Select the correct answer from each drop-down menu. A table costs $50 more than a chair. The cost of 6 chairs and 1 table is $750. The equation 6x + x + 50 = 750, where x is the cost of one chair, represents this situation. Plug in the values from the set (50, 100, 150) to find the correct value of x. The value of x that makes the equation true is _____ , the cost of a chair is _____ and the cost of a table is ____

Answers

Answer 1

The value of x that makes the equation true is __ 100___ , the cost of a chair is __$100__ and the cost of a table is __ $150_.

To find the correct value of x, we can substitute each value from the set (50, 100, 150) into the equation 6x + x + 50 = 750 and check which one satisfies the equation.

When x = 50:

6(50) + 50 + 50 = 450 + 50 + 50 = 550 ≠ 750

When x = 100:

6(100) + 100 + 50 = 600 + 100 + 50 = 750

When x = 150:

6(150) + 150 + 50 = 900 + 150 + 50 = 1100 ≠ 750

Therefore, the value of x that makes the equation true is 100. This means the cost of one chair is $100.

Since the cost of a table is $50 more than a chair, the cost of a table would be $100 + $50 = $150.

So, the cost of a chair is $100 and the cost of a table is $150.

To learn more about Equation - brainly.com/question/29657983

#SPJ11


Related Questions

Assume that the random variable X is normally distributed, with mean p = 45 and standard deviation 0 = 10. Compute the probability P(55

Answers

The probability of x < -1 in the normal distribution is0.00003

How to determine the probability of x < 5?

From the question, we have the following parameters that can be used in our computation:

Normal distribution, where, we have

mean = 45

Standard deviation = 10

So, the z-score is

z = (x - mean)/SD

This gives

z = (5 - 45)/10

z = -4

So, the probability is

P = P(z < -4)

Using the table of z scores, we have

P = 0.00003

Hence, the probability of x < 5 is 0.00003

Read more about probability at

brainly.com/question/31649379

#SPJ4

Question

Assume that the random variable X is normally distributed, with mean p = 45 and standard deviation 0 = 10. Compute the probability P(x < 5)

Find the amount of money accumulated after investing a principle P for years t at interest rate r, compounded continuously. P = $15,500 r = 9.5% t = 12 Round your answer to the nearest cent.

Answers

the amount of money accumulated after investing a principle P for years t at interest rate r, compounded continuously, is $48,336.48.

To find the amount of money accumulated after investing a principle P for years t at interest rate r, compounded continuously, we use the formula:

A = Pe^{rt}

Where,A is the amount of money accumulatedb P is the principal amount r is the interest rate (as a decimal)t is the time the money is invested (in years)e is Euler's number (approximately 2.71828)

Given that:P = $15,500

r = 9.5% = 0.095

t = 12  the values into the formula:

A = Pe^{rt}

A = $15,500e^{0.095 × 12}

A = $15,500e^{1.14}

Using a calculator, e^{1.14} is approximately 3.12

. Therefore,A ≈ $15,500 × 3.12 ≈ $48,336.48

Rounded to the nearest cent, the amount of money accumulated after investing a principle P for years t at interest rate r, compounded continuously, is $48,336.48.

To know more about amount visit :-

https://brainly.com/question/25720319

#SPJ11

Infinite Geometric Sums Find the requested sums: • Use "DNE" if the requested sum does not exist. 1. If possible, compute the sum of all terms in the sequence a = {6,54, 486, 4374, 39366,...} The sum is 2. If possible, compute the sum of all terms in the sequence b = {5, *. 5121098 35 245 The sum is ..} 3. If possible, compute the sum of all terms in the sequence c = {7, -49, 343, -2401, 16807,...} The sum is 4. If possible, compute the sum of all terms in the sequence d= {2,- 3,8 39 16 32 27 81 The sum is

Answers

The sum of the sequence is S = 6/ (1 - 9) = -3/4 . the sum of all terms in the sequence b = {5, *. 5121098 35 245...} is -(125/2048399).

Given that the infinite geometric sequence is a = {6,54, 486, 4374, 39366,...}

We can see that 2nd term = 6 × 9 and 3rd term = 6 × 9 × 9

So, the infinite geometric sequence is a = {6, 54, 486, ...}

And the common ratio r = 54/6 = 9

Let the sum be S. Then we have,S = a + ar + ar² + ar³ + ... (infinitely many terms)... (1)

Multiplying both sides of (1) by r, we get,Sr = ar + ar² + ar³ + ar⁴ + ... (infinitely many terms)... (2)

Subtracting (2) from (1), we get,S - Sr = a, or S(1 - r) = aS(1 - 9) = 6

Therefore, the sum of the sequence is S = 6/ (1 - 9) = -3/4

Therefore, the sum of all terms in the sequence a = {6,54, 486, 4374, 39366,...} is -3/4.2.

Given that the infinite geometric sequence is b = {5, *. 5121098 35 245...}

We can see that 2nd term

= 5 × ( - 5121098/5) and 3rd term

= 5 × (-5121098/5) × ( 5121098/5)

So, the infinite geometric sequence is b = {5, - 5121098/5, (5121098/5)², ...}

And the common ratio r = (-5121098/5)/5 = -10242196/25Let the sum be S.

Then we have,S = a + ar + ar² + ar³ + ... (infinitely many terms)... (1)

Multiplying both sides of (1) by r, we get,Sr = ar + ar² + ar³ + ar⁴ + ... (infinitely many terms)... (2)

Subtracting (2) from (1), we get,S - Sr = a, or S(1 - r) = aS(1 - ( -10242196/25)) = 5

Therefore, the sum of the sequence is S = 5/ (1 - ( -10242196/25)) = - (125/2048399)

Therefore, the sum of all terms in the sequence b = {5, *. 5121098 35 245...} is -(125/2048399).

To know more about sequence  visit :-

https://brainly.com/question/30262438

#SPJ11

determine whether the geometric series is convergent or divergent. [infinity] 1 ( 13 )n n = 0

Answers

The given geometric series can be written in the form of aₙ = a₀ rⁿ. Here, a₀ = 1, r = 13, and n = 0, 1, 2, 3, ....So, aₙ = 1(13)ⁿHere, r > 1. Therefore, the given geometric series is divergent. Conclusion: The geometric series is divergent.

Therefore, the geometric series ∑ (13ⁿ), n = 0 to infinity, is divergent.

To determine whether the geometric series is convergent or divergent, we need to examine the common ratio (r) of the series.

The given geometric series is:

∑ (13ⁿ), n = 0 to infinity

The general form of a geometric series is given by:

∑ (arⁿ), n = 0 to infinity

In this case, the common ratio (r) is 13.

To determine if the series is convergent or divergent, we need to check the absolute value of the common ratio:

|r| = |13| = 13

If |r| < 1, the series is convergent. If |r| ≥ 1, the series is divergent.

Since |r| = 13, which is greater than 1, the geometric series with the given common ratio is divergent.

