SFIES CIRCUITS AND INIBRNAT RESISTANGR SECTION PAGE RELATED QUESTIONS AND PROBLEMS: 1. When two bulbs, of equal wattage rating, are connected in series: (a) how does the brightness of the bulbs compare? (b) what happens if one bulb is disconnected?

Answers

Answer 1

When two bulbs are connected in series, their brightness decreases. If one bulb is disconnected, the circuit becomes incomplete, and both bulbs will not light up.

When two bulbs, of equal wattage rating, are connected in series, the bulbs become dimmer. This is because the current in the circuit decreases due to the increased resistance.In this situation, the total resistance of the circuit is equal to the sum of the individual resistances of the two bulbs. Since the resistance has increased, the current through the circuit has decreased, resulting in a decrease in brightness.If one bulb is disconnected, the other bulb will also go out, as the circuit is now incomplete and no current is flowing through it. When one bulb is disconnected, the resistance of the circuit becomes infinite. This is because the circuit is incomplete, and no current can flow through it. Consequently, the second bulb will not receive any current, and it will not light up.

The series circuits are not always the best choice for lighting. It is better to use parallel circuits for lighting, as each bulb receives the full voltage of the circuit, and the brightness of the bulbs remains constant. This is because in parallel circuits, the voltage is the same across each component, and the current is shared between the components.

To know more about resistancevisit:

brainly.com/question/32301085

#SPJ11


Related Questions

Part A A stone is thrown vertically upward with a speed of 15.6 m/s from the edge of a cliff 75.0 m high (Figure 1). How much later does it reach the bottom of the cliff? Express your answer to three significant figures and include the appropriate units. + OI? f Value Units Submit Request Answer - Part B What is its speed just before hitting? Express your answer to three significant figures and include the appropriate units. Value Units Submit Request Answer - Part What total distance did it travel? Express your answer to three significant figures and include the appropriate units. + 2 123 Figure 1 of 1 Value Units Submit Request Answer Provide Feedback

Answers

The stone reaches the bottom of the cliff approximately 4.20 seconds later. The speed just before hitting the bottom is approximately 40.6 m/s.

Part A: To find how much later the stone reaches the bottom of the cliff, we can use the kinematic equation for vertical motion. The equation is:

h = ut + (1/2)gt^2

Where:

h = height of the cliff (75.0 m, negative since it's downward)

u = initial velocity (15.6 m/s)

g = acceleration due to gravity (-9.8 m/s^2, negative since it's downward)

t = time

Plugging in the values, we get:

-75.0 = (15.6)t + (1/2)(-9.8)t^2

Solving this quadratic equation, we find two values for t: one for the stone going up and one for it coming down. We're interested in the time it takes for it to reach the bottom, so we take the positive value of t. Rounded to three significant figures, the time it takes for the stone to reach the bottom of the cliff is approximately 4.20 seconds.

Part B: The speed just before hitting the bottom can be found using the equation for final velocity in vertical motion:

v = u + gt

Where:

v = final velocity (what we want to find)

u = initial velocity (15.6 m/s)

g = acceleration due to gravity (-9.8 m/s^2, negative since it's downward)

t = time (4.20 s)

Plugging in the values, we get:

v = 15.6 + (-9.8)(4.20)

Calculating, we find that the speed just before hitting is approximately -40.6 m/s. Since speed is a scalar quantity, we take the magnitude of the value, giving us a speed of approximately 40.6 m/s.

Part C: To find the total distance traveled by the stone, we need to calculate the distance covered during the upward motion and the downward motion separately, and then add them together.

Distance covered during upward motion:

Using the equation for distance covered in vertical motion:

s = ut + (1/2)gt^2

Where:

s = distance covered during upward motion (what we want to find)

u = initial velocity (15.6 m/s)

g = acceleration due to gravity (-9.8 m/s^2, negative since it's downward)

t = time (4.20 s)

Plugging in the values, we get:

s = (15.6)(4.20) + (1/2)(-9.8)(4.20)^2

Calculating, we find that the distance covered during the upward motion is approximately 33.1 m.

Distance covered during downward motion:

Since the stone comes back down to the bottom of the cliff, the distance covered during the downward motion is equal to the height of the cliff, which is 75.0 m.

Total distance traveled:

Adding the distance covered during the upward and downward motion, we get:

Total distance = 33.1 + 75.0

Rounded to three significant figures, the total distance traveled by the stone is approximately 108 m.

To know more about distance:

https://brainly.com/question/13034462


#SPJ11

Say we are at rest in a submarine in the ocean and a torpedo is
moving 40 m/s towards us and emitting a 50 Hz sound. Assuming a
perfect sonar reception system, what would the received frequency
in Hz

Answers

The received frequency would be approximately 55.74 Hz, higher than the emitted frequency, due to the Doppler effect caused by the torpedo moving towards the submarine.

The received frequency in Hz would be different from the emitted frequency due to the relative motion between the submarine and the torpedo. This effect is known as the Doppler effect.

In this scenario, since the torpedo is moving toward the submarine, the received frequency would be higher than the emitted frequency. The formula for calculating the Doppler effect in sound waves is given by:

Received frequency = Emitted frequency × (v + vr) / (v + vs)

Where:

"Emitted frequency" is the frequency emitted by the torpedo (50 Hz in this case).

"v" is the speed of sound in the medium (approximately 343 m/s in seawater).

"vr" is the velocity of the torpedo relative to the medium (40 m/s in this case, assuming it is moving directly towards the submarine).

"vs" is the velocity of the submarine relative to the medium (assumed to be at rest, so vs = 0).

Plugging in the values:

Received frequency = 50 Hz × (343 m/s + 40 m/s) / (343 m/s + 0 m/s)

Received frequency ≈ 55.74 Hz

Therefore, the received frequency in Hz would be approximately 55.74 Hz.

To learn more about frequency

https://brainly.com/question/254161

#SPJ11

A 50.0 Hz generator with a rms voltage of 240 V is connected in series to a 3.12 k ohm resistor and a 1.65 -M F capacitor. Find a) the rms current in the circuit b) the maximum
current in the circuit and c) the power factor of the circuit.

Answers

a) The rms current in the circuit is approximately 0.077 A.

b) The maximum current in the circuit is approximately 0.109 A.

c) The power factor of the circuit is approximately 0.9999, indicating a nearly unity power factor.

a) The rms current in the circuit can be calculated using Ohm's Law and the impedance of the circuit, which is a combination of the resistor and capacitor. The formula for calculating current is:

I = V / Z

where I is the current, V is the voltage, and Z is the impedance.

First, let's calculate the impedance of the circuit:

Z = √(R^2 + X^2)

where R is the resistance and X is the reactance of the capacitor.

R = 3.12 kΩ = 3,120 Ω

X = 1 / (2πfC) = 1 / (2π * 50.0 * 1.65 x 10^-6) = 19.14 Ω

Z = √(3120^2 + 19.14^2) ≈ 3120.23 Ω

Now, substitute the values into the formula for current:

I = 240 V / 3120.23 Ω ≈ 0.077 A

Therefore, the rms current in the circuit is approximately 0.077 A.

b) The maximum current in the circuit is equal to the rms current multiplied by the square root of 2:

Imax = Irms * √2 ≈ 0.077 A * √2 ≈ 0.109 A

Therefore, the maximum current in the circuit is approximately 0.109 A.

c) The power factor of the circuit can be calculated as the ratio of the resistance to the impedance:

Power Factor = R / Z = 3120 Ω / 3120.23 Ω ≈ 0.9999

Therefore, the power factor of the circuit is approximately 0.9999, indicating a nearly unity power factor.

