select all elements that will form cations. calcium iodine bromine selenium barium magnesium sulfur fluorine potassium rubidium

Answers

Answer 1

Cations are positively charged ions that form when an atom loses one or more electrons from its outermost shell. The elements that are most likely to form cations are those with low ionization energies, meaning they require relatively little energy to remove an electron from their outermost shell. This typically includes metals and elements with small atomic radii.

In the list provided, the elements that are most likely to form cations are calcium, barium, magnesium, potassium, and rubidium. These elements are all metals that readily lose electrons to form positively charged ions. Calcium, barium, and magnesium are alkaline earth metals and have two valence electrons in their outermost shell, which they readily lose to form cations with a +2 charge. Potassium and rubidium are alkali metals and have one valence electron, which they readily lose to form cations with a +1 charge.

Iodine, bromine, selenium, sulfur, and fluorine are nonmetals and have relatively high ionization energies, making them less likely to form cations. However, they can form anions, which are negatively charged ions that form when an atom gains one or more electrons.

Learn more about Cations here:

https://brainly.com/question/28710898

#SPJ11


Related Questions

what type of substances are required for the production of illicit drugs?

Answers

The substances required for the production of illicit drugs vary depending on the type of drug being produced. For example, methamphetamine production typically involves the use of chemicals such as pseudoephedrine, anhydrous ammonia, and lithium, while cocaine production requires coca leaves and other chemicals like hydrochloric acid.

Other illicit drugs like heroin, ecstasy, and LSD also require specific substances for production. It is important to note that the production of illicit drugs is illegal and poses significant health and safety risks.

to know more about substances intake pls visit:

https://brainly.com/question/7482280

#SPJ11

what orbitals are overlap to form the bond between the nitrogen atoms in 1,1,2-trimethyl hydrazine molecule?

Answers

The bond between the nitrogen atoms in 1,1,2-trimethyl hydrazine molecule is formed by the overlap of the 2p orbitals on each nitrogen atom.

In 1,1,2-trimethyl hydrazine, each nitrogen atom has three sigma bonds, two with hydrogen atoms and one with the other nitrogen atom. The bond between the nitrogen atoms is a covalent bond, which involves the sharing of electron pairs.

Nitrogen has a total of five valence electrons (2s² 2p³), and in the formation of the bond, one of the 2s electrons and two of the 2p electrons participate. The remaining two 2p electrons on each nitrogen atom are uninvolved and remain in their respective atomic orbitals. The 2p orbitals on each nitrogen atom overlap to form a sigma bond between them.

The bond between the nitrogen atoms in 1,1,2-trimethyl hydrazine is formed by the overlap of the 2p orbitals on each nitrogen atom. This overlap allows the sharing of electron pairs and leads to the formation of a covalent bond.

To know more about orbitals, visit;

https://brainly.com/question/14361631

#SPJ11

Excessive exposure to ultraviolet light can cause skin cancer and retinal damage. Damaging ultraviolet light has a wavelength of 1.5 m. Determine the frequency of UV light.

Answers

Ultraviolet (UV) light is a type of electromagnetic radiation that has shorter wavelengths than visible light. Therefore, the frequency of UV light with a wavelength of 1.5 m is 2.00 ×  [tex]10^1^4[/tex] Hz..

c = λf

Where: c = speed of light = 3.00 × [tex]10^8[/tex] m/s λ = wavelength = 1.5 ×  [tex]10^-^6[/tex] m (converted from 1.5 m to scientific notation) f = frequency

Substituting the values

3.00 ×  [tex]10^8[/tex]m/s = (1.5 ×  [tex]10^-^6[/tex] m) f

Solving for f:

f = (3.00 × [tex]10^8[/tex]m/s) / (1.5 × [tex]10^-^6[/tex] m)

f = 2.00 × [tex]10^1^4[/tex] Hz

The speed of light is a fundamental constant of nature and is represented by the symbol "c". In the formula, "λ" represents the wavelength of the light and "f" represents the frequency of the light.

Learn more about UV light here.

https://brainly.com/question/2273461

#SPJ1

what will be the itnermediate color of bromothymol blue in a solution iof ph 7

Answers

The intermediate color of bromothymol blue in a solution with a pH of 7 is green. This indicates a neutral solution.

Bromothymol blue is a pH indicator that changes color depending on the acidity or alkalinity of a solution. In acidic solutions with a pH below 6, bromothymol blue appears yellow. In alkaline solutions with a pH above 7.6, it appears blue. However, when the pH is neutral, which is at a value of 7, the color of bromothymol blue is green. This color change is due to the presence of different ionized forms of the molecule in solutions with varying pH levels.

It is essential to note that the pH scale ranges from 0 to 14, with values below 7 representing acidic solutions, values above 7 representing alkaline solutions, and a value of 7 indicating a neutral solution. Thus, the intermediate color of bromothymol blue at pH 7 indicates neutrality.

To know more about bromothymol visit:

https://brainly.com/question/31251140

#SPJ11

5.75 ml of h2o, 4.00 ml of an aqueous 0.020 m scn- solution, and 14.00 ml of an aqueous 0.025 m fe3 solution were mixed together. the total volume of the new solution was 23.75 ml. what is the diluted fe3 concentration in the new solution?