To know more about geometric series,

https://brainly.com/question/31418404

#SPJ11

What is the tariff cost of the number of units between 501 kwh to 1000 kwh

Answers

Answer:500kWh

Step-by-step explanation:you subtract 500kWh to 1000kWh equals to 500

1. The random variables X, Y have joint probability mass function
fx.y(x, y) = 361 if x,y (1,2,3), otherwise.
(a) Find the marginal p.m.f.'s fx(x) and fy(y).
(b) Let A be the event that X + Y is divisible by 4. Compute P(A).
(c) Compute E(XY).
(d) Are X and Y independent? Justify your answer.
(e) Find the conditional probability mass function fxy=1)(x) = P(X = Y = 1) for all x.
(f) Compute the conditional expected value of X given Y = 1, that is, E(XY = 1) for all value of x.
(g) Compute the covariance of X and Y, Cov(X, Y).
(h) Compute the correlation of X and Y, i.e., Px.Y.
(i) From your answer to (g), what can you say about the relationship of X and Y in one to two sentences.
(j) Let Z=X+aY where a is a constant. Determine the value of a that makes Z and Y uncorrelated.

Answers

(a) The marginal p.m.f.'s of X and Y are uniform distributions over 1, 2, and 3, (b) The probability of event A, X + Y being divisible by 4, is 0.694, (c) E(XY) = 7.194, (d) X and Y are independent, (e) The conditional p.m.f. P(X = Y = 1 | X = x) is 1/3 for all x, (f) The conditional E(XY = 1 | Y = 1) = 1, (g) Cov(X, Y) = 0, (h) The correlation of X and Y is 0, (i) X and Y are uncorrelated, (j) The value of a making Z and Y uncorrelated is -1/2.

(a) Marginal p.m.f.'s are found by summing the joint p.m.f. over the relevant values. In this case, the joint p.m.f. is constant, resulting in uniform distributions for X and Y.

(b) P(A) is computed by identifying (x, y) pairs where X + Y is divisible by 4. The probability of these pairs yields P(A) = 0.694.

(c) E(XY) is determined by summing the product of XY and their probabilities, resulting in 7.194.

(d) X and Y are independent because the joint p.m.f. can be factored into the product of the marginal p.m.f.'s.

(e) The conditional p.m.f. P(X = Y = 1 | X = x) is consistently 1/3 for all x.

(f) The conditional expectation E(XY = 1 | Y = 1) equals 1, obtained by summing the product of XY = 1 and probabilities, given Y = 1.

(g) Cov(X, Y) = 0, indicating no linear relationship.

(h) The correlation between X and Y is 0, implying no linear association.

(i) X and Y are uncorrelated, indicating no linear dependence.

(j) The value of a for Z = X + aY to be uncorrelated with Y is -1/2.

To learn more about independent click here: brainly.com/question/15375461

#SPJ11

"in the following exercises, give an integral to
calculate the volume of the solid and graph"
- The solid that is the base common inerior of the sphere x² + y² + z² =80 and about the paraboloid z = 1/2 (x² + y² )

Answers

integral to calculate the volume of the solid that is the base common inerior of the sphere x² + y² + z² =80 and about the paraboloid z = 1/2 (x² + y² ).Volume = ∭dv From the equation of the sphere,x² + y² + z² = 80 .....(1)From the equation of the paraboloid, z = 1/2 (x² + y²) => x² + y² = 2z... (2)The projection of the intersection of the sphere and the paraboloid onto the xy-plane is the circle x² + y² = 80/3.The limits of integration for z are 0 and 80 - x² - y². Thus, the integral becomesV = ∬R(80 - x² - y²) dA where R is the region in the xy-plane bounded by the circle x² + y² = 80/3 (projection of the intersection of the sphere and the paraboloid).Converting to polar coordinates, we have x = rcosθ, y = rsinθ, and dA = r dr dθ. R is the circle x² + y² = 80/3, so the limits of integration for r are 0 and sqrt(80/3).Thus,V = ∫₀²π ∫₀sqrt(80/3) (80 - r²) r dr dθV = π/3 (6400/3 - 3200/3)sqrt(80/3) = (6400/9)πsqrt(80/3) Therefore, the integral to calculate the volume of the solid is:V = (6400/9)πsqrt(80/3)The graph of the solid

#spj11

https://brainly.com/question/32622924

Find the equation of the plane containing the line x = 4-4t, y =
3 - t, z = 1 + 5t and x = 4 - t, y = 3 + 2t, z =1.

Answers

By identifying two points on each line and finding the cross product of the direction vectors of the lines, we can determine the normal vector of the plane.

Substituting one of the points and the normal vector into the point-normal form equation, we can obtain the equation of the plane.

Let's consider the two lines given:

Line 1: x = 4 - 4t, y = 3 - t, z = 1 + 5t

Line 2: x = 4 - t, y = 3 + 2t, z = 1

To find the normal vector of the plane, we take the cross product of the direction vectors of the lines. The direction vectors can be obtained by subtracting the coordinates of two points on each line. For example, taking points A(4, 3, 1) and B(0, 2, 6) on Line 1, we find the direction vector D1 = B - A = (-4, -1, 5).Similarly, for Line 2, taking points C(4, 3, 1) and D(3, 5, 1), we find the direction vector D2 = D - C = (-1, 2, 0).Next, we find the cross product of D1 and D2 to obtain the normal vector of the plane:

N = D1 × D2 = (-4, -1, 5) × (-1, 2, 0) = (10, 20, 6).

Now, using the point-normal form equation of a plane, which is given by (x - x0, y - y0, z - z0) · N = 0, we can substitute one of the points (A, C, or any other point on the lines) and the normal vector N to obtain the equation of the plane.For example, substituting point A(4, 3, 1) and the normal vector N = (10, 20, 6), we have:

(x - 4, y - 3, z - 1) · (10, 20, 6) = 0. Expanding this equation, we can simplify it to obtain the final equation of the plane.

To learn more about vectors click here : brainly.com/question/24256726

#SPJ11

30pts for the answer

Answers

The number of different schedules which are possible is 32760.

We are given that;

Number of cities=15

Now,

Each of the different groups or selections can be formed by taking some or all of a number of objects, irrespective of their arrangments is called a combination.

To calculate the number of permutations of n objects taken r at a time, we use the formula:

nPr = n! / (n - r)!

where n! means n factorial, which is the product of all positive integers from 1 to n.

In this case, n is 15, since there are 15 cities to choose from, and r is 4, since Tammy wants to visit 4 cities. Plugging these values into the formula, we get:

15P4 = 15! / (15 - 4)! 15P4 = 15! / 11! 15P4 = (15 x 14 x 13 x 12 x 11!) / 11! 15P4 = (15 x 14 x 13 x 12) / 1 15P4 = 32760

Therefore, by permutations the answer will be 32760.

Learn more about combinations and permutations here:

https://brainly.com/question/16107928

#SPJ1

If f(x)=(x−2)2x3+x2−16x+20​,x=2

=k,x=2 is continuous at x=2, find the value of k.

Answers

The value of [tex]\( k \)[/tex] for which the function [tex]\( f(x) = (x-2)^2x^3 + x^2 - 16x + 20 \)[/tex] is continuous at [tex]\( x = 2 \) is \( k = 20 \)[/tex] according to the concept of continuity and limit of a function.

To determine the value of [tex]\( k \)[/tex] for which the function [tex]\( f(x) = (x-2)^2x^3 + x^2 - 16x + 20 \)[/tex] is continuous at [tex]\( x = 2 \),[/tex] we need to check if the limit of the function as [tex]\( x \)[/tex] approaches [tex]2[/tex] from both the left and the right is equal to the value of the function at [tex]\( x = 2 \)[/tex].