For more such questions on current , click on:

https://brainly.com/question/24858512

#SPJ8

Suppose that not all but only 50% of the neutrons were consumed in Big Bang Nucleosynthesis. What would the H:He mass ratio be?

Answers

The H:He mass ratio if only 50% of neutrons were used in Big Bang Nucleosynthesis will be 3:1.

Let us see how this conclusion was reached.

Big Bang Nucleosynthesis is a cosmological event in which the nuclei of helium, lithium, and deuterium were formed within a few seconds of the Big Bang. This event happened between 10 seconds and 20 minutes after the Big Bang and produced the elements that make up the universe. It is important to note that in this process, only some of the neutrons present were used. This is because most of the neutrons decayed into protons. This means that only about one neutron out of every seven was available to make heavier nuclei.

Suppose 7 neutrons were present during Big Bang Nucleosynthesis, and only 50% of them were used. Therefore, only 3.5 neutrons would have been used in the process. If we rounded that to 3 neutrons, the remaining neutrons would have decayed to form protons. This means that 6 protons and 3 neutrons would have combined to form helium-3 (2 protons and 1 neutron) and helium-4 (2 protons and 2 neutrons).

The H:He mass ratio would be calculated as follows:

For H, we have 2 protons, which is equivalent to a mass number of 2.

For He, we have 2 protons and 2 neutrons, which is equivalent to a mass number of 4.

Therefore, the H:He mass ratio is: 2:4, which is equivalent to 1:2, which can be further simplified to 3:1. Hence, the H:He mass ratio if only 50% of neutrons were used in Big Bang Nucleosynthesis would be 3:1.

Learn more about "Mass Ratio in Big Bang Nucleosynthesis" refer to the link : https://brainly.com/question/13517558

#SPJ11

A spherical mirror is to be used to form an image 5.90 times the size of an object on a screen located 4.40 m from the object. (a) Is the mirror required concave or convex? concave convex (b) What is the required radius of curvature of the mirror? m (c) Where should the mirror be positioned relative to the object? m from the object

Answers

The mirror required is concave. The radius of curvature of the mirror is -1.1 m. The mirror should be positioned at a distance of 0.7458 m from the object.

Given,
Image height (hᵢ) = 5.9 times the object height (h₀)
Screen distance (s) = 4.40 m

Let us solve each part of the question :
Is the mirror required concave or convex? We know that the magnification (M) for a spherical mirror is given by: Magnification,

M = - (Image height / Object height)
Also, the image is real when the magnification (M) is negative. So, we can write:

M = -5.9

[Given]Since, M is negative, the image is real. Thus, we require a concave mirror to form a real image.

What is the required radius of curvature of the mirror? We know that the focal length (f) for a spherical mirror is related to its radius of curvature (R) as:

Focal length, f = R/2

Also, for an object at a distance of p from the mirror, the mirror formula is given by:

1/p + 1/q = 1/f

Where, q = Image distance So, for the real image:

q = s = 4.4 m

Substituting the values in the mirror formula, we get:

1/p + 1/4.4 = 1/f…(i)

Also, from the magnification formula:

M = -q/p

Substituting the values, we get:

-5.9 = -4.4/p

So, the object distance is: p = 0.7458 m

Substituting this value in equation (i), we get:

1/0.7458 + 1/4.4 = 1/f

Solving further, we get:

f = -0.567 m

Since the focal length is negative, the mirror is a concave mirror.

Therefore, the radius of curvature of the mirror is:

R = 2f

R = 2 x (-0.567) m

R = -1.13 m

R ≈ -1.1 m

Where should the mirror be positioned relative to the object? We know that the object distance (p) is given by:

p = -q/M Substituting the given values, we get:

p = -4.4 / 5.9

p = -0.7458 m

We know that the mirror is to be placed between the object and its focus. So, the mirror should be positioned at a distance of 0.7458 m from the object.

Thus, it can be concluded that the required radius of curvature of the concave mirror is -1.1 m. The concave mirror is to be positioned at a distance of 0.7458 m from the object.

to know more about mirror visit:

brainly.com/question/1160148

#SPJ11

JA B A с The three tanks above are filled with water to the same depth. The tanks are of equal height. Tank B has the middle surface area at the bottom, tank A the greatest and tank C the least. For each of the following statements, select the correct option from the pull-down menu. Less than The force exerted by the water on the bottom of tank A is .... the force exerted by the water on the bottom of tank B. True The pressure exerted on the bottom of tank A is equal to the pressure on the bottom of the other two tanks. Less than The force due to the water on the bottom of tank B is .... the weight of the water in the tank. True The water in tank C exerts a downward force on the sides of the tank. Less than The pressure at the bottom of tank A is .... the pressure at the bottom of tank C.

Answers

The force exerted by the water on the bottom of tank A is less than the force exerted by the water on the bottom of tank B.

The force exerted by a fluid depends on its pressure and the surface area it acts upon. In this case, although the water level and height of the tanks are equal, tank A has the greatest surface area at the bottom, tank B has a middle surface area, and tank C has the least surface area.

The force exerted by the water on the bottom of a tank is directly proportional to the pressure and the surface area. Since the water pressure at the bottom of the tanks is the same (as they are filled to the same depth), the force exerted by the water on the bottom of tank A would be greater than the force exerted on tank B because tank A has a larger surface area at the bottom.

The pressure exerted on the bottom of tank A is equal to the pressure on the bottom of the other two tanks. Pressure in a fluid is determined by the depth of the fluid and the density of the fluid, but it is not affected by the surface area. Therefore, the pressure at the bottom of all three tanks is the same, regardless of their surface areas.

The force due to the water on the bottom of tank B is true and equal to the weight of the water in the tank. This is because the force exerted by a fluid on a surface is equal to the weight of the fluid directly above it. In tank B, the water exerts a force on its bottom that is equal to the weight of the water in the tank.

The water in tank C does not exert a downward force on the sides of the tank. The pressure exerted by the water at any given depth is perpendicular to the sides of the container. The force exerted by the water on the sides of the tank is a result of the pressure, but it acts horizontally and is balanced out by the pressure from the opposite side. Therefore, the water in tank C exerts an equal pressure on the sides of the tank but does not exert a net downward force.

The pressure at the bottom of tank A is less than the pressure at the bottom of tank C. This is because pressure in a fluid increases with depth. Since tank A has a greater depth than tank C (as they are filled to the same level), the pressure at the bottom of tank A is greater.

Learn more about Force

brainly.com/question/30507236

#SPJ11

The index of refraction of a transparent material is 1.5. If the
thickness of a film made out of this material is 1 mm, how long
would it take a photon to travel through the film?

Answers

The time taken by a photon to travel through the film is 5 × 10^-12 s.

The index of refraction of a transparent material is 1.5. If the thickness of a film made out of this material is 1 mm, the time taken by a photon to travel through the film can be calculated as follows:

Formula used in the calculation is: `t = d/v` Where:

t is the time taken by photon to travel through the film

d is the distance traveled by photon through the film

v is the speed of light in the medium, which can be calculated as `v = c/n` Where:

c is the speed of light in vacuum

n is the refractive index of the medium

Refractive index of the transparent material, n = 1.5

Thickness of the film, d = 1 mm = 0.001 m

Speed of light in vacuum, c = 3 × 108 m/s

Substituting the values in the above expression for v:`

v = c/n = (3 × 10^8)/(1.5) = 2 × 10^8 m/s

`Now, substituting the values in the formula for t:`

t = d/v = (0.001)/(2 × 10^8) = 5 × 10^-12 s

`Therefore, the time taken by a photon to travel through the film is 5 × 10^-12 s.