Answers

To find the diluted Fe3+ concentration in the new solution, we need to consider the volume and concentration of the Fe3+ solution before mixing, as well as the final volume of the new solution.

Given:

Volume of SCN- solution = 4.00 ml

Concentration of SCN- solution = 0.020 M

Volume of Fe3+ solution = 14.00 ml

Concentration of Fe3+ solution = 0.025 M

Total volume of new solution = 23.75 ml

First, we can calculate the moles of SCN- and Fe3+ in their respective solutions:

Moles of SCN- = Volume (L) x Concentration (M) = (4.00 ml / 1000 ml/L) x 0.020 M

Moles of Fe3+ = Volume (L) x Concentration (M) = (14.00 ml / 1000 ml/L) x 0.025 M

Next, we can calculate the total moles of Fe3+ in the new solution by assuming that the SCN- and Fe3+ react in a 1:1 ratio:

Moles of Fe3+ in the new solution = Moles of SCN-

Since the volumes of SCN- and Fe3+ solutions are given in milliliters (ml), we need to convert them to liters (L) for consistent units.

Moles of Fe3+ in the new solution = (4.00 ml / 1000 ml/L) x 0.020 M

Now, we need to calculate the diluted concentration of Fe3+ in the new solution:

Diluted concentration of Fe3+ = Moles of Fe3+ in the new solution / Total volume of the new solution

Diluted concentration of Fe3+ = [(4.00 ml / 1000 ml/L) x 0.020 M] / (23.75 ml / 1000 ml/L)

Simplifying the expression:

Diluted concentration of Fe3+ = (0.00008 mol) / 0.02375 L

Diluted concentration of Fe3+ = 3.37 M

Therefore, the diluted Fe3+ concentration in the new solution is approximately 3.37 M.

Learn more about Moles here -: brainly.com/question/22812748

#SPJ11

name the laboratory approach used to synthesize polysaccharides.

Answers

The laboratory approach used to synthesize polysaccharides is known as chemical synthesis.

Chemical synthesis involves the creation of a molecule through a series of chemical reactions, which allows researchers to create specific molecules with precision.

Polysaccharides are complex carbohydrates that consist of many sugar molecules bonded together. They are found in many biological structures, such as cell walls, and play important roles in the function of living organisms. In the laboratory, researchers can use chemical synthesis to create specific polysaccharides by building up the molecules one sugar unit at a time.

This process requires the use of specialized reagents and equipment, as well as a deep understanding of the chemical properties of the target molecule. Chemical synthesis allows researchers to create complex polysaccharides that may not be found in nature, which can help to advance our understanding of biological processes and develop new therapeutic agents. However, it is a time-consuming and complex process that requires a high level of skill and expertise.

For more such questions on chemical synthesis

https://brainly.com/question/25308131

#SPJ11

when an octahedral metal complex is formed, which d orbitals are raised by the highest amount of energy as the incoming ligands approach the metal ion?

Answers

The magnitude of the crystal field splitting depends on the nature of the ligands and the metal ion, but in an octahedral complex, the eg set of d-orbitals is raised by the highest amount of energy as the incoming ligands approach the metal ion.

When an octahedral metal complex is formed, the incoming ligands approach the metal ion and interact with its d-orbitals, causing a splitting of the degenerate d-orbitals into two different energy levels. This process is known as crystal field splitting, and the energy difference between the two levels depends on the nature of the ligands and the metal ion.

In an octahedral complex, the d-orbitals are split into two sets: the eg set, which consists of the dxy, dxz, and dyz orbitals, and the t2g set, which consists of the dz2 and dx2-y2 orbitals. The eg orbitals are raised to a higher energy level than the t2g orbitals.

The reason for this lies in the geometry of the complex. The six ligands are arranged around the metal ion in an octahedral shape, with the four in the x-y plane (forming the equatorial plane) and the other two along the z-axis (forming the axial positions). The eg orbitals are oriented along the x, y, and z-axes and thus experience a stronger repulsion from the ligands in the equatorial plane, causing them to be raised to a higher energy level.

To learn more about crystal field

https://brainly.com/question/29389010

#SPJ4

A calorimeter holds 65 g water at 23.0°C. A sample of hot iron is added to the water, and the final temperature of the water and iron is 27.0°C. What is the change in enthalpy associated with the change in the water’s temperature?

Note: The specific heat of water is 4.18 j/g*C

Answers

The change in enthalpy of the reaction, given that a hot iron was added to 65 g water at 23.0°C until the final temperature of the water and iron became 27.0°C is 0.301 KJ/mol

How do i determine the change in enthalpy of the reaction?

First, we shall obtain the mole of the water. This is shown below:

Mass of water = 65 gMolar mass of water = 18 g/molMole of water = ?

Mole = mass / molar mass

Mole of water = 65 / 18

Mole of water = 3.61 moles

Next, we shall obtain the heat absorbed by the water. Details below:

Mass of water (M) = 65 gInitial temperature of water (T₁) = 23 °CFinal temperature of statue(T₂) = 27 °CChange in temperature (ΔT) = 27 - 23 = 4 °C Specific heat capacity of water (C) = 4.18 J/gºC Heat absorbed (Q) =?

