Scrooge McDuck believes that employees at Duckburg National Bank will be more likely to come to work on time if he punishes them harder when they are late. He tries this for a month and compares how often employees were late under the old system to how often they were late under the new, harsher punishment system. He utilizes less than hypothesis testing and finds that at an alpha of .05 he rejects the null hypothesis. What would Scrooge McDuck most likely do? a. Run a new analysis; this one failed to work b. Keep punishing his employees for being late; it's not working yet but it might soon c. Stop punishing his employees harder for being late; it isn't working d. Keep punishing his employees when they're late; it's working

Answers

Answer 1

Based on the given information, Scrooge McDuck most likely would stop punishing his employees harder for being late as the new, harsher punishment system did not result in a reduction in late arrivals.

The rejection of the null hypothesis at an alpha level of .05 indicates that there is evidence to suggest that the new punishment system did not lead to a significant decrease in employees being late. This means that the data did not support Scrooge McDuck's belief that harsher punishment would improve punctuality. Therefore, it would be logical for him to stop punishing his employees harder for being late as it did not yield the desired results. Running a new analysis or continuing the same approach would not be justified based on the given information.

To know more about hypothesis here: brainly.com/question/29576929

#SPJ11


Related Questions

A group of researchers compares the Hemoglobin, Hematocrit, and HbA1c of pregnant women in second and third trimester. Data are stored at gestation.RData.
With the hypothesis that the mean hemoglobin of pregnant women in second and third trimester differ. Which of the following conclusions (p-value in parenthesis) is correct.
There is sufficient evidence that the mean hemoglobin of pregnant women in second and third trimester differ (p=0.647).
There is sufficient evidence that the mean hemoglobin of pregnant women in second and third trimester differ (p=0.324).
There is no sufficient evidence that the mean hemoglobin of pregnant women in second and third trimester differ (p=0.647).
There is no sufficient evidence that the mean hemoglobin of pregnant women in second and third trimester differ (p=0.324).

Answers

The correct conclusion is that the mean hemoglobin of pregnant women in the second and third trimester differs (p-value < 0.05).

Based on the comparison of Hemoglobin, Hematocrit, and HbA1c levels between pregnant women in the second and third trimester, the researchers found that there is a statistically significant difference in the mean hemoglobin levels. This conclusion is supported by a p-value that is less than the typical significance level of 0.05. The specific p-value is not provided in the question, but it is implied that it is smaller than 0.05. Therefore, the researchers can reject the null hypothesis and conclude that there is a significant difference in the mean hemoglobin levels between the second and third trimester of pregnancy.

Learn more about hemoglobin here : brainly.com/question/31239540
#SPJ11

3 0 0 6
1 8 1 8
0 8 1 ?
7 5 2 4
puzzle level : Advanced
find the question mark
Solve only if you have a valid logic,
Posting this second time
Answer = 6

Answers

The answer to the given puzzle is 6. The answer to the missing number is calculated by multiplying the first number of each column by 2 and adding 3 to it.

To solve this puzzle, we need to find the pattern of numbers being used in each column of the given numbers. We need to apply the same pattern to find the missing number. The first step is to identify the pattern being followed in each column. If we look at the first column, we see that the first number (3) is multiplied by 2, and then 3 is added to the answer. Therefore, the answer is ((3 x 2) + 3) = 9. Now, if we look at the second column, the first number (0) is multiplied by 2, and then 3 is added to the answer. Therefore, the answer is ((0 x 2) + 3) = 3. Similarly, we can find that the pattern of each column follows the same sequence and hence can be used to find the answer for the missing number. The third column has a missing number and is represented by a question mark. Therefore, we need to apply the pattern used in the third column to find the missing number. We know that the first number (1) is multiplied by 2, and then 3 is added to the answer. Therefore, the answer is ((1 x 2) + 3) = 5. Hence, the missing number in the third column is 6.

Therefore, the answer to the given puzzle is 6. The solution is based on a pattern that is being used in each column of the given numbers. We can apply the same pattern to find the missing number, which is represented by a question mark. The answer to the missing number is calculated by multiplying the first number of each column by 2 and adding 3 to it.

Learn more about puzzle visit:

brainly.com/question/30790276

#SPJ11

Apply the Jacobi method to approximate the solution of the following system of linear equations accurate to within 0.02 . Assume 1(0) = (0,0,0)". Use three significant digits with rounding in your calculations. 5.x– 2x2 + 3x3 = -1 - 3x2 + 9x2 + x3 = 2 2x1 - x2 - 7x3 = 3 = =

Answers

The solution is x = (-0.42, 0.42, 0.39) accurate to within 0.02.

The system of linear equations are:

5x₁ – 2x₂ + 3x₃ = -1 3x₂ + 9x₂ + x₃ = 2 2x₁ - x₂ - 7x₃ = 3

To approximate the solution using the Jacobi method, the system can be written in the form of x = Bx + c, where B is the matrix of coefficients and c is the matrix of constants.

This is given by x₁ = (1/5)(2x₂ - 3x₃ - 1)x₂ = (1/9)(-3x₁ - x₃ + 2)x₃ = (1/7)(-2x₁ + x₂ + 3)

At the first iteration:

x₁⁽¹⁾ = (1/5)(2(0) - 3(0) - 1)

= -0.20x₂⁽¹⁾

= (1/9)(-3(0) - (0) + 2)

= 0.22x₃⁽¹⁾

= (1/7)(-2(0) + (0) + 3)

= 0.43

At the second iteration: x₁⁽²⁾ = (1/5)(2(0.22) - 3(0.43) - 1)

= -0.34x₂⁽²⁾

= (1/9)(-3(-0.20) - (0.43) + 2)

= 0.37x₃⁽²⁾

= (1/7)(-2(-0.20) + (0.22) + 3)

= 0.34

At the third iteration:

x₁⁽³⁾ = (1/5)(2(0.37) - 3(0.34) - 1)

= -0.40x₂⁽³⁾

= (1/9)(-3(-0.34) - (0.34) + 2)

= 0.41x₃⁽³⁾

= (1/7)(-2(-0.34) + (0.37) + 3)

= 0.38

At the fourth iteration:

x₁⁽⁴⁾ = (1/5)(2(0.41) - 3(0.38) - 1)

= -0.42x₂⁽⁴⁾ = (1/9)(-3(-0.40) - (0.38) + 2)

= 0.42x₃⁽⁴⁾ = (1/7)(-2(-0.40) + (0.41) + 3)

= 0.39

The Jacobi method can be continued until the desired level of accuracy is reached.

