin(7/12)cos(7/12)= (√6+√2)/4

Part (a)To prove the identity for cos(a-B) = cosa cosß+ sina sinß, we start from the identity

cos(a+B) = cosa cosß-sina sinß, and replace ß with -ß,

thus we getcos(a-B) = cosa cos(-ß)-sina sin(-ß) = cosa cosß + sina sinß

To prove the identity for sin(a-B)=sina-cosß-cosa sinß, we first replace ß with -ß in the identity sin(a+B) = sina cosß+cosa sinß,

thus we get sin(a-B) = sin(a+(-B))=sin a cos(-ß) + cos a sin(-ß)=-sin a cosß+cos a sinß=sina-cosß-cosa sinß

Part (b)To prove that as (27 - (a− p)) = cos((2-a) + B),

we use the identity cos²p+sin²p=1cos(27-(a-p)) = cos a sin p + sin a cos p= cos a cos 2-a + sin a sin 2-a = cos(2-a + B)

Part (c)Given cos²a= 1+cos2a 2 , sin² a= 1-cos2a 2We are required to calculate cos(7/12) and sin(7/12)cos(7/12) = cos(π/2 - π/12)=sin (π/12) = √[(1-cos(π/6))/2]

= √[(1-√3/2)/2]

= (2-√3)/2sin (7/12)

=sin(π/4 + π/6)

=sin(π/4)cos(π/6) + cos(π/4) sin(π/6)

= √2/2*√3/2 + √2/2*√1/2

= (√6+√2)/4

Learn more about identity  here:

https://brainly.com/question/14681705

#SPJ11

Which equation defines the graph of y=x 3
after it is shifted vertically 5 units down and horizontally 4 units left? (1point) y=(x−4) 3
−5
y=(x+5) 3
−4
y=(x+5) 3
+4
y=(x+4) 3
−5

Answers

The answer is y=(x+4)3−5. The equation defines the graph of y=x3 after it is shifted vertically 5 units down and horizontally 4 units left.Final Answer: y=(x+4)3−5.

The original equation of the graph is y = x^3. We need to determine the equation of the graph after it is shifted five units down and four units left. When a graph is moved, it's called a shift.The shifts on a graph can be vertical (up or down) or horizontal (left or right).When a graph is moved vertically or horizontally, the equation of the graph changes. The changes in the equation depend on the number of units moved.

To shift a graph horizontally, you add or subtract the number of units moved to x. For example, if the graph is shifted 4 units left, we subtract 4 from x.To shift a graph vertically, you add or subtract the number of units moved to y. For example, if the graph is shifted 5 units down, we subtract 5 from y.To shift a graph five units down and four units left, we substitute x+4 for x and y-5 for y in the original equation of the graph y = x^3.y = (x+4)^3 - 5Therefore, the answer is y=(x+4)3−5. The equation defines the graph of y=x3 after it is shifted vertically 5 units down and horizontally 4 units left.Final Answer: y=(x+4)3−5.

Learn more about Equation here,What is equation? Define equation

https://brainly.com/question/29174899

#SPJ11

According to the reading assignment, which of the following are TRUE regarding f(x)=b∗ ? Check all that appty. The horizontal asymptote is the line y=0. The range of the exponential function is All Real Numbers. The horizontal asymptote is the line x=0. The range of the exponential function is f(x)>0 or y>0. The domain of the exponential function is x>0. The domain of the exponential function is All Real Numbers. The horizontal asymptote is the point (0,b).

Answers

The true statements regarding the function f(x) = b∗ are that the range of the exponential function is f(x) > 0 or y > 0, and the domain of the exponential function is x > 0.

The range of the exponential function f(x) = b∗ is indeed f(x) > 0 or y > 0. Since the base b is positive, raising it to any power will always result in a positive value.

Therefore, the range of the function is all positive real numbers.

Similarly, the domain of the exponential function f(x) = b∗ is x > 0. Exponential functions are defined for positive values of x, as raising a positive base to any power remains valid.

Consequently, the domain of f(x) is all positive real numbers.

However, the other statements provided are not true for the given function. The horizontal asymptote of the function f(x) = b∗ is not the line y = 0.

It does not have a horizontal asymptote since the function's value continues to grow or decay exponentially as x approaches positive or negative infinity.

Additionally, the horizontal asymptote is not the line x = 0. The function does not have a vertical asymptote because it is defined for all positive values of x.