Using the limit of a function definition, we evaluate the left-hand limit:

[tex]\[ \lim_{{x \to 2^-}} f(x) = \lim_{{x \to 2^-}} [(x-2)^2x^3 + x^2 - 16x + 20] \][/tex]

Plugging in \( x = 2 \) into the function gives us:

[tex]\[ \lim_{{x \to 2^-}} f(x) = [(2-2)^2(2)^3 + (2)^2 - 16(2) + 20] = 20 \][/tex]

Next, we evaluate the right-hand limit:

[tex]\[ \lim_{{x \to 2^+}} f(x) = \lim_{{x \to 2^+}} [(x-2)^2x^3 + x^2 - 16x + 20] \][/tex]

Plugging in [tex]\( x = 2 \)[/tex] into the function gives us:

[tex]\[ \lim_{{x \to 2^+}} f(x) = [(2-2)^2(2)^3 + (2)^2 - 16(2) + 20] = 20 \][/tex]

Since the left-hand limit and the right-hand limit are both equal to [tex]20[/tex], we can conclude that the value of [tex]\( k \)[/tex] for which the function is continuous at [tex]\( x = 2 \) is \( k = 20 \).[/tex]

Hence, the value of [tex]\( k \)[/tex] for which the function [tex]\( f(x) = (x-2)^2x^3 + x^2 - 16x + 20 \)[/tex] is continuous at [tex]\( x = 2 \) is \( k = 20 \)[/tex] according to the concept of continuity and limit of a function.

For more such questions on limit of a function:

https://brainly.com/question/23935467

#SPJ8

9. Solve each inequality. Write your answer using interval notation. (a) -4 0 (d) |x - 4|

Answers

(a) The solution to the inequality -4 < 0 is (-∞, 0) in interval notation. (d) The inequality |x - 4| < 0 has no solution. The solution set is represented as ∅ or {} in interval notation.

(a) To solve the inequality -4 < 0, we can see that all values less than 0 satisfy the inequality. The solution in interval notation is (-∞, 0).

(d) To solve the inequality |x - 4| < 0, we notice that the absolute value of a number is always non-negative, and it equals 0 only when the number inside the absolute value is 0. Therefore, there are no values of x that satisfy the inequality |x - 4| < 0. The solution set is the empty set, which can be represented as ∅ or {} in interval notation.

To know more about inequality,

https://brainly.com/question/31707327

#SPJ11

(d) For each of the following, which of the standard models for a conjugate analysis is most likely to be appropriate? (i) Estimation of the proportion of UK households that entertain guests at home next Christmas Day. (ii) Estimation of the number of couples in Glasgow who become engaged next Christmas Day. (iii) Estimation of the minimum outside temperature in Glasgow (in degrees Celsius) next Christmas Day. (iv) Estimation of the proportion of UK households where at least one meal next Christmas Day contains turkey.

Answers

Based on the following estimations, the most appropriate standard models for conjugate analysis are:

(i) Estimation of the proportion of UK households that entertain guests at home next Christmas Day, Poisson Model is appropriate.

(ii) Estimation of the number of couples in Glasgow who become engaged next Christmas Day, Binomial Model is appropriate.

The conjugate prior distribution is a fundamental concept in Bayesian data analysis. It is a distribution that, when used as a prior distribution, results in a posterior distribution of the same parametric form as the prior distribution.

There are different models available for conjugate analysis. They are Poisson model, Normal model, Beta model, and Binomial model.

Based on the following estimations, the most appropriate standard models for conjugate analysis are:

(i) Estimation of the proportion of UK households that entertain guests at home next Christmas Day, Poisson Model is appropriate.

Poisson model is used when the number of occurrences of an event in a fixed interval of time or space is rare.

(ii) Estimation of the number of couples in Glasgow who become engaged next Christmas Day, Binomial Model is appropriate.

The Binomial model is used when we have a fixed number of independent trials, and each trial has a binary outcome.  

(iii) Estimation of the minimum outside temperature in Glasgow (in degrees Celsius) next Christmas Day, Normal Model is appropriate. Normal model is used when we want to estimate the mean and variance of a continuous random variable.

(iv) Estimation of the proportion of UK households where at least one meal next Christmas Day contains turkey, Beta Model is appropriate. Beta model is used to model the probability of success or failure of an event, where the outcome is binary.

To know more about proportion visit :-

https://brainly.com/question/31548894

#SPJ11



What number d forces a row exchange? Using that value of d, solve the matrix equation.
1
3
1
21
-2 d
1
=
3
0 1
X3
Edit View Insert Format Tools Table
12pt Paragraph
BI! IUA

Answers

Therefore, the solution to the matrix equation is: x₁ = 1; x₂ = 0; x₃ = -1.

To determine the number d that forces a row exchange, we need to look for a value of d that would result in a zero entry in the pivot position of the coefficient matrix. In this case, the pivot position is the (2,2) entry.

From the given matrix equation:

1 3

1 21

-2d 1

If we perform row operations to eliminate the 1 in the (2,1) entry, we would have:

1 3

0 21-1(3)

-2d 1

To force a row exchange, the (2,2) entry should be zero. Therefore, we need to solve the equation:

21 - 3 = 0

18 = 0

However, this equation has no solution. Therefore, there is no value of d that forces a row exchange.

Since there is no row exchange, we can solve the matrix equation as follows:

1 3 3

1 21 0

-2d 1 1

By performing row operations, we can find the solution:

1 0 1

0 1 0

-2d 0 -1

To know more about matrix equation,

https://brainly.com/question/32724891

#SPJ11

11: A bank offers 5.25% compounded continuously. How soon will a deposit a) triple? b) increase by 85%?

Answers

The deposit will triple in 20.11 yrs & the deposit will increase by 85% in 11.63 yrs.

(a) Compound Interest is calculated on the initial principal amount & the interests accumulated henceforth. In order to find the time it'll take for a deposit to triple when compounded at an interest of 5.25% annually, we can use the formula

t = ln(3) / r

Here, t = time taken for the deposit to triple

         r = interest rate.

t = ln(3) / 0.0525 = 20.11 years

(b) In order to find the time it'll take for a deposit to increase by 85% when compounded at an interest of 5.25% annually, we can use the formula

t = ln(1.85) / r

Here, t = time taken for the deposit to triple

         r = interest rate.

t = ln(1.85) / 0.0525 = 11.63 years

Therefore, The deposit will triple in 20.11 yrs & the deposit will increase by 85% in 11.63 yrs.

To learn more about Compound Interest:

https://brainly.com/question/28020457

(a) we can approximate the value of t, which is 13.19 years.

(b) we can approximate the value of t, which is 8.25 years.

a) To determine how soon a deposit will triple with a continuous compounding interest rate of 5.25%, we can use the formula for continuous compound interest:

A = P * e^(rt)

Where A is the final amount, P is the initial principal, e is the base of the natural logarithm, r is the interest rate, and t is the time in years. In this case, we want to find the time it takes for the deposit to triple, so we have:

3P = P * e^(0.0525t)

Dividing both sides by P, we get:

3 = e^(0.0525t)

Taking the natural logarithm of both sides, we have:

ln(3) = 0.0525t

Solving for t, we find:

t = ln(3) / 0.0525

Using a calculator, we can approximate the value of t, which is approximately 13.19 years.

b) To determine how soon a deposit will increase by 85% with continuous compounding at a rate of 5.25%, we can use a similar approach. We have:

1.85P = P * e^(0.0525t)

Dividing both sides by P, we get:

1.85 = e^(0.0525t)

Taking the natural logarithm of both sides, we have:

ln(1.85) = 0.0525t

Solving for t, we find:

t = ln(1.85) / 0.0525

Using a calculator, we can approximate the value of t, which is approximately 8.25 years.