Q = MCΔT

Q = 65 × 4.18 × 4

Q = 1086.8 J

Finally, we shall determine the change in enthalpy of the reaction. Details below:

Heat absorbed (Q) = 1086.8 J = 1086.8 / 1000 = 1.0868 KJMole of water (n) = 3.61 molesChange in enthalpy (ΔH) =?

Q = n × ΔH

1.0868 = 3.61 × ΔH

Divide both sides by 3.61

ΔH = 1.0868 / 3.61

ΔH = 0.301 KJ/mol

Thus, the change in enthalpy of reaction is 0.301 KJ/mol

Learn more about enthalpy change:

https://brainly.com/question/24170335

#SPJ1

when cooper wire is placed into at silver nitrate solution, silver crystal and cooper (ii) nitrate solution form. write the balanced chemical equation for the reaction. if a 20 g silver of cooper is used, determine the theoretical yield of silver. if 60 g silver is actually recovered from the reaction, determine the percent yield of the reaction.

Answers

The percent yield of the reaction is 30%.  

The balanced chemical equation for the reaction between a cooper wire and a silver nitrate solution is:

[tex]2AgNO_3(aq) + 2Cu(s) - > 2Ag(s) + 2NO_3- (aq) + Cu(NO_3)_2(aq)[/tex]

In this reaction, the copper wire acts as the reducing agent, and the silver nitrate solution acts as the oxidizing agent. The silver from the copper wire is reduced to silver metal, and the silver nitrate is oxidized to silver ions.

The theoretical yield of silver can be calculated by using the stoichiometric coefficient of silver in the balanced equation:

Theoretical yield = (2 * moles Ag) / (moles Ag - moles Cu)

The theoretical yield of silver is 2 moles.

If 60 g of silver is actually recovered from the reaction, the percent yield of the reaction can be calculated by dividing the actual yield by the theoretical yield and multiplying by 100:

Percent yield = (60 / 2) * 100%

Percent yield = 30%

Therefore, the percent yield of the reaction is 30%.  

Learn more about percent yield visit: brainly.com/question/11963853

#SPJ4

A 10. 0 gram sample of water at 23. 0°C absorbs 209 joules of heat. What is the final temperature of the water sample? (c of water is 4. 18 J/g°C)

Answers

To determine the final temperature of the water sample, we can use the heat transfer equation:

q = m * c * ΔT

Where:

q is the heat absorbed (in joules),

m is the mass of the substance (in grams),

c is the specific heat capacity of the substance (in J/g°C),

ΔT is the change in temperature (in °C).

Given:

q = 209 J

m = 10.0 g

c (specific heat capacity of water) = 4.18 J/g°C

The initial temperature of the water sample = 23.0°C

We can rearrange the equation to solve for ΔT:

ΔT = q / (m * c)

Substituting the given values:

ΔT = 209 J / (10.0 g * 4.18 J/g°C)

ΔT ≈ 4.99°C

To find the final temperature, we add the change in temperature to the initial temperature:

Final temperature = Initial temperature + ΔT

Final temperature = 23.0°C + 4.99°C

Final temperature ≈ 27.99°C

Therefore, the final temperature of the water sample is approximately 27.99°C.

Learn more about heat transfer equation here:

https://brainly.com/question/30526730

#SPJ11

the gas-phase reaction is second-order in hi and second-order overall. the rate constant for this reaction at 55 c is 2.47 m-1min-1. if the initial concentration of hi was 29 mm, what would be the concentration of hi after 2 hrs?

Answers

The concentration of HI after 2 hours is approximately 33.4 mM.

The second-order rate law is given by;

rate = k[HI]²

We are given the rate constant k = 2.47 M⁻¹ min⁻¹ and the initial concentration [HI] = 29 mM. We want to find the concentration of HI after 2 hours (120 min).

We will use the integrated rate law for a second-order reaction;

1/[tex][HI]_{t}[/tex] - 1/[HI]0 = kt

where [HI]t will be the concentration of HI at time t, and [HI]0 will be the initial concentration of HI. Rearranging this equation;

[tex][HI]_{t}[/tex] = 1/([HI]0 + [tex]K_{t}[/tex])

Plugging in the values;

[tex][HI]_{t}[/tex] = 1/(29 mM + (2.47 M⁻¹ min⁻¹)(120 min))

[tex][HI]_{t}[/tex]= 0.0334 M or 33.4 mM

Therefore, the concentration is 33.4 mM.

To know more about rate law here

https://brainly.com/question/30379408

#SPJ4

if the rate laws are expressed with (i) concentrations in moles per cubic decimetre, (ii) pressures in kilopascals, what are the units of a second-order and of a third-order rate constant?

Answers

(i) The units of a second-order rate constant are (mol⁻¹·dm³·s⁻¹).

(ii) The units of a third-order rate constant are (mol⁻²·dm⁶·s⁻¹).

(i) In a second-order rate law, the rate is proportional to the square of the concentration of a reactant or the product of the concentrations of two reactants. Since concentration is expressed in moles per cubic decimeter (dm³), the units of a second-order rate constant would be (mol⁻¹·dm³·s⁻¹). The exponent of -1 in moles accounts for the reciprocal of the concentration term, dm³ represents the volume unit, and s⁻¹ represents the time unit for the rate.