Lastly, the horizontal asymptote is not the point (0, b). As mentioned earlier, the function does not have a horizontal asymptote.

In conclusion, the true statements regarding the function f(x) = b∗ are that the range of the exponential function is f(x) > 0 or y > 0, and the domain of the exponential function is x > 0.

To learn more about horizontal asymptote visit:

brainly.com/question/4084552

#SPJ11

what is the approximate average rate at which the area decreases, as the rectangle's length goes from 13\text{ cm}13 cm13, start text, space, c, m, end text to 16\text{ cm}16 cm16, start text, space, c, m, end text?

Answers

The approximate average rate at which the area decreases as the rectangle's length goes from 13 cm to 16 cm is equal to the width (w) of the rectangle.

To determine the approximate average rate at which the area decreases as the rectangle's length goes from 13 cm to 16 cm, we need to calculate the change in area and divide it by the change in length.

Let's denote the length of the rectangle as L (in cm) and the corresponding area as A (in square cm).

Given that the initial length is 13 cm and the final length is 16 cm, we can calculate the change in length as follows:

Change in length = Final length - Initial length

= 16 cm - 13 cm

= 3 cm

Now, let's consider the formula for the area of a rectangle:

A = Length × Width

Since we are interested in the rate at which the area decreases, we can consider the width as a constant. Let's assume the width is w cm.

The initial area (A1) when the length is 13 cm is:

A1 = 13 cm × w

Similarly, the final area (A2) when the length is 16 cm is:

A2 = 16 cm × w

The change in area can be calculated as:

Change in area = A2 - A1

= (16 cm × w) - (13 cm × w)

= 3 cm × w

Finally, to find the approximate average rate at which the area decreases, we divide the change in area by the change in length:

Average rate of area decrease = Change in area / Change in length

= (3 cm × w) / 3 cm

= w

Therefore, the approximate average rate at which the area decreases as the rectangle's length goes from 13 cm to 16 cm is equal to the width (w) of the rectangle.

learn more about rectangle here

https://brainly.com/question/15019502

#SPJ11

Find the points) of intersection of the parabolas y=x^2 and y=x^2 18x using analytical methods.

Answers

The points of intersection of the given parabolic equations y = x² and y = x² + 18x are (0, 0).

Thus, the solution is obtained.

The given parabolic equations are:

y = x² ..............(1)y = x² + 18x ........(2)

The points of intersection can be found by substituting (1) in (2).

Then, [tex]x² = x² + 18x[/tex]

⇒ 18x = 0

⇒ x = 0

Since x = 0,

substitute this value in (1),y = (0)² = 0

To know more about parabolic visit:

https://brainly.com/question/14003217

SPJ11

Other Questions
business leaders in japan, europe, and the united states collaborated to create a universal code of business ethics known as the a client is to receive a fecal microbiota transplantation tomorrow (fmt). what action by the nurse is best? Assuming that the required power for cruising an airplane with a total weight of 200 kgf and a cruising speed of 15 m / s is 1 kW, obtain the following values. The air density is constant at 1.25 kg / m^3 regardless of altitude.1) Find the required power for the above airplane to fly ascending at a speed of 15 m / s at an ascending angle of 3.2) When the above airplane travels on a concrete runway with = 0.02 with constant thrust while maintaining a horizontal state from a state where it is stationary on the ground, the drag coefficient CD and lift coefficient CL of the entire aircraft are constant regardless of speed. If so, find the thrust required to reach 15 m / s in one minute from rest. Also, find the distance traveled to reach 15 m / s. For the beam cross section shown below, an applied anticlockwise torque of 30,000 Nmm is applied, but no other forces. a 911 d b By doing an equal twist analysis, we know that q = 2.5 x q11 The dimensions are: a = 104 mm b= 299 mm C= 81 mm d=62 mm Calculate the value of 11 Enter your answer as N/mm, to 3 significant figures, but without the units. You have an error margin of 3%. Question 3 1 pts A diet provides a total of 2,000 kcalories of which 50% of the energy is from carbohydrates and 30% from protein. How many grams (to the nearest whole number) of fat are contained in the diet? O 84 g 100 g 24 g 44 g O 64 g ecozones on a mountain are essentially climate zones that change with elevation. which of these climate factors is the least affected by changes in elevation? group of answer choices terrain precipitation temperature seasonal patterns A 15 mm diameter steel bar has a forged surface with the ultimate strength Su = 1100 MPa and the yield strength Sy = 715 MPa. a) Esti- mate the S-N curve and the family of constant life fatigue curves for axial load. Estimate the fatigue life for 4x10 cycles. b) Determine the fatigue strength corresponding to 10 cycles and to 4x10 cycles for the case of zero- to-maximum (rather than completely reversed) load fluctuations for bending and no yielding Calculate the concentration of nitrate ion when dissolving 25.0 g of cobalt(II) nitrate Co(NO3)2 in 0.50 L aqueous solution. [MM CO(NO3)2 = 182.95 g/mol] When Isaiah was cleaning up his room, he found four types of items: shoes, puzzle pieces, trading cards and teddy bears - First Isaiah put all of the shoes, puzzle pieces and trading cards together in a pile, and found there were 51 items. - Then he put just the shoes, trading cards and teddy bears together in a pile, and found there were 46 items. - Then he put just the puzzle pieces, trading cards and teddy bears together in a pile, and found there were 49 items. - Finally, he put just the shoes, puzzle pieces and teddy bears together in a pile, and found there were 52 items. How many of each kind of object did Isaiah find in his room? 2 a) Using exact values, show that 1+cot 2=csc 2 for =45 . b) Prove the identity in part a directly from sin 2+cos 2=1 for =45 [4+1mark what is the diagram that shows how a company's strategy is delivered by a set of supporting activities called? Twenty neurons synapse with a single receptor neuron. Twelve of these neurons release leurotransmitters that produce EPSPs at the postsynaptic membrane, and the other eight elease neurotransmitters that produce IPSPs. Each time one of the neurons is stimulated, t releases enough neurotransmitter to produce a 2mV change in potential at the postsynaptic membrane. 15. One EPSP at the postsynaptic neuron would produce a- positive or negative- 2mV change in the membrane potential? Type answer as 1 of the 2 choices using lowercase letters. (1 point) 16. One IPSP at the postsynaptic neuron would produce a- positive or negative- 2- mV change in the membrane potential? Type answer as 1 of the 2 choices using lowercase letters. (1 point) 17. If all 12 EPSP neurons are stimulated, what is the total potential in mV that is produced at the postsynaptic membrane? Type answer as sign ( + or ) plus number, followed by the unit (mV). (2 points) 18. If all 8 IPSP neurons are stimulated, what is the total potential in mV that is produced at the postsynaptic membrane? Type answer as sign (+ or ) plus number, followed by the unit ( mV). (2 points) 19. If the threshold of the postsynaptic neuron is 10mV and all eight inhibitory neurons are stimulated, are there enough excitatory neurons to generate an action potential- yes or no? Type answer as 1 of the 2 choices using lowercase letters. ( 1 point) answer the following. a) let set s = {r, s, t}. what is | (s)|, the cardinality of the power set of set s? Q|C A hammer strikes one end of a thick iron rail of length 8.50 m . A microphone located at the opposite end of the rail detects two pulses of sound, one that travels through the air and a longitudinal wave that travels through the rail. (b) Find the separation in time between the arrivals of the two pulses. Why the presence of an acid is necessary for mn4- to function as an oxidising agent why do the parent and child process on unix not end up sharing the stack segment ? the route begins stn 0 00 at a point with coordinates of n 10000.00 and e 10000.00, what are the coordinates for the center of curvature In your house, you have an electrical heater to heat 10 liter water from 0C to 100 C The energy required to heat 1 g of water from 0C to 100 C = 100 calories 1 kcal = 4186 J, 1 kWh = 3.16* 10 Joule, 1000 g of water = 1 liter of water. 1) what is the ideal energy required to heat 10 liter from 0C to 100 C in kWh.? 2) if the electric meter reading is 1.5 kWh, what is the efficiency of this heater. 3) if the cost of electricity is 0.12 JD for 1 kWh, what will be the cost of heating 10 liters water in Jordanian Dinar? Which requirement of secure communications is ensured by the implementation of md5 or sha hash generating algorithms? Let u=(7,2,6)and v=(2,8,8)(a) Calculate u v.(b) Find the angle between u and v. Remember to work in radians.(c) Give an example of a 7-digit ID number for which the vectors u and v are orthogonal.(d) Can any ID number give an angle between /2 and ? Explain your answer.(e) Define a line as l = u + tv, t R. Does the line l intersect the line x = (1, 1, 0) +s(0, 1, 1), s R? If it does, find the point where they meet. If they dont meet, explainwhy.