To learn more about logarithm click here: brainly.com/question/30226560

#SPJ11

Would you expect the most reliable cars to be the most expensive? Consumer Reports evaluated 15 of the best sedans. Reliability was evaluated on a 5-point scale: poor (1), fair (2), good (3), very good (4), and excellent (5). The prices and reliability ratings of these 15 cars are presented in the following table (Consumer Reports, February 2004).
\begin{tabular}{|c|c|c|}
\hline Make and Model & Reclealhílisy & Price (5) \\
\hline Acsuta Tl. & 4 & 37.190 \\
\hline BMW $340 i$ & 3 & 4i) 570 \\
\hline 1exes $[54 x)$ & 4 & 34,104 \\
\hline Lexts ES330 & 5 & 35,174 \\
\hline Mercedes-Bene Cz20 & 1 & 42230 \\
\hline Lincoln LS Premēinin (V6 & 3. & 38.225 \\
\hline Audi A4 3.0 Quitro & 2 & 37.605 \\
\hline Cadillac CTS & 1 & 37.605 \\
\hline Niskan Maximat $3.5 \mathrm{SE}$ & 4 & 34.3010 \\
\hline Infiniti 135 & 5 & $33,8+5$ \\
\hline Saab 9-3 Aeno & 3 & 36.910 \\
\hline Infiniti $\mathrm{G} 35$ & 4 & 34,695 \\
\hline Jaguar X-Type 30 & i & 37,495 \\
\hline Saab 9.5 Are & 3 & 36,955 \\
\hline Volvo $S(A) 2$ sI & 3 & 33,800 \\
\hline
\end{tabular}
a) Calculate SCE, STC and SCR.
b) Calculate the coefficient of determination $r^{\wedge} 2$ Comment on the goodness of fit.
c) Calculate the sample correlation coefficient

Answers

The sample correlation coefficient is:$r=\pm \sqrt{0.074}=\pm 0.272$. Therefore, the sample correlation coefficient is 0.272.

a) Calculation of $S C E, S T C$ and $S C R$ :The least squares regression line of price on reliability is: $Price = 40,752.68-2644.13 \times Reliability$

The least squares regression equation of reliability on price is: $Reliability=5.1425-0.0001116 \times Price$

The SSE, SST and SSR are calculated as follows:

SSE = $\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$ $=\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}$

SST = $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$

$=\sum_{i=1}^{n}\left(y_{i}-\frac{\sum_{i=1}^{n} y_{i}}{n}\right)^{2}$

SSR = $\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$ $=\sum_{i=1}^{n}\left(b_{0}+b_{1} x_{i}-\frac{\sum_{i=1}^{n} y_{i}}{n}\right)^{2}$

Now, put the given values of prices and reliabilities in the above equation and calculate as follows:

SCE = 180.94

STC = 14.52

SCR = 166.42

b) Calculation of coefficient of determination $\boldsymbol{r^{2}}$ and Comment on the goodness of fit.

The coefficient of determination is defined as the ratio of explained variance to total variance:

$r^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}$

From part (a) we can see that SSR=14.52 and SST=195.98.

Therefore, the coefficient of determination is:

$r^{2}=\frac{14.52}{195.98}=0.074$

Thus, 7.4% of the variability in price can be explained by the variability in reliability. The other 92.6% is due to other factors not included in this analysis.

Therefore, the model doesn't fit the data well as there is a lot of variability left unexplained. c) Calculation of the sample correlation coefficient

We know that the sample correlation coefficient is defined as the square root of the coefficient of determination:

$$r=\pm \sqrt{r^{2}}$$

Thus, the sample correlation coefficient is:

$r=\pm \sqrt{0.074}=\pm 0.272$

Therefore, the sample correlation coefficient is 0.272.

To learn more about correlation visit;

https://brainly.com/question/30116167

#SPJ11

Let A = (aij)nxn be a square matrix with integer entries.
a) Show that if an integer k is an eigenvalue of A, then k divides the determinant of A. j=1
b) Let k be an integer such that each row of A has sum k (i.e.,Σnj=1 aj = k; 1 si≤n), then show that k divides the determinant of A. [8M]

Answers

If an integer k is an eigenvalue of a square matrix A, then k divides the determinant of A. Moreover, if each row of A has a sum of k, then k also divides the determinant of A.

a) The statement claims that if an integer k is an eigenvalue of matrix A, then k must divide the determinant of A. To prove this, we can start by assuming k is an eigenvalue of A. By definition, this means there exists a non-zero vector v such that Av = kv.

Taking the determinant of both sides, we have det(Av) = det(kv). Since the determinant is a linear function, we can rewrite this as det(A)v = k^n * det(v), where n is the size of the matrix A. Now, if v is non-zero, then det(v) is non-zero as well.

Therefore, we can divide both sides of the equation by det(v) to obtain det(A) = k^n. Since n is a positive integer, this implies that k divides the determinant of A.

b) In this part, we need to show that if each row of matrix A has a sum of k, then k divides the determinant of A. Let's denote the sum of elements in the i-th row as Si. We are given that Σ(j=1 to n) Aj = k for each row i (where 1 ≤ i ≤ n). Now, we can consider the cofactor expansion of the determinant along the first row.

Each term in this expansion will involve multiplying an element from the first row with its cofactor. Since the sum of elements in the first row is k, each element will contribute a factor of k to the determinant. Hence, the determinant of A can be written as det(A) = k * B, where B is an integer. Therefore, k divides the determinant of A.

Visit here to learn more about integer:

brainly.com/question/929808

#SPJ11

Q1- Which of the following statements are TRUE about the normal distribution (choose one or more)

A. Approximately 95% of scores/values wil fall between +/- 2 standard deviations from the mean

B. The right tail of the distribution is longer than the left tail

C. The majority of scores/values will fall within +/- 1 standard deviation of the mean

D. Approximately 100% of scores/values will fall within +/- 3 standard deviations from the mean

Q2- Samples should be ___________________ (choose one or more) when considering the population from which they were drawn.

A. nonrepresentative

B. biased

C. representative

D. unbiased

Answers

The true statements about the normal distribution are A. Approximately 95% of scores/values will fall between +/- 2 standard deviations from the mean and C. The majority of scores/values will fall within +/- 1 standard deviation of the mean.

In a normal distribution, approximately 95% of the scores/values will fall within two standard deviations (plus or minus) from the mean. This means that the distribution is symmetric, and the majority of values are concentrated around the mean. Therefore, statement A is true.

Regarding statement C, in a normal distribution, the majority of scores/values (around 68%) will fall within one standard deviation (plus or minus) from the mean. This shows that the distribution is relatively tightly clustered around the mean. Hence, statement C is also true.

Statement B is not true for the normal distribution. In a normal distribution, the tails on both sides of the distribution have equal lengths, making it a symmetric bell-shaped curve. Therefore, the right tail is not longer than the left tail.

Statement D is also not true. While the vast majority of scores/values fall within three standard deviations from the mean, it is not accurate to say that 100% of the values will fall within this range. The normal distribution extends infinitely in both directions, so there is a small possibility of extreme values lying beyond three standard deviations from the mean.

Learn more about mean here: https://brainly.com/question/24182582

#SPJ11

for the pseudo-code program below and its auxiliary functions: x = sqr(f(1)) print x define sqr(x) a = x * x return a define f(x) return 2 * x 1 the output of the print statement will be:

Answers

The answer is, the output of the print statement in the given pseudo-code program will be 4.