(ii) In a third-order rate law, the rate is proportional to the cube of the concentration of a reactant or the product of the concentrations of three reactants. Since concentration is expressed in moles per cubic decimeter (dm³), the units of a third-order rate constant would be (mol⁻²·dm⁶·s⁻¹). The exponent of -2 in moles accounts for the reciprocal of the squared concentration term, dm⁶ represents the volume unit raised to the power of three, and s⁻¹ represents the time unit for the rate.

To learn more about rate constant, here

https://brainly.com/question/20305922

#SPJ4

Which one is the correct order of reactivity of different types of alcohol towards hydrogen halide? .2° alcohol > 3 alcohol > 1° alcohol .1° alcohol > 2 alcohol > 3 alcohol .3° alcohol > 2° alcohol > 1° alcohol .2º alcohol > 1° alcohol > 3 alcohol .3° alcohol > 1° alcohol > 2º alcohol

Answers

The correct order of reactivity of different types of alcohol towards hydrogen halide is 3° alcohol > 2° alcohol > 1° alcohol.

When hydrogen halide is added to an alcohol, it undergoes an acid-base reaction, and the alcohol acts as a base. The order of reactivity depends on the stability of the carbocation intermediate that is formed during the reaction.

In the case of 3° alcohols, the carbocation intermediate formed is the most stable due to the presence of three alkyl groups that stabilize the positive charge. Hence, 3° alcohols are the most reactive towards hydrogen halide. On the other hand, 1° alcohols have the least stable carbocation intermediate, making them the least reactive towards hydrogen halide.

Therefore, the correct order of reactivity of different types of alcohol towards hydrogen halide is 3° alcohol > 2° alcohol > 1° alcohol.

T o learn more about  hydrogen halide, visit here:

https://brainly.com/question/5504882

#SPJ11

what type of isomers can the complex ion [cocl2(nh3)4] have?

Answers

The complex ion [CoCl2(NH3)4] can exhibit two types of isomers:

Geometric isomers: These isomers arise from differences in the spatial arrangement of ligands around the central metal ion. In the case of [CoCl2(NH3)4], there are two possible geometric isomers: cis and trans. The cis isomer has two NH3 ligands and two Cl ligands on the same side of the central Co atom, whereas the trans isomer has the NH3 and Cl ligands on opposite sides.

Optical isomers: These isomers arise from the presence of a chiral center in the complex ion, i.e. an atom with four different ligands attached to it. In [CoCl2(NH3)4], there are no chiral centers, so there are no optical isomers.

Therefore, the complex ion [CoCl2(NH3)4] can have two types of isomers: cis and trans geometric isomers.

Learn more about isomers here:

https://brainly.com/question/13422357

#SPJ11

Assuming ideal solution behavior, what is osmotic pressure of a solution of bovine insulin (molar mass, 5700 g mol−1) at 18 °C if 100.0 mL of the solution contains 0.103 g of the insulin?(a) Outline the steps necessary to answer the question.(b) Answer the question

Answers

Osmotic pressure is the pressure exerted by a solvent to prevent the flow of a solvent through a semipermeable membrane, caused by differences in solute concentrations between two solutions.

(a) Steps necessary to answer the question:
1. Convert the mass of insulin (0.103 g) to moles using its molar mass (5700 g/mol).
2. Convert the volume of the solution (100.0 mL) to liters (0.100 L).
3. Calculate the molarity of the solution by dividing the number of moles by the volume in liters.
4. Use the formula for osmotic pressure (π = MRT) to calculate the osmotic pressure.
  - M is the molarity of the solution
  - R is the ideal gas constant (8.314 J/(mol·K))
  - T is the temperature in Kelvin (18 °C + 273.15).
(b) The osmotic pressure of the bovine insulin solution can be calculated by determining its molarity and using the formula π = MRT. After converting the mass of insulin to moles (0.103 g / 5700 g/mol = 1.807 × [tex]10^-5[/tex] mol) and the volume to liters (100.0 mL / 1000 = 0.100 L), the molarity of the solution is determined (1.807 × [tex]10^-5[/tex] mol / 0.100 L = 1.807 × [tex]10^-4 M[/tex]). By plugging in the values into the osmotic pressure formula (π = (1.807 × [tex]10^-4 M[/tex]) * (8.314 J/(mol·K)) * (18 °C + 273.15)), the osmotic pressure of the solution is calculated.

Learn more about osmotic pressure here:

https://brainly.com/question/29818006

#SPJ11

nahco3(s) ⇌ naoh(s) co2(g) what is the free-energy change for this reaction at 298 k ? express the free energy in kilojoules to one decimal place.

Answers

The free-energy change for the reaction at 298 K is -94.7 kJ/mol.

The free-energy change for the reaction nahco3(s) ⇌ naoh(s) co2(g) at 298 K can be calculated using the following equation:
ΔG = ΔH - TΔS
where ΔH is the enthalpy change, T is the temperature in Kelvin, and ΔS is the entropy change.
To find the values for these parameters, we can refer to thermodynamic tables. The enthalpy change for the reaction is -52.3 kJ/mol, and the entropy change is 142.2 J/mol·K. Plugging these values into the equation, we get:
ΔG = -52.3 kJ/mol - (298 K)(0.1422 kJ/mol·K)
ΔG = -52.3 kJ/mol - 42.4 kJ/mol
ΔG = -94.7 kJ/mol
Therefore, the free-energy change for the reaction at 298 K is -94.7 kJ/mol.