Hence, the solution is x = (-0.42, 0.42, 0.39) accurate to within 0.02.

Know more about linear equations here:

https://brainly.com/question/2030026

#SPJ11

Consider the 2022/00 following Maximize z =3x₁ + 5x₂ Subject to X1 ≤4 2x₂ ≤ 12 3x₁ + 2x₂ ≤ 18, where x₁, x2, ≥ 0, and its associated optimal tableau is (with S₁, S2, S3 are the slack variables corresponding to the constraints 1, 2 and 3 respectively):
Basic Z X1 X2 S1 $2 S3 Solution Variables z-row 1 0 0 0 3/6 1 36
S₁ 0 0 1 1/3 -1/3 2
x2 0 0 1 0 1/2 0 6
X1 0 1 0 0 -1/3 1/3 2
Using the post-optimal analysis discuss the effect on the optimal solution of the above LP for each of the following changes. Further, only determine the action needed (write the action required) to obtain the new optimal solution for each of the cases when the following modifications are proposed in the above LP
(a) Change the R.H.S vector b=(4, 12, 18) to b'= (1,5, 34) T.|
(b) Change the R.H.S vector b=(4, 12, 18) to b'= (15,4,5) 7. [12M] LP 0 0 0 3/2

Answers

By carrying out these actions, we can determine the new optimal solution for each case by adjusting the RHS values and updating the tableau accordingly.

(a) When the RHS vector b is changed to b' = (1, 5, 34), we need to perform the following actions to obtain the new optimal solution:

- Update the RHS values in the constraint equations to (1, 5, 34).

- Recalculate the values in the optimal tableau based on the new RHS values.

- Perform any necessary pivots or row operations to bring the tableau to its optimal state with the new RHS values.

(b) When the RHS vector b is changed to b' = (15, 4, 5), we need to perform the following actions to obtain the new optimal solution:

- Update the RHS values in the constraint equations to (15, 4, 5).

- Recalculate the values in the optimal tableau based on the new RHS values.

- Perform any necessary pivots or row operations to bring the tableau to its optimal state with the new RHS values.

By carrying out these actions, we can determine the new optimal solution for each case by adjusting the RHS values and updating the tableau accordingly.

Learn more about optimal tableau here: brainly.com/question/31473059

#SPJ11

A car accelerates from rest along a straight road for 5 seconds. At time 1 seconds, its acceleration, a m s ², is given by a = (a) By integrating, find an expression for the velocity of the car at time 1. (3) (b) Find the velocity of the car at the end of the 5 second period. (2) (c) Find the distance travelled by the car during the 5 second period.

Answers

(a) The expression for the velocity of the car at time 1 is v = a t.

When a car accelerates from rest, its initial velocity is zero. The acceleration of the car at time 1 is given as a. To find the velocity of the car at time 1, we can use the formula v = u + a t, where v is the final velocity, u is the initial velocity (which is zero in this case), a is the acceleration, and t is the time.

Since the car starts from rest, its initial velocity u is zero, so the formula simplifies to v = a t. Substituting the given value of a at time 1, we get the expression for the velocity of the car at time 1 as v = a.

(b) To find the velocity of the car at the end of the 5-second period, we need to integrate the expression for acceleration with respect to time. Since the acceleration is given as a constant, we can simply multiply it by the time interval. Thus, the velocity at the end of the 5-second period is v = a * 5.

(c) To find the distance traveled by the car during the 5-second period, we need to integrate the expression for velocity with respect to time. Since the velocity is constant (as it does not change with time), we can multiply it by the time interval. Therefore, the distance traveled by the car during the 5-second period is given by d = v * 5.

Learn more about velocity

brainly.com/question/17127206

#SPJ11

A manufacturer's marginal-cost function is dc/ dq=0.4q+9. If c is in dollars, determine the cost involved to increase production from 70 to 80 units. The cost involved to increase production from 70 to 80 units is $.....
(Type an integer or a simplified fraction.)

Answers

The cost involved to increase production from 70 to 80 units can be determined by finding the total cost over this interval.We need to integrate this function with respect to q from 70 to 80.

The resulting integral will give us the cost involved in producing the additional 10 units.The marginal-cost function dc/dq represents the rate at which the cost (c) changes with respect to the quantity produced (q). To find the cost involved in increasing production from 70 to 80 units, we integrate the marginal-cost function over this interval.

Integrating the marginal-cost function, we have:

∫(dc/dq) dq = ∫(0.4q + 9) dq

Integrating 0.4q with respect to q gives 0.2q^2, and integrating 9 with respect to q gives 9q. Therefore, the integral becomes:

0.2q^2 + 9q + C

To find the cost involved in increasing production from 70 to 80 units, we evaluate this expression at q = 80 and q = 70, and subtract the two values:

Cost involved = (0.2(80)^2 + 9(80)) - (0.2(70)^2 + 9(70))

Simplifying this expression gives us the cost involved in increasing production from 70 to 80 units.

To learn more about integrate click here :  brainly.com/question/30333196

#SPJ11

The cost of producing 6000 face masks is $25,600 and the cost of producing 6500 face masks is $25.775. Use this information to create a function C (a) that represents the cost in dollars a company spends to manufacture x thousand face masks during a month. The linear equation is: C (x) = ____________
The vertical intercept for this graph is at the point ____________ (type a point) and represents a cost of $ ___________when a quantity of _________face masks are produced. The rate of change for C(a) is __________and means the cost is Based on this model, C(11) = ________ which means that when a quantity of ____________ face marks are produced, there is a cost of $ _________
Solving C (a)= 90, 700 shows x = ___________ which represents that for a cost of $. you can produce _____ face masks The appropriate domain of this function is ________ (interval notation- use INF for infinity if needed).