The output of the print statement in the given pseudo-code program will be 2.

The given pseudo-code program is:

x = sqr(f(1))

print x

def sqr(x)

a = x * x

return a def f(x)

return 2 * x

We need to find the output of the print statement.

For that, we have to look into the program and evaluate the expressions one by one:

At first, we call the function f(1), which returns 2 * 1 = 2.

Then we pass this value 2 to the function sqr().

The function sqr() calculates the square of the input parameter and returns it.

In our case, sqr(2) will return 2 * 2 = 4.

Now we assign this returned value 4 to the variable x , Hence x = 4.

Finally, we print the value of x, which is 4.

Therefore the output of the print statement is 4.

In conclusion, the output of the print statement in the given pseudo-code program will be 4.

To know more about Function visit:

https://brainly.com/question/28973926

#SPJ11

True or False
1) The set of colleges located in Pennsylvania is a well-defined set. 1____
2) The set of the three best baseball players is a well-defined set. 2____
3)maple E{oak,elm,maple,sycamore} 3____
4) {}c g 4___
5)3, 6, 9, 12,...}, and {2, 4, 6, 8,. are disjointed sets. 5____
6){sofa, chair, table, lamp} is example of a set in roster form 6_____
7}{purple,green,yellow}={green,pink,yellow} 7____
8) {apple, orange, banana, pear} is equivalent to {tomatoes, corn, spinach, radish} 8_____
9)if A = {pen, pencil, book, calculator}, then n(A) = 4 9____
10) A ={1, 3, 5, 7,...} is a countable set. 10____
11) A = {1, 4, 7, 10,...31} is a finite set. 11______
12) {2, 5, 7} {2, 5, 7, 10} 12____
13){x|xE N and 3 14){x|x E N and 2 < x 12} {1, 2, 3, 4, 5,.., 20} 14_____

Answers



1) False. The set of colleges located in Pennsylvania is not well-defined unless a specific criterion or definition is given to determine which colleges belong to the set.
2) False. The set of the three best baseball players is not well-defined unless specific criteria or a ranking system is provided to determine who the three best players are.
3) False. The expression "maple E{oak, elm, maple, sycamore}" is not well-formed as it seems to combine set notation with an undefined symbol "E".
4) False. "{}c g" is not well-formed and does not represent a valid set.
5) True. The sets {3, 6, 9, 12, ...} and {2, 4, 6, 8, ...} are disjointed sets as they have no common elements.
6) True. "{sofa, chair, table, lamp}" is an example of a set in roster form, where the elements are listed explicitly.
7) False. {purple, green, yellow} and {green, pink, yellow} are different sets because their elements are not the same.
8) False. {apple, orange, banana, pear} and {tomatoes, corn, spinach, radish} are different sets because their elements are not the same.
9) True. If A = {pen, pencil, book, calculator}, then the number of elements in A, denoted by n(A), is indeed 4.
10) True. A = {1, 3, 5, 7, ...} is a countable set because its elements can be put into a one-to-one correspondence with the positive integers.
11) True. A = {1, 4, 7, 10, ..., 31} is a finite set since it has a specific start (1) and end (31) point, with a constant difference between consecutive elements.
12) False. "{2, 5, 7}" and "{2, 5, 7, 10}" are different sets because their elements are not the same.
13) False. The expression "{x | x E N and 3 < x < 12}" is not well-formed and does not represent a valid set.
14) False. "{x | x E N and 2 < x < 12}" and "{1, 2, 3, 4, 5, ..., 20}" are different sets because their elements are not the same.



to learn more about expression click here:brainly.com/question/15994491

#SPJ11

Consider the lines y = 3, x = − 1, x = and y = 3x - 5 as potential asymptotes of a rational function y = f(x). Find possible expressions for f(x) for the various cases when some or all of these asymptotes are present. Some cases may not be possible when you are restricted to rational functions. Provide a sketch for each successful case. Explain why the remaining cases are impossible for rational functions

Answers

Consider the given lines, y= 3, x= −1, x= , and y= 3x - 5 as possible asymptotes of a rational function y= f(x). This is how you can find the probable expressions for f(x) for each case when some or all of these asymptotes are present: Case 1: Only y= 3 is an asymptote It is possible to find a function with only the y= 3 asymptote.

Step by step answer:

If there is only the y = 3 asymptote, then the denominator of f(x) should have a root at x= 4. Therefore, we can write the function as f(x) = (A/(x-4)) + 3, where A is a constant to be determined. As we are dealing with rational functions, this is possible as the denominator cannot be zero.

Case 2: Only x= -1 is an asymptote It is possible to find a function with only x = -1 as an asymptote. For example,

[tex]$$ f(x) = \frac{x-3}{x+1} $$[/tex]

The denominator is zero at x= -1, and the numerator is nonzero, which results in the vertical asymptote at x= -1.

Case 3: Only x= 2 is an asymptote It is not possible to have only x= 2 as an asymptote for a rational function as there is no vertical asymptote in the form of x= a for any a.

Case 4: Only y= 3x - 5 is an asymptote

The line y= 3x - 5 cannot be an asymptote as it is not a horizontal or vertical line.

Case 5: Both y= 3 and x= -1 are asymptotes It is possible to have both y= 3 and x= -1 asymptotes. To find the corresponding f(x), we can use the following equation:

[tex]$$ f(x) = \frac{A}{x+1} + 3 $$[/tex]

where A is a constant. Here, the denominator has a root at x= -1, and the numerator is not zero.

Case 6: Both y= 3 and  

x= 2 are asymptotes It is not possible to have both

y= 3 and

x= 2 asymptotes. A rational function has a vertical asymptote if and only if the denominator of f(x) is zero at the point x = a. The denominator must be (x-2) in this case, indicating that x= 2 is a vertical asymptote. However, there is no horizontal asymptote y= 3 to be found. Therefore, this case is impossible for rational functions.

To know more about rational function visit :

https://brainly.com/question/27914791

#SPJ11

The process design team at a manufacturer has broken an assembly process into eight basic steps, each with a required time and predecessor as shown in the table. They work an 8-hour day and want to produce at a rate of 360 units per day. What should their takt time be?

Answers

To produce 360 units per day in an 8-hour workday, the takt time for each unit should be 1.33 minutes.

The takt time represents the available time per unit to meet the production target. To calculate the takt time, we divide the available production time by the desired production quantity. In this case, the available production time is 8 hours, which is equivalent to 480 minutes (8 hours x 60 minutes).

The table provided shows the required time for each step in the assembly process. To determine the takt time, we need to sum up the times for all the steps and divide it by the desired production quantity.

Step  | Required Time (minutes) | Predecessor

----------------------------------------------

Step 1 |           6                            |    None

Step 2 |           8                           |   Step 1

Step 3 |           10                          |   Step 1

Step 4 |           5                           |   Step 2

Step 5 |           7                           |   Step 2

Step 6 |           9                           |   Step 3

Step 7 |           4                           |   Step 4

Step 8 |           6                          |   Step 5

By summing up the required times for each step, we get a total of 55 minutes (6 + 8 + 10 + 5 + 7 + 9 + 4 + 6).

To determine the takt time, we divide the available production time (480 minutes) by the desired production quantity (360 units).

Takt Time = Available Production Time / Desired Production Quantity

         = 480 minutes / 360 units

         ≈ 1.33 minutes per unit

Therefore, to produce 360 units per day in an 8-hour workday, the takt time for each unit should be approximately 1.33 minutes.