Learn more about photon https://brainly.com/question/10080428

#SPJ11

A particle starts from the origin at t=0.0 s with a velocity of 8.1 i m/s and moves in the xy plane with a constant acceleration of (-9.3 i + 8.8 j)m/s2. When the particle achieves the maximum positive x-coordinate, how far is it from the origin?

Answers

When the particle achieves the maximum positive x-coordinate, it is approximately 4.667 meters away from the origin.

Explanation:

To find the distance of the particle from the origin when it achieves the maximum positive x-coordinate, we need to determine the time it takes for the particle to reach that point.

Let's assume the time at which the particle achieves the maximum positive x-coordinate is t_max. To find t_max, we can use the equation of motion in the x-direction:

x = x_0 + v_0x * t + (1/2) * a_x * t²

where:

x = position in the x-direction (maximum positive x-coordinate in this case)

x_0 = initial position in the x-direction (which is 0 in this case as the particle starts from the origin)

v_0x = initial velocity in the x-direction (which is 8.1 m/s in this case)

a_x = acceleration in the x-direction (which is -9.3 m/s² in this case)

t = time

Since the particle starts from the origin, x_0 is 0. Therefore, the equation simplifies to:

x = v_0x * t + (1/2) * a_x * t²

To find t_max, we set the velocity in the x-direction to 0:

0 = v_0x + a_x * t_max

Solving this equation for t_max gives:

t_max = -v_0x / a_x

Plugging in the values, we have:

t_max = -8.1 m/s / -9.3 m/s²

t_max = 0.871 s (approximately)

Now, we can find the distance of the particle from the origin at t_max using the equation:

distance = magnitude of displacement

              =  √[(x - x_0)² + (y - y_0)²]

Since the particle starts from the origin, the initial position (x_0, y_0) is (0, 0).

Therefore, the equation simplifies to:

distance =  √[(x)^2 + (y)²]

To find x and y at t_max, we can use the equations of motion:

x = x_0 + v_0x * t + (1/2) * a_x *t²

y = y_0 + v_0y * t + (1/2) * a_y *t²

where:

v_0y = initial velocity in the y-direction (which is 0 in this case)

a_y = acceleration in the y-direction (which is 8.8 m/s² in this case)

For x:

x = 0 + (8.1 m/s) * (0.871 s) + (1/2) * (-9.3 m/s²) * (0.871 s)²

For y:

y = 0 + (0 m/s) * (0.871 s) + (1/2) * (8.8 m/s²) * (0.871 s)²

Evaluating these expressions, we find:

x ≈ 3.606 m

y ≈ 2.885 m

Now, we can calculate the distance:

distance = √[(3.606 m)² + (2.885 m)²]

distance ≈ 4.667 m

To know more about acceleration, visit:

https://brainly.com/question/2303856

#SPJ11

A single-turn square loop of side L is centered on he axis of a long solenoid. In addition, the plane of the square loop is perpendicular to the axis of the olenoid. The solenoid has 1170 turns per meter nd a diameter of 5.90 cm, and carries a current 215 A Find the magnetic flux through the loop when I. -2.75 cm

Answers

The magnetic flux through the loop is  7.00 × 10^(-6) Weber.

To find the magnetic flux through the square loop, we can use the formula:

Φ = B * A * cos(θ)

Where:

Φ is the magnetic flux,

B is the magnetic field,

A is the area of the loop, and

θ is the angle between the magnetic field and the normal to the loop.

Given:

Side of the square loop (L) = 2.75 cm = 0.0275 m (since 1 cm = 0.01 m)

Number of turns per meter (n) = 1170 turns/m

Diameter of the solenoid (d) = 5.90 cm = 0.0590 m

Radius of the solenoid (r) = d/2 = 0.0590 m / 2 = 0.0295 m

Current flowing through the solenoid (I) = 215 A

First, let's calculate the magnetic field at the center of the solenoid using the formula:

B = μ₀ * n * I

Where:

μ₀ is the permeability of free space (μ₀ = 4π × 10^(-7) T·m/A)

Substituting the given values:

B = (4π × 10^(-7) T·m/A) * (1170 turns/m) * (215 A)

B ≈ 9.28 × 10^(-3) T

The magnetic field B is uniform and perpendicular to the loop, so the angle θ is 0 degrees (cos(0) = 1).

The area of the square loop is given by:

A = L²

Substituting the given value:

A = (0.0275 m)² = 7.56 × 10^(-4) m²

Now we can calculate the magnetic flux:

Φ = B * A * cos(θ)

Φ = (9.28 × 10^(-3) T) * (7.56 × 10^(-4) m²) * (1)

Φ ≈ 7.00 × 10^(-6) Wb

Therefore, the magnetic flux through the loop is approximately 7.00 × 10^(-6) Weber.

Learn more about magnetic flux from the given link

https://brainly.com/question/16234377

#SPJ11

17. (5 pts) The circular loop of wire below has a current of 5 A, going counterclockwise (with respect to the plane of the paper). The loop has a radius of 0.1 meters, and just has one turn (so N=1 ). Find the magnitude and direction of the induced magnetic field at the center of the loop.

Answers

The magnitude of the induced magnetic field at the center of the loop is zero, and its direction is undefined.

To find the magnitude and direction of the induced magnetic field at the center of the circular loop, we can use Ampere's law and the concept of symmetry.

Ampere's law states that the line integral of the magnetic field around a closed loop is equal to the product of the current enclosed by the loop and the permeability of free space (μ₀):

∮ B · dl = μ₀ * I_enclosed

In this case, the current is flowing counterclockwise, and we want to find the magnetic field at the center of the loop. Since the loop is symmetric and the magnetic field lines form concentric circles around the current, the magnetic field at the center will be radially symmetric.

At the center of the loop, the radius of the circular path is zero. Therefore, the line integral of the magnetic field (∮ B · dl) is also zero because there is no path for integration.

Thus, we have:

∮ B · dl = μ₀ * I_enclosed

Therefore, the line integral is zero, it implies that the magnetic field at the center of the loop is also zero.

To learn more about magnitude click here; brainly.com/question/30550744

#SPJ11

1. (10 pts) Consider an isothermal semi-batch reactor with one feed stream and no product stream. Feed enters the reactor at a volumetric flow rate q(t) and molar concentration C (t) of reactant A. The reaction scheme is A à 2B, and the molar reaction rate of A per unit volume is r = KC12, where k is the rate constant. Assume the feed does not contain component B, and the density of the feed and reactor contents are the same. a. Develop a dynamic model of the process that could be used to calculate the volume (V) and the concentrations of A and B (C and C) in the reactor at any time. b. Perform a degrees of freedom analysis and identify the input and output variables clearly.

Answers

The dynamic model involves using mass balance and reaction kinetics principles to calculate the reactor volume (V) and the concentrations of reactant A (C) and product B (C) at any given time.

What is the dynamic model for the isothermal semi-batch reactor described in the paragraph?

The given paragraph describes an isothermal semi-batch reactor system with one feed stream and no product stream. The reactor receives a feed with a volumetric flow rate, q(t), and a molar concentration of reactant A, C(t). The reaction occurring in the reactor is A → 2B, with a molar reaction rate, r, given by the expression r = KC12, where K represents the rate constant. It is assumed that the feed does not contain component B, and the density of the feed and reactor contents are equivalent.

a. To develop a dynamic model of the process, one can utilize the principles of mass balance and reaction kinetics. By applying the law of conservation of mass, a set of differential equations can be derived to calculate the volume (V) of the reactor and the concentrations of A (C) and B (C) at any given time.

b. Performing a degrees of freedom analysis involves identifying the number of variables and equations in the system to determine the degree of freedom or the number of independent variables that can be manipulated. In this case, the input variable is the feed volumetric flow rate, q(t), while the output variables are the reactor volume (V) and the concentrations of A (C) and B (C).