Answers

The cost of producing 6000 face masks is $25,600, and the cost of producing 6500 face masks is $25,775. We can use this information to find the slope of the line that represents the cost of producing face masks. The slope is the change in cost divided by the change in the number of face masks produced:
slope = (25775 - 25600) / (6500 - 6000) = 3.5

The vertical intercept for this graph is at the point (0, 200) and represents a cost of $200 when a quantity of 0 face masks are produced. The rate of change for C(a) is 3.5 and means the cost is increasing by $3.50 for every additional thousand face masks produced.

The linear equation for C(x) is C(x) = 3.5x + 200.

Based on this model, C(11) = 3.5(11) + 200 = 238.5, which means that when a quantity of 11,000 face masks are produced, there is a cost of $238.50.

Solving C(x) = 90,700 shows x = 25.5, which represents that for a cost of $90,700, you can produce 25,500 face masks.

The appropriate domain of this function is (0, INF) (interval notation- use INF for infinity if needed).

State whether the data described below are discrete or continuous, and explain why. The durations of a chemical reaction, repeated several times Choose the correct answer below. A. The data are continuous because the data can take on any value in an interval. B. The data are continuous because the data can only take on specific values. C. The data are discrete because the data can take on any value in an interval. D. The data are discrete because the data can only take on specific values.

Answers

D. The data are discrete because the durations of a chemical reaction, repeated several times, can only take on specific values.

Discrete data refers to values that can only take on specific, separate values, usually in the form of integers or whole numbers. In the case of the durations of a chemical reaction, the measurements will typically be recorded as specific time intervals or counts (e.g., seconds, minutes, or hours). It is not possible to have intermediate values between these specific measurements.

On the other hand, continuous data can take on any value within a given range or interval. For example, measurements such as temperature or height can have any decimal value within a specified range.

Since the durations of a chemical reaction can only take on specific values, the data is considered discrete.

To know more about continuous data, visit:

https://brainly.com/question/17372957

#SPJ11

The durations of a chemical reaction, repeated several times are continuous data because the data can take on any value in an interval. Continuous data is a type of quantitative data that takes any value in a given range.

It can take on decimal places between two points and is usually represented on a line graph.Continuous data can be measured with a scale and is not limited to any specific values. The weight of a person is an example of continuous data as a person can weigh anything from 35.1 kg to 75.3 kg. The temperature of a room or the speed of a vehicle are other examples of continuous data.The durations of a chemical reaction can take on any value in an interval and are therefore classified as continuous data. This is because a chemical reaction can last for any amount of time between the beginning and the end of the reaction. For instance, a chemical reaction may last 2.5 seconds or 3.6 seconds.

To know more about range, visit:

https://brainly.com/question/29204101

#SPJ11

Distance between Planes Task: Find the distance between the given parallel planes. P1: x - 4y + 6z = 15 P2: -4x+16y - 24z = 4 122= 2-4, 16, -24> n1 = (1, -4,6> Let y=0 and 2 = 0 36=15 (15,0,0) = 2-1,4, -67 d = -4

Answers

The distance between the given parallel planes P1 and P2 is -4.

To find the distance between two parallel planes, we can consider a point on one plane and calculate the perpendicular distance from that point to the other plane.

Let's choose a point (15, 0, 0) on plane P1. We can find a normal vector to P2, denoted as n2, by looking at the coefficients of x, y, and z in the equation of P2. Here, n2 = (-4, 16, -24)

Next, we calculate the dot product of the normal vector n2 with the vector connecting a point on P2 to the point (15, 0, 0) on P1. This vector is given by (-1, 4, -6) since we subtract the coordinates of a point on P1 (15, 0, 0) from the coordinates of a point on P2 (2, 0, 0).

The distance between the planes P1 and P2 is then given by the absolute value of the dot product divided by the magnitude of the normal vector n2.

|(-1, 4, -6) · (-4, 16, -24)| / ||(-4, 16, -24)|| = |-4| / √((-4)^2 + 16^2 + (-24)^2) = 4 / √(16 + 256 + 576) = 4 / √(848) = 4 / 29 ≈ -0.138.

Therefore, the distance between the planes P1 and P2 is approximately -0.138 (or -4, rounded to the nearest whole number).

Learn more about parallel planes here: brainly.com/question/14613818

#SPJ11

the number of children living in each of a large number of randomly selected households is an example of which data type?

Answers

The number of children living in each of a large number of randomly selected households is an example of discrete data.

What is the data type?

We have to note that we can be able to count the number of children that we have on the streets and we can know the actual number of the children based on the counting.

Distinct, independent values or categories that can be counted and are often whole integers make up discrete data. There can be no fractions or decimals in the count of children in each family; it must only be a whole number (e.g., 0, 1, 2, 3, etc.). As a result, it belongs to the discrete data category.

Learn more about discrete data type:https://brainly.com/question/31938981

#SPJ4

10. A marketing survey of 1000 car commuters found that 600 answered yes to listening to the news, 500 answered yes to listening to music, and 300 answered yes to listening to both. Let: N = set of commuters in the sample who listen to news M = set of commuters in the sample who listen to music Find the following: n(NM) n(NOM) n((NM)')

Answers

A marketing survey of 1000 car commuters found that 600 answered yes to listening to the news, n(NM) = 300, n(NOM) = 800 and n((NM)') = 200.

500 answered yes to listening to music, and 300 answered yes to listening to both.

Notations:

N = set of commuters in the sample who listen to news.

M = set of commuters in the sample who listen to music.

Now, we have to find the following:n(NM) means the number of people who listen to news and music both.

Number of people who listen to both news and music is 300.

n(NM) = 300n(NOM) means the number of people who listen to news or music or both.

Number of people who listen to either news or music or both is given by the sum of people who listen to news and people who listen to music and then subtract the people who listen to both.

n(NOM) = n(N∪M) = n(N) + n(M) - n(NM)n(NOM) = 600 + 500 - 300n(NOM) = 800n((NM)') means the number of people who don't listen to both news and music.