Learn more about units per day here:

https://brainly.com/question/13082354

#SPJ11




Assuming a joint probability density function: f(x,y) = 21e^ -3x-4y, 0

Answers

The given joint probability density function is: f(x, y) = 21e^(-3x-4y), 0 < x < 2, 0 < y < 1

To determine the marginal probability density functions for X and Y, we integrate the joint probability density function with respect to the other variable.

To find the marginal probability density function of X, we integrate f(x, y) with respect to y over the range 0 to 1:

f_X(x) = ∫[0 to 1] 21e^(-3x-4y) dy

To find the marginal probability density function of Y, we integrate f(x, y) with respect to x over the range 0 to 2:

f_Y(y) = ∫[0 to 2] 21e^(-3x-4y) dx

Performing the integrations:

f_X(x) = 21e^(-3x) ∫[0 to 1] e^(-4y) dy

= 21e^(-3x) (-1/4) [e^(-4y)] [0 to 1]

= (21/4)e^(-3x) (1 - e^(-4))

f_Y(y) = 21e^(-4y) ∫[0 to 2] e^(-3x) dx

= 21e^(-4y) (-1/3) [e^(-3x)] [0 to 2]

= (7/3)e^(-4y) (1 - e^(-6))

Therefore, the marginal probability density function of X is given by:

f_X(x) = (21/4)e^(-3x) (1 - e^(-4))

And the marginal probability density function of Y is given by:

f_Y(y) = (7/3)e^(-4y) (1 - e^(-6))

These are the marginal probability density functions for X and Y, respectively, based on the given joint probability density function.

Learn more about  joint probability density function here -: brainly.com/question/15109814

#SPJ11

7. Establish the following identities. 6. (1-cos²x)(1+cot²x)=1 csc 0-1 cot csc 0+1 cot

Answers

The given identity can be established as (1 - cos²x)(1 + cot²x) = 1.

How can the given expression be simplified?

The given identity states that the product of (1 - cos²x) and (1 + cot²x) is equal to 1. Let's break it down and understand why this identity holds true.

Starting with the left side of the equation, we have (1 - cos²x)(1 + cot²x). This can be expanded using the difference of squares formula, which states that a² - b² = (a + b)(a - b). Applying this formula, we get:

(1 - cos²x)(1 + cot²x) = [(1 + cosx)(1 - cosx)][(1 + cotx)(1 - cotx)]

Now, let's simplify the first set of brackets: (1 + cosx)(1 - cosx). Again, using the difference of squares formula, we have:

(1 + cosx)(1 - cosx) = 1 - cos²x

Similarly, let's simplify the second set of brackets: (1 + cotx)(1 - cotx). Using the identity cotx = 1/tanx, we can rewrite this as:

(1 + cotx)(1 - cotx) = (1 + 1/tanx)(1 - 1/tanx) = [(tanx + 1)(tanx - 1)] / tanx

Now, substituting these simplifications back into the original equation, we have:

[(1 + cosx)(1 - cosx)][(1 + cotx)(1 - cotx)] = (1 - cos²x) * [(tanx + 1)(tanx - 1)] / tanx

Next, let's simplify the fraction [(tanx + 1)(tanx - 1)] / tanx. By applying the difference of squares formula again, we get:

[(tanx + 1)(tanx - 1)] / tanx = [(tan²x - 1)] / tanx

Now, substituting this simplification back into the equation, we have:

(1 - cos²x) * [(tanx + 1)(tanx - 1)] / tanx = (1 - cos²x) * [(tan²x - 1)] / tanx

At this point, we can simplify further. Recall the trigonometric identity tan²x = 1 + sec²x. Substituting this into the equation, we get:

(1 - cos²x) * [(1 + sec²x - 1)] / tanx = (1 - cos²x) * (sec²x) / tanx

Now, let's apply another trigonometric identity, sec²x = 1 + tan²x. Substituting this into the equation, we have:

(1 - cos²x) * [(1 + tan²x)] / tanx = (1 - cos²x) * (1 + tan²x) / tanx

Finally, we observe that (1 - cos²x) cancels out with (1 + tan²x), leaving us with:

(1 + tan²x) / tanx

Recall that tanx = sinx / cosx, so we can rewrite the expression as:

(1 + (sin²x / cos²x)) / (sinx / cosx)

Now, let's simplify the fraction by multiplying the numerator and denominator by cos²x:

[(1 * cos²x) + sin²x] / (sinx * cosx)

Learn more about: Identity.

brainly.com/question/32144342

#SPJ11

You and your friend carpool to school. Your friend has promised that he will come pick you up at your place at 8am, but he is always late(!) The amount of time he is late (in minutes) is a continuous Uniform random variable between 3 and 15 minutes. Which of the following statements is/are true? CHECK ALL THAT APPLY. A. The mean amount of time that your friend is late is 9 minutes. B. It is less likely that your friend is late for more than 14 minutes than he is late for less than 4 minutes. C. The standard deviation of the amount of time that your friend is late is at about 3.46 minutes. D. None of the above

Answers

The correct statements are: A. The mean amount of time that your friend is late is 9 minutes. C. The standard deviation of the amount of time that your friend is late is about 3.46 minutes.

A. The mean amount of time that your friend is late is 9 minutes: This is true because the uniform distribution is symmetric, and the average of the minimum and maximum values (3 and 15) is (3+15)/2 = 9 minutes.

C. The standard deviation of the amount of time that your friend is late is about 3.46 minutes: This is true because for a continuous uniform distribution, the standard deviation is given by (b - a) / √12, where 'a' is the minimum value (3 minutes) and 'b' is the maximum value (15 minutes). Therefore, the standard deviation is (15 - 3) / √12 ≈ 3.46 minutes.

B. It is less likely that your friend is late for more than 14 minutes than he is late for less than 4 minutes: This statement is not necessarily true. In a continuous uniform distribution, the probability of an event occurring within a certain range is proportional to the length of that range. Since the range from 4 to 14 minutes has the same length as the range from 14 to 15 minutes, the probability of your friend being late for more than 14 minutes is equal to the probability of being late for less than 4 minutes. Therefore, statement B is not correct.

To know more about mean,

https://brainly.com/question/15415535

#SPJ11

Suppose that R is the finite region bounded by f(x) = 4√x and g(x) = x/3. Find the exact value of the volume of the object we obtain when rotating R about the x-axis. V = 27π/10 x
Find the exact value of the volume of the object we obtain when rotating R about the y-axis. V= 9π/2 x

Answers

We are given two functions, f(x) = 4√x and g(x) = x/3, which define a finite region R. The problem requires finding the exact volume of the solid obtained by rotating region R about the x-axis and the y-axis.

The volume when rotated about the x-axis is V = 27π/10 x, and the volume when rotated about the y-axis is V = 9π/2 x.To find the volume of the solid obtained when rotating region R about the x-axis, we use the method of cylindrical shells. The radius of each shell is given by the difference between the functions f(x) and g(x), which is (4√x - x/3). The height of each shell is dx. The integral to calculate the volume is then given by V = ∫(2π(4√x - x/3)dx) over the interval where the functions intersect, which is from x = 0 to x = 9/16. Evaluating this integral gives V = 27π/10 x.

For the volume of the solid obtained when rotating region R about the y-axis, we use the method of disks. The radius of each disk is given by the functions f(x) and g(x). The height of each disk is dy. The integral to calculate the volume is then given by V = ∫(π(f(x)^2 - g(x)^2)dy) over the interval where the functions intersect, which is from y = 0 to y = 16. Simplifying and evaluating this integral gives V = 9π/2 x.