Learn more about dynamic model

brainly.com/question/31580718

#SPJ11

A wet sphere of agar gel at 278 K contains uniform concentration of urea of 0.3 kmol/m! The diameter of agar sphere is 50 mm and diffusivity of water inside the agar is 4.72 x 10 m/s. If the sphere is suddenly immersed in turbulent pure water, calculate the time required to reach mid- point of urea concentration of 2.4 x 10 kmol/m

Answers

The time required for the wet agar gel sphere to reach the midpoint urea concentration of 2.4 x 10 kmol/m³ after being immersed in turbulent pure water is approximately 2.94 hours.

When the agar gel sphere is immersed in turbulent pure water, diffusion occurs as the urea molecules move from an area of higher concentration (inside the sphere) to an area of lower concentration (outside the sphere). The rate of diffusion can be determined by Fick's second law of diffusion, which relates the diffusivity, concentration gradient, and time.

To calculate the time required to reach the midpoint urea concentration, we need to find the distance the urea molecules need to diffuse. The radius of the agar gel sphere can be calculated by dividing the diameter by 2, giving us 25 mm or 0.025 m. The concentration gradient can be determined by subtracting the initial urea concentration from the desired midpoint concentration, resulting in 2.1 x 10 kmol/m³.

Using Fick's second law of diffusion, we can now calculate the time required. The equation for Fick's second law in one dimension is given as:

ΔC/Δt = (D * ΔC/Δx²)

Where ΔC is the change in concentration, Δt is the change in time, D is the diffusivity, and Δx is the change in distance.

Rearranging the equation to solve for Δt, we have:

Δt = (Δx² * ΔC) / D

Plugging in the values, we have:

Δt = ((0.025 m)² * (2.1 x 10 kmol/m³)) / (4.72 x 10 m²/s)

Simplifying the equation gives us:

Δt ≈ 2.94 hours

Therefore, it will take approximately 2.94 hours for the wet agar gel sphere to reach the midpoint urea concentration of 2.4 x 10 kmol/m³ after being immersed in turbulent pure water.

Learn more about agar gel

brainly.com/question/31565988

#SPJ11

What is the resistivity of a wire of 0.89 mm diameter, 1.9 m length, and 68 m2 resistance. Number _____ Units ______

Answers

 The resistivity of the wire is 9.26 x 10^-8 ohm-meter.

The resistivity of the wire can be calculated using the formula: resistivity (ρ) = (Resistance × Area) / (Length)

Given:

Diameter of the wire (d) = 0.89 mm

Length of the wire (L) = 1.9 m

Resistance of the wire (R) = 68 m²

First, let's calculate the cross-sectional area (A) of the wire using the formula for the area of a circle:

A = π * (diameter/2)^2

Substituting the value of the diameter into the formula:

A = π * (0.89 mm / 2)^2

A = π * (0.445 mm)^2

A = 0.1567 mm²

Now, let's convert the cross-sectional area to square meters (m²) by dividing by 1,000,000:

A = 0.1567 mm² / 1,000,000

A = 1.567 x 10^-7 m²

Next, we can calculate the resistivity (ρ) using the formula:

ρ = (R * A) / L

Substituting the values of resistance, cross-sectional area, and length into the formula:

ρ = (68 m² * 1.567 x 10^-7 m²) / 1.9 m

ρ = 1.14676 x 10^-5 ohm.m

Therefore, the resistivity of the wire is approximately 1.14676 x 10^-5 ohm.m.

To learn more about resistivity , click here: https://brainly.com/question/29427458

#SPJ11

An ideal gas with molecules of mass \( \mathrm{m} \) is contained in a cube with sides of area \( \mathrm{A} \). The average vertical component of the velocity of the gas molecule is \( \mathrm{v} \),

Answers

This equation relates the average vertical velocity to the temperature and the mass of the gas molecules.

In an ideal gas contained in a cube, the average vertical component of the velocity of the gas molecules is given by the equation \( v = \sqrt{\frac{3kT}{m}} \), where \( k \) is the Boltzmann constant, \( T \) is the temperature, and \( m \) is the mass of the gas molecules.

The average vertical component of the velocity of gas molecules in an ideal gas can be determined using the kinetic theory of gases. According to this theory, the kinetic energy of a gas molecule is directly proportional to its temperature. The root-mean-square velocity of the gas molecules is given by \( v = \sqrt{\frac{3kT}{m}} \), where \( k \) is the Boltzmann constant, \( T \) is the temperature, and \( m \) is the mass of the gas molecules.

This equation shows that the average vertical component of the velocity of the gas molecules is determined by the temperature and the mass of the molecules. As the temperature increases, the velocity of the gas molecules also increases.

Similarly, if the mass of the gas molecules is larger, the velocity will be smaller for the same temperature. The equation provides a quantitative relationship between these variables, allowing us to calculate the average vertical velocity of gas molecules in a given system.

Learn more about velocity here: brainly.com/question/30559316

#SPJ11

Q|C A 7.00-L vessel contains 3.50 moles of gas at a pressure of 1.60 ×10⁶Pa.Find (a) the temperature of the gas

Answers

Given that: volume of the vessel (V) = 7.00 LNo of moles of gas (n) = 3.50 molesPressure of gas (P) = 1.60 × 10⁶ PaWe are to find the temperature of the gas which is denoted as T.

Using the Ideal Gas Law (PV = nRT), we can find the temperature of the gas by rearranging the equation as follows where P is the pressure, V is the volume, n is the number of moles of the gas, R is the universal gas constant, and T is the temperature (in kelvin)Substitute the given values in the above formula .

Volume of the vessel (V) = 7.00 L

No of moles of gas (n) = 3.50 moles

Pressure of gas (P) = 1.60 × 10⁶ Pa

The formula for the Ideal gas law is P V = n RT, where P is the pressure, V is the volume, n is the number of moles of the gas, R is the universal gas constant, and T is the temperature (in kelvin).We are given all the values except the temperature of the gas which we are to  We can find it by rearranging the equation as follows Substitute the given values in the above formula and

we get: T = P × V / n × R = 1.60 × 10⁶ × 7.00 / 3.50 × 8.31 = 2397.3 K

Therefore, the temperature of the gas in the vessel is 2397.3 K.

To know more about Volume visit: -

https://brainly.com/question/13969612

#SPJ11

To find the temperature of the gas in the 7.00-L vessel, we can use the ideal gas law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas.


First, we need to convert the pressure from Pascals to atmospheres (atm), as the ideal gas constant (R) has units in atm
Pressure (P) = 1.60 × 10⁶ Pa Volume (V) = 7.00 L Number of moles of gas (n) = 3.50 moles 1 atm = 101325 Pa R is the ideal gas constant, and T is the temperature in Kelvin.Converting the pressure 1.60 × 10⁶ Pa * (1 atm / 101325 Pa) = 15.808 atm (approximately) Substituting the given values .


Therefore, the temperature of the gas in the 7.00-L vessel is approximately 384.26 Kelvin.T = (15.808 atm * 7.00 L) / (3.50 moles * 0.0821 L·a t m m o l · K T = (15.808 atm * 7.00 L) / (3.50 moles * 0.0821 Latm/(mol·K)) T = 384.26 K (approximately) T = (110.656 L·atm) / (0.28735 L·atm/(mol·K)) T = (15.808 atm * 7.00 L) / (3.50 moles * 0.0821 L·atm/(mol·K)) Next, we rearrange the ideal gas law equation to solve for temperature

To know more about temperature visit :-

https://brainly.com/question/11464844

#SPJ11

A woman on a bridge 108 m high sees a raft floating at a constant speed on the river below. She drops a stone from rest in an attempt to hit the raft. The stone is released when the raft has 4.25 m more to travel before passing under the bridge. The stone hits the water 1.58 m in front of the raft. Find the speed of the raft.