Thus, we can use thermodynamic equations and tables to calculate the free-energy change for a chemical reaction. The enthalpy and entropy changes are important parameters that determine the overall feasibility of the reaction.

To know more about free-energy change, click here

https://brainly.com/question/31170437

#SPJ11

In the context of nuclear reactions in the Sun, protons collide directly with other protons in the proton-proton chain to form: a. helium nuclei. b. carbon nuclei: c. hydrogen nuclei. d. oxygen nuclel;

Answers

In the context of nuclear reactions in the Sun, protons collide directly with other protons in the proton-proton chain to form helium nuclei.

The proton-proton chain is a sequence of nuclear reactions that takes place in the Sun's core and is responsible for the conversion of hydrogen into helium. In the first step of the chain, two protons combine to form a deuterium nucleus (one proton and one neutron) and a positron (a positively charged electron).

The deuterium nucleus then combines with another proton to form helium-3, and two helium-3 nuclei combine to form helium-4, releasing two protons in the process. The net result is the fusion of four protons into a single helium nucleus, along with the release of energy in the form of gamma rays nd neutrinos.

Learn more about nuclear reactions here:

https://brainly.com/question/16526663

#SPJ11

In this lab you will construct several electrochemical cells where both half-cells contain a copper electrode in a copper (II) solution. What standard cell potential (Eocell) would be expected for a voltaic cell comprised only of copper?Answer Choices:0.34 V0.00 V-0.34 V0.68 V0.0592 V

Answers

For a voltaic cell comprised only of copper, the expected standard cell potential is 0.00 V.


In an electrochemical cell with both half-cells containing a copper electrode in a copper (II) solution, there is no difference in electrode potentials between the two half-cells.

Since the cell potential is determined by the difference in electrode potentials, the standard cell potential (Eocell) would be 0.00 V in this case.



Summary: For a voltaic cell comprised only of copper, the expected standard cell potential is 0.00 V.

Learn more about standard cell potential click here:

https://brainly.com/question/31409928

#SPJ11

which product forms when 1-propyne is methylated (i.e., treated with sodium amide, followed by methyl iodide), then subjected to ozonolysis?

Answers

The product that forms when 1-propyne is methylated and subjected to ozonolysis is methylpropanal.

First, 1-propyne is treated with sodium amide, which is a strong base that deprotonates the alkyne to form the corresponding acetylide ion.  the acetylide ion is methylated with methyl iodide to give the corresponding methylpropyne.

Finally, the methylpropyne is subjected to ozonolysis, which cleaves the carbon-carbon triple bond and forms two aldehydes. One of the aldehydes is methylpropanal, which is the product that you asked about.
Overall, this reaction pathway is a useful way to synthesize aldehydes from alkynes.  it's worth noting that the reaction conditions (i.e., strong base, alkyl iodide, and ozone) can be hazardous and require careful handling.

To know more about ozonolysis visit :-

https://brainly.com/question/30325381

#SPJ11

in the malonic ester synthesis the enolate can attack the alkyl halide. what type of mechanism is this?

Answers

In the malonic ester synthesis the enolate can attack the alkyl halide. This is SN₂ mechanism. Sodio Malonic Ester can be alkylated using alkyl halides because it is an enolate.

After alkylation, the product can be saponified to create a dicarboxylic acid, and one of the carboxylic acids can then be eliminated using a decarboxylation process. Through a S N 2 reaction with alkyl halides, enolates can be alkylated in the alpha position.

An alkyl group takes the place of a -hydrogen during this reaction, creating a new C-C bond.  SN₂ reactions continue to have their limitations. Tosylate, chloride, bromide, iodide, and other suitable primary or secondary leaving groups are preferred.

To learn more about Malonic Ester , click here.

https://brainly.com/question/30826889

#SPJ4

which of the molecules is rationally inactive? a) chcl3 b) co c) no d) co2

Answers

Answer:

CO2

Explanation:

CO2 is a nonpolar molecule with a symmetrical linear shape, which means it has no net dipole moment. As a result, it is relatively unreactive and does not readily participate in chemical reactions with other molecules.

in the lewis dot structure for phosphoric acid, h3po4, phosphorus and the oxygen without a hydrogen have formal charge of ___ and ___, respectively. assume that the octet rule is not violated.

Answers

In the Lewis dot structure for phosphoric acid, h3po4, phosphorus and the oxygen without a hydrogen have formal charge of +1 and -1, respectively, assuming that the octet rule is not violated.

This is because phosphorus in this structure has 5 valence electrons, and in order to achieve an octet, it forms 5 covalent bonds with the oxygen and hydrogen atoms. Each bond contributes 2 electrons to the shared pool, leaving one lone pair on each oxygen atom and none on the phosphorus atom, hence a formal charge of +1.

The oxygen atoms without hydrogen each have 6 electrons, one more than what they would have in a neutral state, hence a formal charge of -1.

The formal charge helps in determining the most stable Lewis dot structure for a molecule, and the structure with the lowest formal charges on each atom is usually the most stable.