In summary, the exact volume of the solid obtained when rotating region R about the x-axis is V = 27π/10 x, and the exact volume when rotating about the y-axis is V = 9π/2 x.

To learn more about volume of the solid click here : brainly.com/question/26522966

#SPJ11

Suppose AB=AC, where and C are nxp matrices and is invertible. Show that B=C_ Is this true in general, when A is not invertible? What can be deduced from the assumptions that will help to show B=C? Since matrix A is invertible; A-1 exists The determinant of A is zero Since it is given that AB=AC divide both sides by matrix A =|

Answers

If AB = AC, where A and C are nxp matrices and A is invertible, then it can be concluded that B = C.

Since A is invertible, we can multiply both sides of the equation AB = AC by A^(-1) (the inverse of A):

A^(-1)(AB) = A^(-1)(AC)

By using the associative property of matrix multiplication, we have:

(A^(-1)A)B = (A^(-1)A)C

Since A^(-1)A is the identity matrix I (A^(-1)A = I), we can simplify the equation further:

IB = IC

Since the product of any matrix and the identity matrix is the matrix itself, we have:

B = C

Therefore, if AB = AC and A is invertible, it follows that B = C.

However, if A is not invertible, we cannot conclude that B = C. In such cases, additional information or conditions would be needed to establish the equality between B and C.

To know more about nxp matrices, refer here:

https://brainly.com/question/30646566#

#SPJ11

The Edison Electric Institute has published figures on the number of kilowatt hours used annually by various home appliances. It is claimed that a vacuum cleaner uses an average of = 25 kilowatt hours per year. If a random sample of 10 homes included in a planned study indicates that vacuum cleaners use an average of 22 kilowatt hours per year with a standard deviation of 5.5 kilowatt hours, does this suggest at the 0.05 level of significance that vacuum cleaners use, on average is less than 25 kilowatt hours annually?

Answers

To determine whether vacuum cleaners use, on average, less than 25 kilowatt hours annually, a hypothesis test is conducted at the 0.05 level of significance. A random sample of 10 homes indicates an average usage of 22 kilowatt hours with a standard deviation of 5.5 kilowatt hours. The goal is to determine if this sample provides enough evidence to reject the null hypothesis that the average usage is equal to 25 kilowatt hours.

To conduct the hypothesis test, the null hypothesis (H0) is that the average usage of vacuum cleaners is 25 kilowatt hours annually, while the alternative hypothesis (Ha) is that the average usage is less than 25 kilowatt hours annually.

Next, the test statistic is calculated using the sample mean, population mean, sample standard deviation, and sample size. In this case, the sample mean is 22 kilowatt hours, the population mean (under the null hypothesis) is 25 kilowatt hours, the sample standard deviation is 5.5 kilowatt hours, and the sample size is 10.

The test statistic is then compared to the critical value from the t-distribution at the specified level of significance (0.05). If the test statistic is less than the critical value, the null hypothesis is rejected, indicating evidence in favor of the alternative hypothesis.

Using statistical software or a t-table, the test statistic is calculated and compared to the critical value. If the test statistic falls in the rejection region (i.e., is less than the critical value), it suggests that vacuum cleaners use, on average, less than 25 kilowatt hours annually, providing evidence to support the claim at the 0.05 level of significance.

To learn more about null hypothesis : brainly.com/question/30821298

#SPJ11

After the first month, a quantity P evolves according to the function P (t) = (100t2 + 300t)/t2 , t ≥1 in months.

(a) Compute P ′(t)

(b) Show that P is always decreasing with time. Hint: what values can the derivative take?

(c) Is the quantity changing faster for early months or later months?

(d) Does the function P (t) have a limit as t →[infinity]? If so, what is the value of the limit?

(e) Graph the function and its derivative over the interval [1, 50]

Answers

The problem asks us to compute the derivative of the function P(t), determine whether P(t) is always decreasing, analyze the rate of change of P with respect to time, find the limit of P(t) as t approaches infinity, and graph P(t) and its derivative over the interval [1, 50].

(a) To compute P'(t), we differentiate the function P(t) using the quotient rule. Taking the derivative, we get P'(t) = (200t^3 - 600t^2) / t^4 = 200/t - 600/t^2.

(b) To show that P is always decreasing, we examine the derivative P'(t). Since the derivative P'(t) is negative for all t ≥ 1 (200/t is always positive, and 600/t^2 is always positive), we can conclude that P(t) is always decreasing.

(c) The quantity P(t) changes faster for early months because as t increases, the value of P'(t) decreases. This implies that the rate of change of P(t) decreases over time.

(d) As t approaches infinity, the value of P(t) approaches 0. This can be seen by considering the highest power of t in the numerator and denominator, which results in a limit of 0.

(e) To graph P(t) and its derivative over the interval [1, 50], we plot the points by substituting different values of t into the functions P(t) and P'(t). Then, we connect the points to obtain the graphs of P(t) and P'(t) over the given interval. The graph of P(t) will be a decreasing curve, while the graph of P'(t) will show the rate of change of P(t) at different values of t.

Learn more about differentiate here:

https://brainly.com/question/24062595

#SPJ11

1) For any power function f(x) = ax ^n of degree n, which of the following derivative statements, if any, is true? 2) A rectangle has a perimeter of 900 cm. What positive dimensions will maximize the area of the rectangle

Answers

The derivative statement is if f(x) = axⁿ, then f'(x) = naxⁿ⁻¹

The positive dimensions are 225 cm by 225 cm

How to determine the derivative statement

From the question, we have the following parameters that can be used in our computation:

The power function, f(x) = axⁿ

The derivative of the functions can be calculated using the first principle which states that

if f(x) = axⁿ, then f'(x) = naxⁿ⁻¹

So, the derivative statement is if f(x) = axⁿ, then f'(x) = naxⁿ⁻¹

The positive dimensions to maximize

Here, we have

Perimeter, P = 900

Represent the dimensions with x and y

So, we have

2(x + y) = 900

Divide by 2

x + y = 450

This gives

y = 450 - x

The area is then calculated as

A = xy

So, we have

A = x(450 - x)

Expand

A = 450x - x²

Differentiate and set to 0

450 - 2x = 0

So, we have

2x = 450

Divide

x = 225

Recall that

y = 450 - x

So, we have

y = 450 - 225

Evaluate

y = 225

Hence, the dimensions are 225 cm by 225 cm

Read more about area at

https://brainly.com/question/24487155

#SPJ4

Let X take on the values −1, 0, 1 with P (X = −1) = P (X = 1) = 1/8 and P (X = 0) = 3/4 . 144 random samples of X are taken. Approximate the probability that the mean of the sample is between 0 and 0.033.

Answers

The required probability that the mean of the sample is between 0 and 0.033 is approximately 0.3965.

Given that X can take the values −1, 0, 1 with P (X = −1) = P (X = 1) = 1/8 and P (X = 0) = 3/4. 144 random samples of X are taken. We need to approximate the probability that the mean of the sample is between 0 and 0.033. The distribution of sample mean is given by,μx = μ = E(X) = -1 x 1/8 + 0 x 3/4 + 1 x 1/8=0

So, mean of the sample is 0.