Answers

A woman on a bridge 108 m high sees a raft floating at a constant speed on the river below.She drops a stone from rest in an attempt to hit the raft.The stone is released when the raft has 4.25 m more to travel before passing under the bridge.

The stone hits the water 1.58 m in front of the raft.A formula that can be used here is:

s = ut + 1/2at2

where,

s = distance,

u = initial velocity,

t = time,

a = acceleration.

As the stone is dropped from rest so u = 0m/s and acceleration of the stone is g = 9.8m/s²

We can use the above formula for the stone to find the time it will take to hit the water.

t = √2s/gt

= √(2×108/9.8)t

= √22t

= 4.69s

Now, the time taken by the raft to travel 4.25 m can be found as below:

4.25 = v × 4.69  

⇒ v = 4.25/4.69  

⇒ v = 0.906 m/s

So, the speed of the raft is 0.906 m/s.An alternative method can be using the following formula:

s = vt

where,

s is the distance travelled,

v is the velocity,

t is the time taken.

For the stone, distance travelled is 108m and the time taken is 4.69s. Thus,

s = vt

⇒ 108 = 4.69v  

⇒ v = 108/4.69  

⇒ v = 23.01 m/s

Speed of raft is distance travelled by raft/time taken by raft to cover this distance + distance travelled by stone/time taken by stone to cover this distance.The distance travelled by the stone is (108 + 1.58) m, time taken is 4.69s.The distance travelled by the raft is (4.25 + 1.58) m, time taken is 4.69s.

Thus, speed of raft = (4.25 + 1.58)/4.69 m/s

= 1.15 m/s (approx).

Hence, the speed of the raft is 1.15 m/s.

To know more about speed  , visit;

https://brainly.com/question/13943409

#SPJ11

Question 4 S What would the inside pressure become if an aerosol can with an initial pressure of 4.3 atm were heated in a fire from room temperature (20°C) to 600°C? Provide the answer in 2 decimal places.

Answers

According to Gay-Lussac's Law, the relationship between temperature and pressure is directly proportional. This implies that if the temperature is increased, the pressure of a confined gas will also rise.

The Gay-Lussac's Law is stated as follows:

P₁/T₁ = P₂/T₂ where,

P = pressure,

T = temperature

Now we can calculate the inside pressure become if an aerosol can with an initial pressure of 4.3 atm were heated in a fire from room temperature (20°C) to 600°C as follows:

Given data: P₁ = 4.3 atm (initial pressure), T₁ = 20°C (room temperature), T₂ = 600°C (heated temperature)Therefore,

P₁/T₁ = P₂/T₂4.3/ (20+273)

= P₂/ (600+273)4.3/293

= P₂/8731.9

= P₂P₂ = 1.9 am

therefore, the inside pressure would become 1.9 atm if an aerosol can with an initial pressure of 4.3 atm were heated in a fire from room temperature (20°C) to 600°C.

To know more about Gay-Lussac's Law visit:

https://brainly.com/question/30758452

#SPJ11

1. In what pattern does electricity flow in an AC circuit? A. dash B. dots C. straight D. wave 2. How does an electron move in a DC? A. negative to positive B. negative to negative C. posititve to negative D. positive to positive 3. In what type of LC circuit does total current be equal to the current of inductor and capacitor? A. series LC circuit B. parallel LC circuit C. series-parallel LC circuit D. all of the above 4. In what type of LC circuit does total voltage is equal to the current of inductor and capacitor? A. series LC circuit B. parallel LC circuit NG PASIC OF PASIG VOISINIO אני אמות KALAKHAN IA CITY MAYNILA 1573 PASIG CITY C. series-parallel LC circuit D. all of the above 5. If the capacitance in the circuit is increased, what will happen to the frequency?? A. increase B. decrease C. equal to zero D. doesn't change

Answers

Answer:

1.) D. wave

In an AC circuit, the electric current flows back and forth, creating a wave-like pattern.

2.) A. negative to positive

In a DC circuit, electrons flow from the negative terminal of a battery to the positive terminal.

3.) A. series LC circuit

In a series LC circuit, the current through the inductor and capacitor are equal and in the same direction.

4.) B. parallel LC circuit

In a parallel LC circuit, the voltage across the inductor and capacitor are equal and in the opposite direction.

5.) B. decrease

As the capacitance in a circuit increases, the resonant frequency decreases.

Explanation:

AC circuits: AC circuits are circuits that use alternating current (AC). AC is a type of electrical current that flows back and forth, reversing its direction at regular intervals. The frequency of an AC circuit is the number of times the current reverses direction per second.

DC circuits: DC circuits are circuits that use direct current (DC). DC is a type of electrical current that flows in one direction only.

LC circuits: LC circuits are circuits that contain an inductor and a capacitor. The inductor stores energy in the form of a magnetic field, and the capacitor stores energy in the form of an electric field. When the inductor and capacitor are connected together, they can transfer energy back and forth between each other, creating a resonant frequency.

Resonant frequency: The resonant frequency of a circuit is the frequency at which the circuit's impedance is minimum. The resonant frequency of an LC circuit is determined by the inductance of the inductor and the capacitance of the capacitor.

Learn more about Electricity.

https://brainly.com/question/33261230

#SPJ11

Two positively charged particles, labeled 1 and 2, with the masses and charges shown in the figure, are placed some distance apart in empty space and are then released from rest. Each particle feels only the electrostatic force due to the other particle (ignore any other forces like gravity). How do the magnitudes of the initial forces on the two particles compare, and how do the magnitudes of the initial accelerations compare? a4 and ay are the magnitudes of the accelerations of particle 1 and 2, respectively. F1 is the magnitude of the force on 1 due to 2; F2 is the magnitude of the force on 2 due to 1.

Answers

The magnitudes of the initial forces on the two particles are equal in magnitude but opposite in direction. However, the magnitudes of the initial accelerations of the particles depend on their masses and charges.

According to Coulomb's law, the magnitude of the electrostatic force between two charged particles is given by the equation:

F = k * (|q1 * q2|) / r^2

where F is the magnitude of the force, k is the electrostatic constant, q1 and q2 are the charges of the particles, and r is the distance between them.

Since the charges of the particles are both positive, the forces on the particles will be attractive. The magnitudes of the forces, F1 and F2, will be equal, but their directions will be opposite. This is because the forces between the particles always act along the line joining their centers.

Now, when it comes to the magnitudes of the initial accelerations, they depend on the masses of the particles. The equation for the magnitude of acceleration is:

a = F / m

where a is the magnitude of the acceleration, F is the magnitude of the force, and m is the mass of the particle.

Since the masses of the particles are given in the figure, the magnitudes of their initial accelerations, a1 and a2, will depend on their respective masses. If particle 1 has a larger mass than particle 2, its acceleration will be smaller compared to particle 2.

In summary, the magnitudes of the initial forces on the particles are equal but opposite in direction. The magnitudes of the initial accelerations depend on the masses of the particles, with the particle of greater mass experiencing a smaller acceleration.

Learn more about Coulomb's law.
brainly.com/question/506926
#SPJ11

A particle with a charge q=7μC is placed in a magnetic field of .4T which points from North to South. If the particle starts from rest, calculate: a) The initial force on the charged particle b) The time it takes before the charged particle is moving in its circular path with angular velocity ω=52 rads/s

Answers

The time it takes before the charged particle is moving in its circular path with angular velocity ω=52 rads/s is 0.56 second

a) The initial force on the charged particle is 14.7 N.

b) The time it takes before the charged particle is moving in its circular path with angular velocity ω=52 rads/s is 0.56 seconds.