Therefore, the Lewis dot structure for H3PO4 with a formal charge of +1 on the phosphorus and -1 on the oxygen atoms is the most stable configuration.

To know something about the formal charges, click below.

https://brainly.com/question/30459289

#SPJ11

which is the strongest reducing agent? h2(g) li(s) li (aq) fe(s)

Answers

Hydrogen gas (H2(g)) is the strongest reducing agent among the options given. This is because hydrogen has the lowest reduction potential, meaning it is able to donate electrons to other compounds more easily.

This is due to the fact that the H-H bond in hydrogen is relatively weak, allowing the hydrogen atom to easily detach from the molecule and form bonds with other compounds.

Lithium (Li(s)) is a reducing agent, but it is not as strong as hydrogen. This is because the Li-Li bond is relatively strong, making it more difficult for the lithium atom to detach from the molecule and form bonds with other compounds.

Lithium iodide (LiI(s)) is also a reducing agent, but it is not as strong as lithium. This is because the Li-I bond is relatively strong, making it more difficult for the lithium atom to detach from the molecule and form bonds with other compounds.

Ferricyanide (Fe(CN)6-3) is an oxidizing agent, not a reducing agent. It reacts with hydrogen gas to form iron and carbon monoxide.  

To learn more about reducing agent, visit here:

brainly.com/question/12549467

#SPJ11

Which of the following electronic configurations would represent an atom with the smallest electron affinity (smallest negative energy)?(A) ns2np1(B) ns2np2(C) ns2(D) ns2np4(E) ns2np5

Answers

The electronic configuration with the smallest electron affinity (smallest negative energy) would be (C) ns2, as it has a complete valence shell and would not readily accept an additional electron.

The other configurations have incomplete valence shells and would be more likely to accept an additional electron, resulting in a larger negative energy value for electron affinity.

The atom with the smallest electron affinity (smallest negative energy) would be represented by the electronic configuration (D) ns2np4. This is because an atom with this configuration has a relatively stable half-filled p subshell, making it less likely to accept an additional electron.

To know more about electronic configuration visit:

https://brainly.com/question/31812229

#SPJ11

Be sure to answer all parts. For the titration of 10 mL of 0.15 M acetic acid with 0.1 M sodium hydroxide, determine the pH when: (a) 10 mL of base has been added. (b) 15 mL of base has been added. (c) 20.0 mL of base has been added.

Answers

(a) The pH when 10 mL of base has been added is approximately 4.74.
(b) The pH when 15 mL of base has been added is approximately 4.87.
(c) The pH when 20.0 mL of base has been added is approximately 4.94.


Titration is a technique used in analytical chemistry to determine the concentration of an unknown solution by reacting it with a known solution. In this case, we have a titration of acetic acid (a weak acid) with sodium hydroxide (a strong base).
Acetic acid (CH3COOH) is a weak acid that partially dissociates in water to release hydrogen ions (H+). Sodium hydroxide (NaOH) is a strong base that dissociates completely in water to produce hydroxide ions (OH-).
During the titration, as the base is added to the acid, the hydroxide ions react with the hydrogen ions from the acetic acid to form water. This neutralization reaction decreases the concentration of hydrogen ions, leading to an increase in pH.
To calculate the pH at different points of the titration, we need to consider the stoichiometry of the reaction and the initial concentrations of the acid and base. The Henderson-Hasselbalch equation is commonly used for weak acid-strong base titrations to determine the pH.
In this case, the initial concentration of acetic acid is 0.15 M, and the concentration of the sodium hydroxide solution is 0.1 M. By applying the Henderson-Hasselbalch equation and considering the volumes of acid and base added, we can calculate the pH at different stages of the titration.
The Henderson-Hasselbalch equation for this titration is:
pH = pKa + log([A-]/[HA])
where pKa is the dissociation constant of acetic acid, [A-] is the concentration of the acetate ion, and [HA] is the concentration of undissociated acetic acid.
In this case, since the volumes of acid and base added are equal, the pH at the halfway point (a) is equal to the pKa of acetic acid, which is approximately 4.74.
As more base is added, the concentration of the acetate ion increases, leading to a slightly higher pH. At 15 mL (b) and 20 mL (c) of base added, we can calculate the pH using the Henderson-Hasselbalch equation and find that it increases to approximately 4.87 and 4.94, respectively.

Learn more about Titration here:

https://brainly.com/question/31483031

#SPJ11

Which two half reactions, when coupled, will make a galvanic cell that will produce the largest voltage under standard conditions? 1. Cu²(aq) + 2e → Cu (s) E° = +0.34 V II. Pb2+ (aq) + 2e → Pb (s) E° = -0.13 V III. Ag(aq) + e- → Ag (s) E° = +0.80 V IV. Al (aq) + 3e → Al (s) Eº = -1.66 V a. I and II b. I and IV c. II and IV d. lll and IV

Answers

Two half reactions, when coupled, will make a galvanic cell that will produce the largest voltage under standard conditions is reaction III and IV.

So, the correct answer is D.

The largest voltage will be produced by the half reactions with the largest difference in their standard reduction potentials (E°).