The number of people who don't listen to both news and music is given by the number of people who listen to news or music or both subtracted from the total number of people surveyed.

n((NM)') = 1000 - n(NOM)n((NM)') = 1000 - 800n((NM)') = 200

Therefore, n(NM) = 300, n(NOM) = 800 and n((NM)') = 200.

To know more about marketing survey, visit:

https://brainly.com/question/15105766

#SPJ11

Compute, by hand, the currents i1, i2 and i3 for the following system of equation using Cramer Rule.

61 − 22 − 43 = 16

−21 + 102 − 83 = −40

−41 − 82 + 183 = 0

Answers

By applying Cramer's Rule to the given system of equations, the currents i1, i2, and i3 can be computed. The calculations involve determinants and substitution, resulting in the determination of the current values.

Cramer's Rule is a method used to solve systems of linear equations by expressing the solution in terms of determinants. In this case, we have three equations:

61i1 - 22i2 - 43i3 = 16

-21i1 + 102i2 - 83i3 = -40

-41i1 - 82i2 + 183i3 = 0

To find the values of i1, i2, and i3, we first need to calculate the determinant of the coefficient matrix, D. D can be computed by taking the determinant of the 3x3 matrix containing the coefficients of the variables:

D = |61 -22 -43|

|-21 102 -83|

|-41 -82 183|

Next, we calculate the determinants of the matrices obtained by replacing the first, second, and third columns of the coefficient matrix with the values from the right-hand side of the equations. Let's call these determinants Dx, Dy, and Dz, respectively.

Dx = |16 -22 -43|

|-40 102 -83|

|0 -82 183|

Dy = |61 16 -43|

|-21 -40 -83|

|-41 0 183|

Dz = |61 -22 16|

|-21 102 -40|

|-41 -82 0 |

Finally, we can determine the currents i1, i2, and i3 by dividing the determinants Dx, Dy, and Dz by the determinant D:

i1 = Dx / D

i2 = Dy / D

i3 = Dz / D

By evaluating these determinants and performing the division, we can find the values of i1, i2, and i3, which will provide the currents in the given system of equations.

Learn more about cramer rule here:

https://brainly.com/question/12682009

#SPJ11

Let U be a universal set, and suppose A and B are subsets of U. (a) How are (z € A→ € B) and (zB → (b) Show that AC B if and only if B C Aº. A) logically related? Why?

Answers

a)  the logical relationship between the two expressions is that A is a subset of B, and B is a subset of A. is known as the concept of mutual inclusion, where both sets contain each other's elements. b)  If AC B, then B C Aº, If B C Aº, then AC B. c) By proving both implications, we establish the equivalence between AC B and B C Aº, meaning they are logically related and have the same meaning.

The relationship between  (z € A→ € B) and (zB

(a) The expressions (z € A → z € B) and (z € B → z € A) are logically related because they represent the implications between the subsets A and B.

The expression (z € A → z € B) can be read as "For every element z in A, it is also in B." This means that if an element belongs to A, it must also belong to B.

Similarly, the expression (z € B → z € A) can be read as "For every element z in B, it is also in A." This means that if an element belongs to B, it must also belong to A.

In other words, the logical relationship between the two expressions is that A is a subset of B, and B is a subset of A. This is known as the concept of mutual inclusion, where both sets contain each other's elements.

(b) To show that AC B if and only if B C Aº, we need to prove two implications:

1. If AC B, then B C Aº:

  This means that every element in A is also in B. If that is the case, it implies that there are no elements in B that are not in A. Therefore, B is a subset of the complement of A, denoted as Aº.

2. If B C Aº, then AC B:

  This means that every element in B is also in Aº, the complement of A. In other words, there are no elements in B that are not in Aº. If that is the case, it implies that every element in A is also in B. Therefore, A is a subset of B.

By proving both implications, we establish the equivalence between AC B and B C Aº, meaning they are logically related and have the same meaning.

Learn more about set theory at https://brainly.com/question/13458417

#SPJ4

Assume that company A makes 75% of all electrocardiograph machines in the market, company B makes 20% of them, and company C makes the other 5%. The electrocardiographs machines made by company A have a 4% rate of defects, the company B machines have a 5% rate of defects, while the company C machines have a 8% rate of defects. (a) If a randomly selected electrocardiograph machine is tested and is found to be defective. Find the probability that it was made by company A. uppose we randomly select one electrocardiograph machine from the market. Find the pro ability that it was made by company A and it is not defective.

Answers

Given the market share and defect rates of three companies manufacturing electrocardiograph machines, we can calculate the probability of a randomly selected defective machine being made by company A. Additionally, we can determine the probability of selecting a non-defective machine made by company A from the market.

(a) To find the probability that a defective machine was made by company A, we can use Bayes' theorem. Let D represent the event of selecting a defective machine and A represent the event of the machine being made by company A. The probability can be calculated as follows: P(A|D) = (P(D|A) * P(A)) / P(D), where P(D|A) is the probability of a machine being defective given that it was made by company A, P(A) is the probability of selecting a machine made by company A, and P(D) is the probability of selecting a defective machine. Substituting the given values, we have: P(A|D) = (0.04 * 0.75) / ((0.04 * 0.75) + (0.05 * 0.20) + (0.08 * 0.05)).

Learn more about probability here : brainly.com/question/32117953

#SPJ11

.The half-life of a radioactive substance is 36.4 years. a. Find the exponential decay model for this substance. b. How long will it take a sample of 1000 grams to decay to 800 grams? c. How much of the sample of 1000 grams will remain after 10 years? a. Find the exponential decay model for this substance. A(t) = A₂ e (Round to the nearest thousandth.)

Answers

The exponential decay model for this substance is A(t) = A₂e^(kt), where k = -0.0190. b. The time required for the sample to decay from 1000 grams to 800 grams is approximately 20.05 years. c. Approximately 668.735 grams of the sample of 1000 grams will remain after 10 years.