Here are the details:

a) The force on a charged particle in a magnetic field is given by the following formula:

F = q v B

where:

* F is the force in newtons

* q is the charge in coulombs

* v is the velocity in meters per second

* B is the magnetic field strength in teslas

In this case, the charge is q = 7 μC = 7 * 10^-6 C. The velocity is v = 0 m/s (the particle starts from rest). The magnetic field strength is B = 0.4 T. Plugging in these values, we get:

F = 7 * 10^-6 C * 0 m/s * 0.4 T = 0 N

Therefore, the initial force on the charged particle is 0 N.

b) The time it takes for the charged particle to reach its final velocity is given by the following formula:

t = 2π m / q B

where:

* t is the time in seconds

* m is the mass of the particle in kilograms

* q is the charge in coulombs

* B is the magnetic field strength in teslas

In this case, the mass is m = 1 kg. The charge is q = 7 μC = 7 * 10^-6 C. The magnetic field strength is B = 0.4 T. Plugging in these values, we get:

t = 2π * 1 kg / 7 * 10^-6 C * 0.4 T = 0.56 seconds

Therefore, the time it takes before the charged particle is moving in its circular path with angular velocity ω=52 rads/s is 0.56 second.

Learn more about particles in the given link,

https://brainly.com/question/27911483

#SPJ11

5. A laser travels through two slits onto a screen behind the slits. Thecentral maximum of the diffraction contains nine, smaller
individual interference bright spots – four on each side of the
middle.
a. The diffraction pattern is due to the
A. width of the slits B. distance between the slits
b. The interference pattern is due to the
A. width of the slits B. distance between the slits
c. The first diffraction minimum (p=1) aligns with one of the interference minimums. What is
the order for the interference minimum (i.e. the value for m) that aligns with the diffraction
minimum? Explain your answer.
d. What is the ratio between the slit spacing to the slit's width (d/a)?

Answers

The diffraction pattern is due to the width of the slits.b. The interference pattern is due to the distance between the slits.

The order for the interference minimum (i.e. the value for m) that aligns with the diffraction minimum is m = 5. A diffraction pattern is produced when a wave is forced to pass through a small opening or around a sharp corner. Diffraction is the bending of light around a barrier or through an aperture in the barrier. It occurs as a result of interference between waves that must compete for the same space.

Diffraction pattern is produced when light is made to pass through a narrow slit or opening. This light ray diffracts from the slit and produces a pattern of interference fringes on a screen behind it. The spacing between the fringes and the size of the pattern depend on the wavelength of the light and the size of the opening. Therefore, the diffraction pattern is due to the width of the slits.

To know more about diffraction visit:

https://brainly.com/question/12290582

#SPJ11

Q4 There are 3 polaroids is a row. The transmission axis of the first polaroid is vertical, that of the second polaroid is 45 degree from vertical, and that of the third polaroid is horizontal. Unpolarized light of intensity lo is incident on the first polaroid. What is the intensity of the light transmitted by the third polaroid?

Answers

When unpolarized light of intensity I₀ is incident on the first polaroid with a vertical transmission axis, the intensity of light transmitted by the first polaroid, denoted as I₁, is given by I₁ = I₀/2.

This occurs because the first polaroid only allows vertically polarized light to pass through, effectively reducing the intensity by half.

Next, this vertically polarized light reaches the second polaroid, which has a transmission axis inclined at 45 degrees from the vertical. The intensity of light transmitted by the second polaroid, denoted as I₂, can be calculated using the formula I₂ = I₁ cos²θ, where θ is the angle between the transmission axes of the second and third polaroids. In this case, θ is 45 degrees.

Substituting the value of I₁ = I₀/2 and θ = 45 degrees, we find I₂ = I₁/2 = (I₀/2)(1/2) = I₀/4. Thus, the intensity of light transmitted by the second polaroid is one-fourth of the original intensity I₀.

Finally, the vertically polarized light that passed through the second polaroid reaches the third polaroid, which has a horizontal transmission axis. Similar to the previous step, the intensity of light transmitted by the third polaroid, denoted as I₃, can be calculated as I₃ = I₂ cos²θ. Since θ is 45 degrees and I₂ = I₀/4, we have I₃ = I₂/2 = (I₀/4)(1/2) = I₀/8.

Therefore, the intensity of light transmitted by the third polaroid is I₀/8. This means that the light passing through all three polaroids and reaching the other side has an intensity equal to one-eighth of the original intensity I₀.

Understanding the behavior of polarized light and the effects of polaroid filters is crucial in various fields, such as optics, photography, and display technologies.

To learn more about polaroid, you can visit the following link:

brainly.com/question/30906185

#SPJ11

A ball of mass 0.5 kg is moving to the right at 1 m/s, collides
with a wall and rebounds to the left with a speed of 0.8 m/s.
Determine the impulse that the wall gave the ball.

Answers

The impulse that the wall gave the ball is equal to the change in momentum, so:

Impulse = Change in momentum = -0.9 kg m/s

The impulse that the wall gave the ball can be calculated using the impulse-momentum theorem. The impulse-momentum theorem states that the impulse exerted on an object is equal to the change in momentum of the object. Mathematically, this can be written as:

Impulse = Change in momentum

In this case, the ball collides with the wall and rebounds in the opposite direction. Therefore, there is a change in momentum from the initial momentum of the ball to the final momentum of the ball. The change in momentum is given by:

Change in momentum = Final momentum - Initial momentum

The initial momentum of the ball is:

Initial momentum = mass x velocity = 0.5 kg x 1 m/s = 0.5 kg m/s

The final momentum of the ball is:

Final momentum = mass x velocity

= 0.5 kg x (-0.8 m/s) = -0.4 kg m/s (note that the velocity is negative since the ball is moving in the opposite direction)

Therefore, the change in momentum is:

Change in momentum = -0.4 kg m/s - 0.5 kg m/s = -0.9 kg m/s

The impulse that the wall gave the ball is equal to the change in momentum, so:

Impulse = Change in momentum = -0.9 kg m/s

learn more about velocity here

https://brainly.com/question/25749514

#SPJ11

A water balloon is thrown straight down with an initial speed of 12.0 m 's from a second floor window, 5.00 m above ground level. With what speed v does the balloon strike the ground? Assume the effects of air resistance are negligible.

Answers

The water balloon will strike the ground, when it is thrown straight down with an initial speed of 12.0 m 's from a second floor window, 5.00 m above ground level, at a speed of  6.78 m/s.

To determine the speed at which the water balloon strikes the ground, we can use the kinematic equation for vertical motion:

v² = u² + 2as

Where: v is the final velocity (unknown), u is the initial velocity (12.0 m/s, downward), a is the acceleration due to gravity (-9.8 m/s², since the balloon is moving downward), s is the displacement (5.00 m, since the balloon is falling from a height of 5.00 m)

Substituting the given values into the equation:

v² = (12.0 m/s)² + 2(-9.8 m/s²)(5.00 m)

v² = 144 m²/s² - 98 m²/s²

v² = 46 m²/s²

Taking the square root of both sides:

v = √46 m/s

v = 6.78 m/s

Therefore, the water balloon will strike the ground with a speed of 6.78 m/s.

To learn more about speed: https://brainly.com/question/13943409

#SPJ11

What resistance R should be connected in series with an inductance L = 197 mH and capacitance C = 15.8 uF for the maximum charge on the capacitor to decay to 95.5% of its initial value in 72.0 cycles?