The reduction potentials of the given half reactions are:

I. Cu₂(aq) + 2e → Cu (s) E° = +0.34 V

II. Pb₂⁺ (aq) + 2e → Pb (s) E° = -0.13 V

III. Ag(aq) + e- → Ag (s) E° = +0.80 V

IV. Al (aq) + 3e → Al (s) Eº = -1.66 V

The two half reactions with the largest difference in reduction potential are IV and III:

IV: Al (aq) + 3e → Al (s) Eº = -1.66 V

III: Ag(aq) + e- → Ag (s) E° = +0.80 V

The overall cell reaction for this combination would be: 3Ag(aq) + Al(s) → 3Ag(s) + Al(aq)³⁺

The standard cell potential for this reaction can be calculated by adding the reduction potentials for the two half reactions:

E°cell = E°cathode - E°anode

E°cell = +0.80 V - (-1.66 V)

E°cell = 2.46 V

Therefore, the answer is d. III and IV

Learn more about the half-reaction at

https://brainly.com/question/31604425

#SPJ11

what would be the concentratio of so4-2 when ag2so4 started to precipitate

Answers

The concentration of SO4-2 when Ag2SO4 starts to precipitate depends on the solubility product (Ksp) of Ag2SO4 and the initial concentration of Ag+ and SO4-2 ions in the solution.

The precipitation of Ag2SO4 occurs when the product of the concentrations of Ag+ and SO4-2 ions exceeds the solubility product constant of Ag2SO4. Therefore, the concentration of SO4-2 at the point where Ag2SO4 begins to precipitate can be calculated using the Ksp expression for Ag2SO4.

The solubility product constant (Ksp) for Ag2SO4 at 25°C is 1.4 × 10^-5. At the point of precipitation, the concentration of Ag+ and SO4-2 ions in the solution will be equal and can be represented by x. Therefore, the Ksp expression for Ag2SO4 becomes:

Ksp = [Ag+]^2[SO4-2] = (x)^2(x) = x^3

Since Ag2SO4 is a 1:1 electrolyte, the concentration of SO4-2 ions in the solution will be equal to the concentration of Ag+ ions, i.e., [SO4-2] = [Ag+] = x. Substituting this value in the Ksp expression, we get:

Ksp = x^3 = 1.4 × 10^-5

Solving for x, we get:

x = (1.4 × 10^-5)^(1/3) = 0.027 M

Therefore, the concentration of SO4-2 when Ag2SO4 starts to precipitate is 0.027 M.

The concentration of SO4-2 at the point where Ag2SO4 begins to precipitate can be calculated using the Ksp expression for Ag2SO4, which depends on the solubility product constant and the initial concentration of Ag+ and SO4-2 ions in the solution.

To  know more about precipitation visit:

brainly.com/question/31198360

#SPJ11

Why is ethanol a stronger acid than tert-butanol in solution?

Answers

Ethanol is a stronger acid than tert-butanol in solution because of the difference in the molecular structure of the two compounds. Ethanol contains a hydroxyl group (-OH) attached to a carbon atom, while tert-butanol contains a hydroxyl group attached to a carbon atom that is also attached to three other carbon atoms. This makes the hydroxyl group in ethanol more readily available for donation of a proton (H+) in solution, as the electron density around the oxygen atom is less shielded.

On the other hand, the hydroxyl group in tert-butanol is more hindered by the surrounding bulky tert-butyl groups, which limits its ability to donate a proton and makes it a weaker acid compared to ethanol. In addition, the steric hindrance caused by the tert-butyl groups also hinders the solvation of tert-butanol in solution, further reducing its acid strength.

In summary, the difference in the molecular structure of ethanol and tert-butanol, particularly in the accessibility of their hydroxyl groups, is what accounts for the difference in their acid strength. I hope this explanation helps!
Hi! Ethanol is a stronger acid than tert-butanol in solution because of its molecular structure and inductive effects. Ethanol has a more polar O-H bond, which makes it easier to lose a proton (H+) and form its conjugate base, the ethoxide ion. In tert-butanol, the bulky tertiary carbon group hinders the loss of a proton, resulting in a weaker acidity compared to ethanol.

To know more about hydroxyl group visit:-

https://brainly.com/question/23639315

#SPJ11

nittnium (nt) cations readily form coordination compounds. consider the compound: [nt(en)cl 2 ]br 2 . what is the charge on the central nittnium cation and the coordination number of this complex? (en

Answers

The given compound, [nt(en)Cl2]Br2, consists of a central niobium (nt) cation coordinated with two chlorides (Cl-) ions and two bidentate ethylenediamine (en) ligands, along with two bromides (Br-) ions as counter ions.

A compound is a substance that is made up of two or more different elements that are chemically bonded together. The atoms of each element combine to form a molecule with a unique chemical formula and structure. Compounds can be formed through a variety of chemical reactions, such as the combination of elements, oxidation-reduction reactions, and acid-base reactions. They can be either molecular compounds, where the elements are joined by covalent bonds, or ionic compounds, where the elements are joined by ionic bonds.

Compounds have unique physical and chemical properties that differ from the properties of their constituent elements. For example, water is a compound made up of hydrogen and oxygen, but it has properties that are different from those of hydrogen and oxygen individually. Compounds play an important role in many aspects of our daily lives, from the food we eat to the medicines we take to the materials we use to build structures.

To know more about Compound refer to-

brainly.com/question/14117795

#SPJ4

which c5h10o isomer exhibits a strong infrared absorption band at 1717 cm-1?