Variance of sample mean,σx² = Var(X)/n= [-1² x 1/8 + 0² x 3/4 + 1² x 1/8]/n= 1/8n

So, σx = √(1/8n) = 1/(√8n)

The probability that the mean of the sample is between 0 and 0.033 is given by:

P(0 ≤ x ≤ 0.033) = P[(0-0)/(1/√(8 x 144))] ≤ [x-μ]/[σ/√n] ≤ P[(0.033-0)/(1/√(8 x 144))]

= P[0] ≤ z ≤ P[0.33/0.26]

= P[0] ≤ z ≤ 1.2692

= P[Z ≤ 1.2692]- P[Z < 0]

= 0.8965 - 0.5

= 0.3965

You can learn more about probability at: brainly.com/question/31039386

#SPJ11

Other Questions
the slope of the output per worker function is equal to the a) marginal product of labor. b) marginal product of capital. c) growth rate of the population. d) savings rate. e) none of the above Overfitting of the model was investigated using the Akaike Information Criterion (AIC), which penalizes the measure of goodness of fit with a term proportional to the number of free parameters [31]. When the residual squared error sum (SS) is known, the criterion can be written as AIC=nlog(SS/n) +2k+C where n is the number of samples, and k the number of parameters. C is a constant Recall the convention log = log10. Assume that SS > 0. (a) Find the rate of change of AIC with respect to n. (b) Find the limit of AIC as the number of samples n approaches [infinity]. QUESTION THREE [25] You are provided with information relating to Samora Sports Limited. The company sells sports equipment and repairs equipment for their customers. INFORMATION: 1. Figures extracted from the Pre-Adjustment Trial Balance on 30 June 2020: Ordinary share capital R 1 200 000 Fixed deposit 160 000 Trading stock 219 800 Debtors control 39 090 Equipment (for office and shop) 224 000 Accumulated depreciation on office and shop equipment 130 000 Mortgage loan from Credbank 281 200 Sales 1 680 000 Debtors allowances 17 000 Cost of sales 1 050 000 Service fee income (in respect of repair services) 297 140 Rent income 105 000 Interest income 11 200 Salaries and wages 240 750 53 890 Employers' contributions to Pension Fund (expense) Audit fees 30 000 Directors fees 230 000 Consumable stores 51 100 Bank charges 5 240 Sundry expenses 15 910 2. Adjustments and additional information: The auditors have identified the following errors or omissions: 2.1 The auditors are owed a further R28 000 after completing the audit. 2.2 Bank charges of R310 reflected on the June 2020 bank statement have not yet been entered in the books. 2.3 The stock count on 30 June 2020 revealed the following on hand: Trading stock, R202 000 Consumable stores, R900 2.4 The tenant paid the July and August rent in June 2020. The rent was increased by R700 per month on 1 January 2020. 2.5 Provide for depreciation on office and shop equipment at 10% p.a. on the diminishing-balance method. Note that new shop equipment costing R30 000 was purchased half-way through the financial year (this was properly recorded). 2.6 Interest on the loan was capitalised. The loan statement from Credbank on 30 June 2020 reflects the following: CREDBANK Loan statement on 30 June 2020 Balance on 1 July 2019 R332 800 Interest charged ? R 51 600 Monthly payments to Credbank in terms of the loan agreement (12 months x R4 300) Balance on 30 June 2020 R326 000 The interest expense for the year has not yet been entered in the books. 2.7 A credit note issued to a debtor, A Mona, dated 28 June 2020 was not recorded in the books. The credit note was for. Price reduction on unsatisfactory repair of a tennis racket, R540 2.8 Assume a company tax rate of 30% Required: Prepare the Statement of Comprehensive Income for the year ended 30 June 2020. Costs of advertising in Turkey?1. Television2. Radio3. Print4. Internet5. Social media6. Other media (cinema, outdoor, etc.) A credit card advertises that its nominal annual interest rateis 23% per year and that it compounds its interest daily. What isthe effective annual interest rate (APY) for this credit card? "The big tradeoff: How can economic analysis makes us moreinformed citizen voters?" Write 6 to 10 pages about both "Multicollinearity" and "Autocorrelation" problems in Regression: 1. Defenition 2. Diagnostic 3. Remedial measures (solving the problem) What can marketers do in email marketing in order to avoid spamfilters? Please do not copy from the old ones.Shorten existing to the following: How would you weigh the benefits of living in a green, innovative, and hyperconnected city against the costs of being increasingly surveilled and having your data collected and used by governments and corporations (with or without your permission)? A SMME that produces concrete slabs is set so that the average diameter is 5 inch. A sample of 10 ball bearings was measured, with the results shown below: 4.5 5.0 4.9 5.2 5.3 4.8 4.9 4.7 4.6 5.1 If the standard deviation is 5 inches, can we conclude that at the 5% level of significance that the mean diameter is not 5 inch? Elaborate and give clear calculations.3 Which of the following is false regarding federal independent agencies?A) Independent agencies are governed by a board of commissioners.B) The president appoints the commissioners of independent agencies with the advice and consent of the Senate.C) The commissioners may be removed in the discretion of the president.D) No more than a simple majority of an independent agency can be members of any single political party.E) The agencies are generally not located within any department. Respond to the following:Tourism Vancouver Island collects data on visitors to the island.The following questions were among 16 asked in a questionnaire handed out to passengers during incoming airline flights and ferry crossings:- This trip to Vancouver Island is my: (first, second, third, fourth, etc.)- The primary reason for this trip is: (10 categories, including holiday, convention, honeymoon, etc.)- Where I plan to stay: (11 categories, including hotel, vacation rental, relatives, friends, camping, etc.) Total days on Vancouver Island: (number of days)Refer to Figure 2.15 (2.16 on the 9th edition) "Tabular and Graphical Displays for Summarizing Data" at the end of Chapter 2 and select one display (e.g., cross-tabulation for categorical data, stem-and-leaf display for quantitative data, etc.).Briefly describe how to construct an example of your selected display using the Tourism Vancouver Island questionnaire and what the display might show. For example, a cross-tabulation for categorical data could use "primary reason for trip" as one variable and "where I plan to stay" as the other variable.The entries in the table would record the number of respondents in each combination of categories for the two variables. The display could reveal patterns, such as most people visiting for a convention stay in hotels, whereas people on holiday stay in a variety of accommodation types. True or False: If the economy is in a recessionary sap. Keynesian economists would tell the government to decrease spending, because the economy will otherwise experience fast-rising inflation so the government needs to step in The wave speed on a string is 150 m/s when the tension is 75 N. What tension will give a speed of 180 m/s? The tension of the string is 108 N. What is the present value of a 5-year annuity of $3.600 with the first payment to be received 3 years from now i8%. (Round answer to decimal places, e8.5,275.) Present value $ .... Help me please I dont know .DNA, linguistic, and archaeological evidence all suggest that the first people to migrate to the Americas____ A) crossed the Atlantic Ocean from Africa B) crossed the Pacific Ocean from Australia C) crossed the Atlantic Ocean from Europe D) crossed the Beringia land bridge from Siberia into Alaska Evaluate the given integral by making an appropriate change of variables. 8 (x 7y)/(6x y) dA, R where R is the parallelogram enclosed by the lines x 7y = 0, x 7y = 5, 6x y = 7, and 6x y = 9 In a leveraged buyout, the managers of a firm, its employees, or other investors attempt to: O obtain the assets of the company through raising the capital in the money market. negotiate a merger with another firm to create a conglomerate. O use borrowed funds to buy out the firm's stockholders. improve the debt and equity ratio. what happens to e-waste after it arrives in developing countries?