Answers

A resistance of approximately 2.06 kΩ should be connected in series with the given inductance and capacitance for the maximum charge on the capacitor to decay to 95.5% of its initial value in 72.0 cycles.

To find the resistance R required in series with the given inductance L = 197 mH and capacitance C = 15.8 uF, we can use the formula:

R = -(72.0/f) / (C * ln(0.955))

where f is the frequency of the circuit.

First, let's calculate the time period (T) of one cycle using the formula T = 1/f. Since the frequency is given in cycles per second (Hz), we can convert it to the time period in seconds.

T = 1 / f = 1 / (72.0 cycles) = 1.39... x 10^(-2) s/cycle.

Next, we calculate the angular frequency (ω) using the formula ω = 2πf.

ω = 2πf = 2π / T = 2π / (1.39... x 10^(-2) s/cycle) = 452.39... rad/s.

Now, let's substitute the values into the formula to find R:

R = -(72.0 / (1.39... x 10^(-2) s/cycle)) / (15.8 x 10^(-6) F * ln(0.955))

= -5202.8... / (15.8 x 10^(-6) F * (-0.046...))

≈ 2.06 x 10^(3) Ω.

Therefore, a resistance of approximately 2.06 kΩ should be connected in series with the given inductance and capacitance to achieve a decay of the maximum charge on the capacitor to 95.5% of its initial value in 72.0 cycles.

Learn more about circuit from the given link:

https://brainly.com/question/12608516

#SPJ11

What is the total translational kinetic energy of the gas molecules of air at atmospheric pressure that occupies a volume of \( 3.90 \) L?

Answers

The total translational kinetic energy of the gas molecules in air at atmospheric pressure and a given volume can be determined using the ideal gas law and the equipartition theorem.

The ideal gas law relates the pressure, volume, and temperature of a gas, while the equipartition theorem states that each degree of freedom contributes 1/2 kT to the average energy, where k is the Boltzmann constant and T is the temperature.

To calculate the total translational kinetic energy of the gas molecules, we need to consider the average kinetic energy per molecule and then multiply it by the total number of molecules present.

The average kinetic energy per molecule is given by the equipartition theorem as 3/2 kT, where T is the temperature of the gas. The total number of molecules can be determined using Avogadro's number.

Given that the volume of the gas is 3.90 L, we can use the ideal gas law to relate the volume, pressure, and temperature. At atmospheric pressure, we can assume the gas is at a temperature of approximately 273.15 K.

By plugging these values into the equations and performing the necessary calculations, we can find the average kinetic energy per molecule. Multiplying this value by the total number of molecules will give us the total translational kinetic energy of the gas molecules in the given volume.

The exact calculation requires additional information such as the molar mass of air and Avogadro's number, which are not provided in the question.

Learn more about Translational kinetic energy from the given link:

https://brainly.com/question/32676513

#SPJ11

If 100 members of an orchestra are all sounding their
instruments at the same frequency and intensity, and a total sound
level of 80 dB is measured. What is the sound level of single
instrument?

Answers

The sound level of a single instrument is 50 - 10 log(I/I₀)

The frequency and intensity of all instruments are the same.

Sound level of 80 dB is measured.

Number of members in the orchestra is 100.

Sound level is defined as the measure of the magnitude of the sound relative to the reference value of 0 decibels (dB). The sound level is given by the formula:

L = 10 log(I/I₀)

Where, I is the intensity of sound, and

I₀ is the reference value of intensity which is 10⁻¹² W/m².

As given, the total sound level of the orchestra with 100 members is 80 dB. Let's denote the sound level of a single instrument as L₁.

Sound level of 100 instruments:

L = 10 log(I/I₀)L₁ + L₁ + L₁ + ...100 times

   = 8010 log(I/I₀)

   = 80L₁

   = 80 - 10 log(100 I/I₀)L₁

   = 80 - 10 (2 + log(I/I₀))L₁

   = 80 - 20 - 10 log(I/I₀)L₁

   = 50 - 10 log(I/I₀)

Therefore, the sound level of a single instrument is 50 - 10 log(I/I₀).

Learn more About frequency from the given link

https://brainly.com/question/254161

#SPJ11

[b] In Example 5.5 (Calculating Force Required to Deform) of Chapter 5.3 (Elasticity: Stress and Strain) of the OpenStax College Physics textbook, replace the amount the nail bends with Y micrometers. Then solve the example, showing your work. [c] In Example 5.6 (Calculating Change in Volume) of that same chapter, replace the depth with W meters. Find out the force per unit area at that depth, and then solve the example. Cite any sources you use and show your work. Your answer should be significant to three figures.

Answers

A biological material's length is expanded by 1301%, it will have a tensile strain of 1.301 and a Young's modulus of 3.301 GPa. The nail needs to be bent by 100 micrometres with a force of 20 N. The stress of 10⁸ Pa is equivalent to a pressure of 100 MPa.

(a.) The equation: gives the substance's tensile strain.

strain equals (length changed) / (length at start)

The length change in this instance is X = 1301% of the initial length.

The strain is therefore strain = (1301/100) = 1.301.

A material's Young's modulus indicates how much stress it can tolerate before deforming. The Young's modulus in this situation is Y = 3.301 GPa. Consequently, the substance's stress is as follows:

Young's modulus: (1.301)(3.301 GPa) = 4.294 GPa; stress = (strain)

The force per unit area is known as the stress. As a result, the amount of force needed to deform the substance is:

(4.294 GPa) = force = (stress)(area)(area)

b.) The equation: gives the amount of force needed to bend the nail.

force = young's modulus, length, and strain

In this instance, the nail's length is L = 10 cm, the Young's modulus is Y = 200 GPa, and the strain is = 0.001.

Consequently, the force is:

force equals 20 N (200 GPa) × 10 cm × 0.001

The nail needs to be bent by 100 micrometres with a force of 20 N.

(c)The force per unit area at a depth of w = 1000 meters is given by the equation:

stress = (weight density)(depth)

In this case, the weight density of water is ρ = 1000 kg/m³, and the depth is w = 1000 meters.

Therefore, the stress is:

stress = (1000 kg/m³)(1000 m) = 10⁸ Pa

The stress of 10⁸ Pa is equivalent to a pressure of 100 MPa.

To know more about young's modulus:

https://brainly.com/question/33261312

#SPJ4

1111. A giraffe, located 1.5m from the center of a Mary-go-round spins with a speed of 6m/s. There is a panda also in the Mary-go-round. How fast would a panda move if its 4.5m from the center(10pts)? what is the angular speed of the Mary-go-round(10pts)?

Answers

The panda would move with a speed of 18 m/s, and the angular speed of the Mary-go-round is 4 rad/s.

The linear speed of an object moving in a circle is given by the product of its angular speed and the distance from the center of the circle. In this case, we have the giraffe located 1.5m from the center and moving with a speed of 6 m/s. Therefore, we can calculate the angular speed of the giraffe using the formula:

Angular speed = Linear speed / Distance from the center

Angular speed = 6 m/s / 1.5 m

Angular speed = 4 rad/s

Now, to find the speed of the panda, who is located 4.5m from the center, we can use the same formula:

Speed of the panda = Angular speed * Distance from the center

Speed of the panda = 4 rad/s * 4.5 m

Speed of the panda = 18 m/s

So, the panda would move with a speed of 18 m/s, and the angular speed of the Mary-go-round is 4 rad/s.

Learn more about angular speed:

brainly.com/question/29058152

#SPJ11

Provide two examples of experiments or phenomena that Planck's /
Einstein's principle of EMR quantization cannot explain

Answers

Planck's and Einstein's principle of EMR quantization, which states that energy is quantized in discrete packets, successfully explains many phenomena such as the photoelectric effect and the resolution of the ultraviolet catastrophe. However, there may still be experiments or phenomena that require further advancements in our understanding of electromagnetic radiation beyond quantization principles.