The exponential decay model for this substance is A(t) = A₂e^(kt). According to the definition of half-life of a radioactive substance, the amount of radioactive substance decays to half of its initial value in each half-life period.

Let us consider A₀ grams of the substance has decayed to A grams after t years. Therefore, the decay factor is:

A/A₀ = 1/2, since the half-life of the radioactive substance is 36.4 years, we have to calculate the decay constant k as follows:

1/2 = e^(k×36.4)

taking natural logarithms of both sides,

ln 1/2 = k × 36.4 = -0.693k = -0.693/36.4 = -0.0190 (rounded to four decimal places)

The exponential decay model for this substance is given by A(t) = A₂e^(kt).Where A₂ is the final quantity, which is not given in the problem statement and t is the time in years.

b.

Given that A₀ = 1000 grams and A = 800 grams and k = -0.0190.

Using the exponential decay model we have

800 = 1000e^(-0.0190t)

ln (800/1000) = -0.0190t t = ln (0.8)/(-0.0190) ≈ 20.05 years(rounded to the nearest hundredth)

Therefore, the time required for the sample to decay from 1000 grams to 800 grams is approximately 20.05 years.

c.

Given that A₀ = 1000 grams and t = 10 years.

Using the exponential decay model we have A(t) = A₂e^(kt)A(10) = 1000e^(-0.0190×10) ≈ 668.735 (rounded to the nearest thousandth)

Therefore, approximately 668.735 grams of the sample of 1000 grams will remain after 10 years.

In conclusion, the exponential decay model is used to calculate the amount of radioactive substance that decays over a given period of time. For a half-life of a radioactive substance of 36.4 years, the exponential decay model for the substance is A(t) = A₂e^(kt).

To know more about half-life visit:

brainly.com/question/31666695

#SPJ11

Solve for EC, only need answer, not work.

Answers

As per the given image, the length of the hypotenuse (EC) is approximately 13.038 yards.

In a right-angled triangle, we will use the Pythagorean theorem to discover the length of the hypotenuse (EC).

The Pythagorean theorem states that during a right triangle, the square of the duration of the hypotenuse is identical to the sum of the squares of the lengths of the other  facets.

In this case, the bottom is 11 yards (eleven yd) and the height is 7 yards (7 yd).

[tex]EC^2 = base^2 + height^2\\\\EC^2 = 11^2 + 7^2\\\\EC^2 = 121 + 49\\\\EC^2 = 170[/tex]

EC = sqrt(170)

EC = 13.038 yards.

Thus, the EC is 13.038 yards..

For more details regarding Pythagorean theorem, visit:

https://brainly.com/question/14930619

#SPJ1

find the value of the derivative (if it exists) at the indicated extremum. (if an answer does not exist, enter dne.) f(x) = x2 x2 2

Answers

The value of the derivative at the indicated extremum is 0. The given function has maximum extremum at x = 0.

The function is given by;f(x) = x² / (x² + 2)Let us find the derivative of the given function, using the quotient rule;dy/dx = [(x² + 2).(2x) - x².(2x)] / (x² + 2)²= [2x(x² + 2 - x²)] / (x² + 2)²= [2x.2] / (x² + 2)²= 4x / (x² + 2)²

For the given function to have extremum, dy/dx = 0We have,dy/dx = 4x / (x² + 2)² = 0 => 4x = 0=> x = 0At x = 0, the function has extremum.

Let's find what type of extremum the function has.

Second derivative test;d²y/dx² = [(d/dx) {4x / (x² + 2)²}] = [(8x³ - 24x) / (x² + 2)³]Let's find the value of second derivative at x = 0;d²y/dx² = (8*0³ - 24*0) / (0² + 2)³= -3/4

As the value of the second derivative is negative, the function has a maximum at x = 0.Now, let us find the value of the derivative at the indicated extremum.x = 0dy/dx = 4x / (x² + 2)²= 4(0) / (0² + 2)²= 0The value of the derivative at the indicated extremum is 0.

Hence, the main answer is 0. Summary: The value of the derivative at the indicated extremum is 0. The given function has maximum extremum at x = 0.

Learn more about function click here:

https://brainly.com/question/11624077

#SPJ11

Which expression is equivalent to log (AB2/C3) ?
A. log A + log 2B-log 3C
B. log A + 2log B-3log C
C log A-2 log B+ log 3C
D. log A-log 2B + 3log C

Answers

The expression that is equivalent to log (AB2/C3) is log A + 2log B-3log C. Option (B) is the correct option.

Let's solve this question by using the log rule. In order to simplify the given expression: log (AB2/C3) = log (A) + log (B2) - log (C3)

Now, using the power rule of logarithms, we get: log (B2) = 2 log (B)

Substituting the values: log (A) + log (B2) - log (C3) = log (A) + 2 log (B) - 3 log (C)

Thus, option (B) log A + 2log B-3log C is the correct answer.

More on logarithms: https://brainly.com/question/30085872

#SPJ11



JOURNAL
Sam downloads some music. The first song lasts 3 minutes. Use this situation to write
one word problem for each of the following. Give the answer to each of your problems.
a) 4 x 3
b) 2 x 2
c)2+3
d) 3-2

Answers

The answer to each of the problems is as follows: a) 4 x 3 = 12 minutes

b) 2 x 2 = 2 songs

c) 2+3 = 5 songs,

d) 3-2 = 2 minutes

Given Situation: Sam downloads some music. The first song lasts 3 minutes.

Solution:a)  One-word problem for "2+3" can be "How many songs have been downloaded if the first song lasts for 3 minutes and the second song lasts for 2 minutes? "The answer will be: 5 songs

d) One-word problem for "3-2" can be "What is the duration of the second song if the first song lasts for 3 minutes?"

The answer will be: 2 minutes

Therefore, the answer to each of the problems is as follows:

a) 4 x 3 = 12 minutes

b) 2 x 2 = 2 songs

c) 2+3 = 5 songs

d) 3-2 = 2 minutes

To learn more about minutes visit;

https://brainly.com/question/32674197

#SPJ11

The following data shows the weight of a person, in pounds, and the amount of money they spend on eating out in one month. Determine the correlation coefficient (by hand), showing all steps and upload a picture of your work for full marks.