Answers

The C₅H₁₀O isomer that exhibits a strong infrared absorption band at 1717 cm⁻¹ is the ketone isomer, 2-pentanone.

The absorption band corresponds to the stretching vibration of the carbonyl functional group (C=O). The C₅H₁₀O isomer that exhibits a strong infrared absorption band at 1717 cm-1 is the one containing a carbonyl group (C=O). The presence of a carbonyl group leads to strong absorption in the infrared region due to the stretching vibration of the C=O bond. This absorption usually occurs around 1700 cm-1. In this case, the isomer you are looking for is an aldehyde or a ketone. Among the C₅H₁₀O isomers, pentanal (an aldehyde) and 2-pentanone (a ketone) exhibit strong absorption bands at 1717 cm⁻¹ due to the presence of a carbonyl group.

Learn more about infrared absorption: https://brainly.com/question/31830158

#SPJ11

Other Questions
in cell p3, use the countifs function to determine the number of sales the employee in cell n3 made on saturday. use $c$3:$c$102 as the first criteria range and $a$3:$a$102 as the second criteria range. the function of music in film is to a. help establish the characters. b. set the mood. c. help establish a sense of place and time. d. all possible answers. at a lunch stand, each hamburger has 50 5050 more calories than each order of fries. if 2 22 hamburgers and 3 33 orders of fries have a total of 1700 17001700 calories, how many calories does a hamburger have? What is wrong with the following code snippet? Language: Java 1 byte[] data = null; 2 FileInputStream stream = null; 3 File file = new File("example.txt"); 4 try { 5 stream = new FileInputStream(file); 6 data = stream.readAllBytes(); 7 catch (java.io.IOException ignored) { 8 } finally { 9 stream.close(); 10} Select the correct answer: The file may be closed before all data is read. If an error is raised, the file will remain open. If opening the file fails, a different error is raised. Not all bytes from the file are read. what is an npi number and how is the npi number obtained? In the code segment below, the int variable temp represents a temperature in degrees Fahrenheit. The code segment is intended to print a string based on the value of temp. The following table shows the string that should be printed for different temperature ranges.Temp Range String to Print31 and below "cold"32-50 "cool"51-70 "moderate"71 and above "warm"String weather;if (temp = 51){weather = "moderate";}else{weather = "warm";}System.out.print(weather);Which of the following test cases can be used to show that the code does NOT work as intended?I. temp = 30II. temp = 51III. temp = 60 For the function y = xi + 7 at (4, 1), find the following. (Give exact answers. Do not round.) x 19 (a) the slope of the tangent line (b) the instantaneous rate of change of the function determine the minimum standard size overcurrent protective device (ocpd) necessary to supply a 7-ampere noncontinuous load and a 17-ampere continuous load. Postlingual children who are deaf generally develop better speech, language, reading, and writing skills because their hearing loss occursa. after they have acquired speech and language.b. after they have acquired fine motor skills.c. before they have acquired fine motor skills.d. before they have acquired speech and language nickel is a transition element and has a variable valence. using a nickel salt, 2 faradays plate out 39.2g of nickel. what ions are in the solution of this salt? in a simple baseline/offset model y = b0 b1*x with a dummy-variable (0 or 1) predictor x, the coefficient b1 may be interpreted as which of the following? complete the web by writing words or phrases associated with synthesis the operation manager at a tire manufacturing company believes that the mean mileage of a tire is 30,641 miles, with a variance of 14,561,860 . what is the probability that the sample mean would be less than 31,358 miles in a sample of 242 tires if the manager is correct? round your answer to four decimal places. What is the value of the expression below when q=-2, r=-12 and s=8? First, find the function begin mathsize 18px style N left parenthesis x comma y right parenthesis end style such that the following differential equationbegin mathsize 18px style open parentheses 2 x squared y plus 2 e to the power of 2 x end exponent y squared plus 2 x close parentheses d x plus N left parenthesis x comma y right parenthesis d y equals 0 end styleis exact and begin mathsize 18px style N left parenthesis 0 comma y right parenthesis equals 3 y end style. Which of the following is the general solution of the resulting exact differential equation? daily output of marathon's garyville, louisiana, refinery is normally distributed with a mean of 232,000 barrels of crude oil per day with a standard deviation of 7,000 barrels. (a) what is the probability of producing at least 232,000 barrels? (round your answer to 4 decimal places.) a trait that is coded for by more than one gene (most human traits) is called A ______________________was granted to an individual rather than a commercial venture. A. Commercial ColonyB. Mercantile ColonyC. Industrial ColonyD. Proprietary Colony The depth, in feet, of a lake at a point x miles east and y miles north of a buoy is given by: h(x, y) = 175 30x^2 20y^2 (a) A rowboat is 1 mile east and 2 miles south of the buoy. At what rate is the depth changing with respect to distance in the direction of the buoy? (b) The boat starts moving toward the buoy at a rate of 4 mph. At what rate is the depth of the lake beneath the boat changing with respect to time? FILL IN THE BLANK. Basic dyes are ____ a. used In negative stalning b. dyes such as India Ink and nigrosin c. repelled by cells d. anionic e. attracted to the negatively charged acidic substances of bacterial cells