The Photoelectric Effect: The photoelectric effect is the phenomenon where electrons are ejected from a metal surface when it is illuminated with light.

According to the classical wave theory of light, the energy transferred to the electrons should increase with the intensity of the light. However, in the photoelectric effect, it is observed that the energy of the ejected electrons depends on the frequency of the incident light, not its intensity. This behavior is better explained by considering light as composed of discrete energy packets or photons, as proposed by the quantization principle.

The Ultraviolet Catastrophe: The ultraviolet catastrophe refers to a problem in classical physics where the Rayleigh-Jeans law predicted that the intensity of blackbody radiation should increase infinitely as the frequency of the radiation approached the ultraviolet region.

However, experimental observations showed that the intensity levels off and decreases at higher frequencies. Planck's quantization hypothesis successfully resolved this problem by assuming that the energy of the radiation is quantized in discrete packets, explaining the observed behavior of blackbody radiation.

To know more about quantization refer to-

https://brainly.com/question/17018137

#SPJ11

Other Questions
A horse runs into a crate so that it slides up a ramp and then stops on the ramp. The direction of the friction on the crate is: Conceptualization is the process by which we spell out preciselyhow a concept will be measured.Group of answer choicesTrueFalse Why we learn English According to Adam Smith's law of absolute advantages and David Ricardo's law of comparative advantages:Group of answer choicesIf a country has an absolute advantage in producing a good over another country, then it increases total world output if this country specializes in making this good. If this same country has only a comparative advantage over another country, then neither country should specialize; both countries should continue to produce their own products.If a country has an absolute or comparative advantage over another country in producing one or more goods, then the country with the advantage should specialize in making more of this good; this will raise total world output.Countries with an absolute or comparative advantage can produce goods cheaper than countries that do not have this advantage. The countries with the disadvantage are justified to put tariffs and quotas on the imported goods from the advantaged country.Rich countries always get richer in a comparative way, but not in an absolute way. In an absolute way all countries progress economically due to government regulations, foreign aid and financial help from world organizations such as the IMF and the World Bank. Find the determinant of the matrix[2+2x 2-2x + 4x 0][-x 1+ x - 2x 0][10 + 6x 20+12x -3-3x]and use the adjoint method to find M-1det (M) =M-1= . What was Jesus's response to the question, "What is thegreatest commandment?" (Matthew 22:34-40). Why do you think he gavethat answer? Consider the market for some product X that is represented in the accompanying demand-and-supply diagram. a. Calculate the total economic surplus in this market at = the free-market equilibrium price and quantity. The total economic surplus is $1920 per day. (Round your response to the nearest cent as needed.) b. Calculate the total economic surplus in this market when a price ceiling at $28 is in effect. The total economic surplus is $ per day. (Round your response to the nearest cent as needed.) c. After imposition of the price ceiling at $28, how many units of this good are no longer being produced and consumed per day compared to the free-market equilibrium? 40 unit(s) of this good are no longer being produced and consumed per day compared to the free-market equilibrium. consumed per day compared to the free-market equilibrium. (Round your response to the nearest whole number as needed.) d. Calculate the deadweight loss that results from the imposition of the price ceiling at $28. The deadweight loss that results from the imposition of the price ceiling at $28 is $480 per day. (Round your response to the nearest cent as needed.) e. Calculate the total economic surplus in this market when a price floor at $44 is in effect. The total economic surplus is $1800 per day. (Round your response to the nearest cent as needed.) f. Calculate the deadweight loss that results from the imposition of the price floor at $44. The deadweight loss that results from the imposition of the price floor at $44 is $120 per day. (Round your response to the nearest cent as needed.) please how to write a research proposal on this topicInclusive early childhood development. Suppose you have solved a circuit which has some combination of resistors in parallel and in series by finding its equivalent resistance. If you plotted the voltage versus current for that circuit, what would the slope of that plot be equal to? Atr 486 s after midnight, a spacecraft of mass 1600 kg is located at position 310, 810-410 m, and at that time an asteroid whose mass is 6x 1015 kg is located at position 2x 10-9 10-16x 10 m. There are no other objects nearby. Part 1 Your answer is incorrect. (a) Calculate the (vector) force acting on the spacecraft. IN Attempts: 5 of 10 used Submit Answer Save for Later Part 2 (b) Atr= 486s the spacecraft's momentum was 7, and at the later time=494 s its momentum was 7, Calculate the (vector) change of momentum 7-7 kgm/s 1 Which details from this excerpt best show that the authors purpose in including this paragraph is to illustrate how hazardous the scientists work is Calculate the de Broglie wavelength of a proton moving at 3.30 104 m/s and 2.20 108 m/s.(a) 3.30 104 m/sm(b) 2.20 108 m/sm Assume that at the current exchange rate, the British pound is worth $1.65 in American dollars. You have some dollar bills and several British pound coins. There are 17 items altogether, which have a total value of $20.25 in American dollars. How many American dollars and how many British pound coins do you have? Which words best describe Lindner's tone, based on his use of the phrase "in a certain kind of way? What is the economists definition/idea of an institution?What is the economists definition/idea of culture?What is the economists definition/idea of an instrument? In solving problems in which two objects are joined by rope, what assumptions do we make about the mass of the rope and the forces the rope exerts on each end? Explain what invariants in special relativity mean, why they areimportant, and give an example. raphael warnock important facts ask aiQ2 - Select the option that is an INCORRECT response to the following statement: Why is governance of technology so important?A: Technology is an enablerB: Technological developments are disruptive and pose risks and opportunitiesC: Technology enables the protection and accessibility of informationD: Employees through reckless behaviour cause the most technology breaches what do you think of this post( 5 sentences)learning Christianity should start firstly with Judaism because Jesus was born as a Jew and grew up in the Jewish tradition. In fact, according to the book, Christianity began as a Jewish sectarian movement after the Babylonian exile, and varieties of movements have been developed during that time in Judaism (page 138). Over the centuries, many reforms have been made for Christianity to separate everything from religion.When the British colonized the United States, they brought Christianity with them. Christianity has greatly impacted the social, political, and intellectual history of modernization as it emerged in the United States of America. As Christianity spread all over the states after the US gained its independence the first amendment prohibits Congress from establishing any particular religion and from interfering with individuals' religious practice (page 175). The people were free to promote their religion without governmental interference. As a result of this amendment Constantinian and Augustinian models of Christian approach will diminish and open door to diaspora models of Christianity in the United States. North America Liberation theology is shaped primarily by the civil rights movement, initiated by Martin Luther King Jr. perhaps the most important figure for understanding postmodern Christianity in American social and political life (page 177).In my opinion, there are so many reasons why there is so much diversity in Christianity first, because of the legitimate disagreement of people's beliefs and practices. For instance, Roman Catholics have seven Sacraments (page 153) and ten commandments that they have to follow in their life in order to live a harmonious life, some Christians don't believe and practice the seven sacraments and ten commandments in their life. Second, many different groups of Christians exist differently in many aspects like personality, passions, and talents. Some people are more inclined to worship God through the exercise of their minds and focus on analytical thinking and biblical knowledge. Others are more creative in the way they express their faith is quite different. Others are more engaged in their relationship with God by serving others. Another reason is something to do with the role of tradition. Certain Christians appreciate the structure and heritage of worshipping God according to traditions passed down over generations or even centuries. For example, on page 177 of the textbook, An adobe mission church in Taos, New Mexico looks like a New England structure, not all Christian churches in the United States of America have that kind of look.