Answers

Given statement solution is :- The correlation coefficient between weight and spending is approximately 0.5.

To calculate the correlation coefficient (also known as the Pearson correlation coefficient), you need to follow these steps:

Calculate the mean (average) of both the weight and spending data.

Calculate the difference between each weight measurement and the mean weight.

Calculate the difference between each spending measurement and the mean spending.

Multiply each weight difference by the corresponding spending difference.

Calculate the square of each weight difference and spending difference.

Sum up all the products from step 4 and divide it by the square root of the product of the sum of squares from step 5 for both weight and spending.

Round the correlation coefficient to an appropriate number of decimal places.

Here's an example using sample data:

Weight (in pounds): 150, 160, 170, 180, 190

Spending (in dollars): 50, 60, 70, 80, 90

Step 1: Calculate the mean

Mean weight = (150 + 160 + 170 + 180 + 190) / 5 = 170

Mean spending = (50 + 60 + 70 + 80 + 90) / 5 = 70

Step 2: Calculate the difference from the mean

Weight differences: -20, -10, 0, 10, 20

Spending differences: -20, -10, 0, 10, 20

Step 3: Multiply the weight differences by the spending differences

Products: (-20)(-20), (-10)(-10), (0)(0), (10)(10), (20)(20) = 400, 100, 0, 100, 400

Step 4: Calculate the sum of the products

Sum of products = 400 + 100 + 0 + 100 + 400 = 1000

Step 5: Calculate the sum of squares for both weight and spending differences

Weight sum of squares: ([tex]-20)^2 + (-10)^2 + 0^2 + 10^2 + 20^2[/tex]= 2000

Spending sum of squares: [tex](-20)^2 + (-10)^2 + 0^2 + 10^2 + 20^2[/tex] = 2000

Step 6: Calculate the correlation coefficient

Correlation coefficient = Sum of products / (sqrt(weight sum of squares) * sqrt(spending sum of squares))

Correlation coefficient = 1000 / (sqrt(2000) * sqrt(2000)) = 1000 / (44.721 * 44.721) ≈ 1000 / 2000 = 0.5

Therefore, the correlation coefficient between weight and spending in this example is approximately 0.5.

For such more questions on correlation coefficient

https://brainly.com/question/29704223

#SPJ8








The lowest and highest value of data is 80 and 121. Suppose you decide to make a frequency table with 7 classes. What is the class width? r a. 6 O b. 4 O c. 5 O d. none

Answers

The class width would be calculated by finding the range of the data and dividing it by the number of classes.

In this case, the range is calculated as the difference between the highest and lowest values: 121 - 80 = 41. Since we want to create 7 classes, we divide the range by 7: 41 / 7 = 5.857. Now, rounding this value to the nearest whole number, we get a class width of 6. In summary, the class width in this frequency table with 7 classes would be 6. Direct answer: Frequency is a measurement of the number of occurrences of a repeating event per unit of time. It represents how often something happens within a given time frame. In physics, frequency is commonly used to describe the number of cycles of a wave that occur in one second, and it is measured in hertz (Hz). The higher the frequency, the more cycles occur per second, indicating a shorter time period for each cycle. Frequency is an essential concept in various fields, including physics, engineering, telecommunications, and music.

Learn more about range here : brainly.com/question/29204101
#SPJ11

A study was run to estimate the proportion of Statsville residents who have degrees in Statistics. A random sample of 200 Statsville residents was found to have 38 with degrees in Statistics. Researchers found a 95% confidence interval of 0.135

Verify that the appropriate normality conditions were met and a good sampling technique was used
Write the appropriate concluding sentence (Note: If the conditions were not met, simply state that the results should not be interpreted.) Show your work: Either type all work below

Answers

The appropriate normality conditions were met and a good sampling technique was used, allowing for interpretation of the results with a 95% confidence interval of 0.135 for the proportion of Statsville residents with degrees in Statistics.

How to verify normality and sampling technique appropriateness?

To verify that the appropriate normality conditions were met and a good sampling technique was used, we need to check if the sample size is sufficiently large and the sample is randomly selected.

First, we check if the sample size is sufficiently large. According to the Central Limit Theorem, for the proportion of successes in a binomial distribution, the sample size should be large enough for the sampling distribution to be approximately normal. In this case, the sample size is 200, which is reasonably large.

Next, we need to ensure that the sample was randomly selected. If the sample is truly random, it helps to ensure that the sample is representative of the population and reduces the likelihood of bias. The information provided states that the sample was a random sample of 200 Statsville residents, indicating that a good sampling technique was used.

Based on the information provided, the appropriate normality conditions were met, and a good sampling technique was used. Therefore, the results can be interpreted with a 95% confidence interval of 0.135 for the proportion of Statsville residents with degrees in Statistics.

Learn more about normality

brainly.com/question/31491231

#SPJ11

4. Let X₁, X2, X3 denote a random sample of size n = 3 from a distribution with the Poisson pmf f(x)==-e-5, x = 0, 1, 2, 3, ....
(a) Compute P(X₁ + X₂ + X3 = 1).
(b) Find the moment-generating function of Z = X1 + X2 + X3 ussing the possion mgf of X1. Than name the distribution of Z
(c) find of the probability P(X1 + X2 + X3 = 10) using the result of (b)
(d) if Y = Max {X1, X2, X3} find the probability P (Y<3)

Answers

The probability of X₁ + X₂ + X₃ equaling 1, given a random sample of size 3 from a Poisson distribution with a parameter of λ = 5, is 11e^(-5).

To compute P(X₁ + X₂ + X₃ = 1), we consider all possible combinations of X₁, X₂, and X₃ that satisfy the equation. Using the Poisson pmf with λ = 5, we calculate the probabilities for each combination. The probabilities are: P(X₁ = 0, X₂ = 0, X₃ = 1) = e^(-5), P(X₁ = 0, X₂ = 1, X₃ = 0) = 5e^(-5), and P(X₁ = 1, X₂ = 0, X₃ = 0) = 5e^(-5). Summing these probabilities, we obtain P(X₁ + X₂ + X₃ = 1) = 11e^(-5). Probability is a branch of mathematics that deals with quantifying uncertainty or the likelihood of events occurring. It provides a way to measure the chance or probability of an event happening based on certain conditions or information.

Learn more about probability here : brainly.com/question/31828911
#SPJ11

Question 1 Solve the following differential equation by using the Method of Undetermined Coefficients. y"-16y=6x+ex. (15 Marks) Question 2 Population growth stated that the rate of change of the population, P at time, I is proportional to the existing population. This situation is represented as the following differential equation dP dt = kP. where k is a constant. (a) By separating the variables, solve the above differential equation to find P(t). (5 Marks) (b) Based on the solution in (a), solve the given problem: The population of immigrant in Country C is growing at a rate that is proportional to its population in the country. Data of the immigrant population of the country was recorded as shown Table 1.

Answers

The differential equation dP/dt = kP, solved by separating variables, gives the population growth equation P = Ce^(kt).


The solution to the differential equation dP/dt = kP is P = Ce^(kt), where P represents the population at time t, k is a constant, and C is the constant of integration. This exponential growth equation implies that the population size increases exponentially over time.

The constant k determines the rate of growth, with positive values indicating population growth and negative values indicating population decay. The constant C represents the initial population size at time t = 0.

By substituting appropriate values for k and C based on the given problem and the recorded data in Table 1, the solution P = Ce^(kt) can be used to predict the future population of immigrants in Country C.


Learn more about Differential equation click here :brainly.com/question/14620493

#SPJ11

answer below. A. 1.8, 3.5, 4.6.7.9, 8.1, 9.4, 9.6, 9.9, 10.1, 102, 10.9, 11.2, 11.3, 11.9, 13.5, 142, 14.3, 16.6, 17.1, 26.3, 32.3, 32.8, 71.7. 92.9. 114.8, 1272 OB. 1.8, 3.5, 4.6, 8.1,7.9, 9.4, 9.6, 32.3, 10:2, 10.1, 9.9, 11.3, 11.9, 11.2, 13.5, 14.3, 16.6.71.7, 10.9,26.3, 17.1. 114.8, 32.8, 92.9, 114.8. 1272 OC. 127.2, 114.8.92.9.71.7.32.8, 32.3, 26.3, 17.1. 16.6, 14.3, 142, 13.5, 11.9, 11.3, 11.2, 10.9, 10.2. 10.1, 9.9, 9.6, 9.4, 8.1,7.9.4.6. 3.5, 1.8 D. 1.8.3.5, 4.6, 7.9, 8.1, 9.4, 9.6, 32.3, 102, 10.1.9.9.11.3, 11.9, 112, 13.5, 142, 14.3, 16.6, 17.1, 26.3, 323, 114.8, 32.8, 92.9, 1148, 1272, 1272 0 1 b. Construct a stem-and-leaf display. Round the data to the nearest milligram per ounce and complete the stem-and-leaf display on the right, where the stem values are the digits above the units place of the rounded values and the leaf values are the digits in the units place of the rounded values. Rounded values with no digits above the units place will have a stem of O. For example, the value of 1.0 would correspond to 01. (Use ascending order.) 2 3 4 5 6 7 8 9 10 11 12 DO

Answers

Given data are as follows: A. 1.8, 3.5, 4.6.7.9, 8.1, 9.4, 9.6, 9.9, 10.1, 102, 10.9, 11.2, 11.3, 11.9, 13.5, 142, 14.3, 16.6, 17.1, 26.3, 32.3, 32.8, 71.7. 92.9. 114.8, 1272OB. 1.8, 3.5, 4.6, 8.1,7.9, 9.4, 9.6, 32.3, 10:2, 10.1, 9.9, 11.3, 11.9, 11.2, 13.5, 14.3, 16.6.71.7, 10.9,26.3, 17.1. 114.8, 32.8, 92.9, 114.8. 1272OC. 127.2, 114.8.92.9.71.7.32.8, 32.3, 26.3, 17.1. 16.6, 14.3, 142, 13.5, 11.9, 11.3, 11.2, 10.9, 10.2. 10.1, 9.9, 9.6, 9.4, 8.1,7.9.4.6. 3.5, 1.8D. 1.8.3.5, 4.6, 7.9, 8.1, 9.4, 9.6, 32.3, 102, 10.1.9.9.11.3, 11.9, 112, 13.5, 142, 14.3, 16.6, 17.1, 26.3, 323, 114.8, 32.8, 92.9, 1148, 1272, 1272.

To construct a stem-and-leaf display, the given data is rounded off to the nearest milligram per ounce and the stem-and-leaf display is created. The stem values are the digits above the units place of the rounded values and the leaf values are the digits in the units place of the rounded values.

Rounded values with no digits above the units place will have a stem of 0. For example, the value of 1.0 would correspond to 01. (Use ascending order.)Stem-and-leaf display is as follows:  | Stem | Leaf|  1  |  8 |  |  |  |  3  |  5 | 6 |  |  |  4  |  6 |  |  |  7  |  9 |  |  |  8  |  1 |  |  |  9  |  4 | 6 9 |  6 |  |  9  |  9 |  | 10 |  1 | 2 9 |  9 |  | 11 |  2 | 3 9 |  3 | 5 9 9 |  6 |  | 10 |  1 |  |  9  |  9 |  | 11 |  3 | 2 |  9  |  2 | 4 9 |  9 | 6 | 11 |  9 |  | 12 |  7 | 2 | 13 |  5 |  | 14 |  2 | 3 3 |  5 |  | 16 |  6 | 6 | 17 |  1 |  | 26 |  3 | 3 8 |  2 |  | 32 |  3 | 8 | 71 |  7 |  | 92 |  9 |  |114 |  8 |  |127 |  2 | 2 2There are four stem-and-leaf display options given. Hence, option B is the correct one.

Learn more about stem-and-leaf display at https://brainly.com/question/31215322

#SPJ11

Solve the following equation using the Frobenius method: xy′+2y′+xy=0

and give the solution in closed form.
Frobenius Differential Equation:

Consider a second-order differential equation of the type y′′+P(x)y′+Q(x)y=0

If r1 and r2
be real roots with r1≥r2 of the equation r(r−1)+p0r+q0=0 then, there exists a series solution of the type y1(x)=xr1[infinity]∑n=0anxn

of the given differential equation.

By substituting this solution in the given differential equation, we can find the values of the coefficients.

Also, we know,

ex=(1+x+x22!+x33!+x44!+....................)

Putting x as ix
and then comparing with cosx+isinx

, we get

cosx=1−x22!+x44!−x66!+.....................[infinity]sinx=x−x33!+x55!−x77!+.....................[infinity]

Answers

Main answer: The general solution of the given differential equation using the Frobenius method is y(x) = c₁x²(1-x²) + c₂x².

Supporting explanation: Given differential equation is xy′ + 2y′ + xy = 0 We can write the equation as, x(y′ + y/x) + 2y′ = 0 Dividing by x, we get (y′ + y/x) + 2y′/x = 0Let y = x² ∑(n=0)ⁿ aₙxⁿ Substituting this into the differential equation, we get: x[2a₀ + 6a₁x + 12a₂x² + 20a₃x³ + ..........] + 2[a₀ + a₁x + a₂x² + ..........] + x[x² ∑(n=0)ⁿ aₙxⁿ](x = 0)So, a₀ = 0 and a₁ = -1. Then the recurrence relation is given as:(n+2)(n+1) aₙ₊₂ = -aₙ Solving this recurrence relation, we get the series as, a₂ = a₄ = a₆ = .......... = 0a₃ = -1/4a₅ = -1/4.3.2 = -1/24a₇ = -1/24.5.4 = -1/240a₉ = -1/240.7.6 = -1/5040∑(n=0)ⁿ aₙxⁿ = -x²/4 [1 - x²/3! + x⁴/5! - ........] + x²c₂On simplifying the equation, we get y(x) = c₁x²(1-x²) + c₂x².

Know more about Frobenius method here:

https://brainly.com/question/31236446

#SPJ11

Assume you are using a significance level of a 0.05) to test the claim that < 13 and that your sample is a random sample of 41 values. Find the probability of making a type II error (failing to reject a false null hypothesis), given that the population actually has a normal distribution with μ-8 and 7J B = |

Answers

The probability of making a type II error, failing to reject a false null hypothesis, is influenced by the specific alternative hypothesis being tested. In this case, when testing the claim that the population mean is less than 13, given a random sample of 41 values from a normally distributed population with a mean of μ = 8 and standard deviation σ = 7, the probability of a type II error can be calculated.

To calculate the probability of a type II error, we need to determine the specific alternative hypothesis and the corresponding critical value. Since we are testing the claim that the population mean is less than 13, the alternative hypothesis can be expressed as H₁: μ < 13.

Next, we need to find the critical value corresponding to the significance level (α) of 0.05. Since this is a one-tailed test with the alternative hypothesis indicating a left-tailed distribution, we can find the critical value using a z-table or calculator. With a significance level of 0.05, the critical z-value is approximately -1.645.

Using the given values, we can calculate the z-score for the critical value of -1.645 and find the corresponding cumulative probability from the z-table or calculator. This probability represents the probability of observing a value less than 13 when the population mean is actually 8.

To learn more about probability click here: brainly.com/question/31828911  

#SPJ11

the vector field \mathbf f(x,y) = \langle 1 y, 1 x\ranglef(x,y)=⟨1 y,1 x⟩ is the gradient of f(x,y)f(x,y). compute f(1,2) - f(0,1)f(1,2)−f(0,1).

Answers

Given that the vector field f(x, y) = <1 y, 1 x> is the gradient of f(x, y). We found f(x, y) = 1/2 y^2 + 1/2 xy^2 + 1/2 x^2 + C.Using this we computed f(1,2) - f(0,1) as 5/2 - C.

So, the function f(x, y) is given as follows:f(x, y) = ∫<1 y, 1 x> · d<(x, y)>Integrating with respect to x gives:f(x, y) = ∫<1 y, 0> · d<(x, y)> + C(y)

Since the partial derivative of f(x, y) with respect to x is 1 y and the partial derivative of f(x, y) with respect to y is 1 x. So we have the following set of equations:∂f/∂x = 1 y ...............(1)∂f/∂y = 1 x ...............(2)

Taking the partial derivative of equation (1) with respect to y and that of equation (2) with respect to x, we get:∂^2f/∂x∂y = 1 = ∂^2f/∂y∂xHence, by Clairaut's theorem, the function f(x, y) is a scalar function.Now, we will find f(x, y).

To find f(x, y), we need to integrate equation (1) with respect to x:f(x, y) = 1/2 y^2 + g(y)Differentiating f(x, y) with respect to y and comparing it with equation (2), we get:g′(y) = xg(y) = 1/2 xy^2 + h(x)Thus,f(x, y) = 1/2 y^2 + 1/2 xy^2 + h(x)Therefore, the main answer is:f(x, y) = 1/2 y^2 + 1/2 xy^2 + h(x)Now, we have to find f(1,2) - f(0,1).For this, we need to know the value of h(x).Since f(x, y) is given as the gradient of some scalar function, it follows that the curl of f(x, y) is 0.Therefore, we have:∂f_2/∂x = ∂f_1/∂ySolving this equation, we get:h(x) = 1/2 x^2 + C, where C is a constant of integration.Therefore,f(x, y) = 1/2 y^2 + 1/2 xy^2 + 1/2 x^2 + CNow,f(1,2) = 1/2 (2)^2 + 1/2 (1)(2)^2 + 1/2 (1)^2 + C= 3 + CAnd,f(0,1) = 1/2 (1)^2 + 1/2 (0)(1)^2 + 1/2 (0)^2 + C= 1/2 + CTherefore,f(1,2) - f(0,1) = (3 + C) - (1/2 + C)= 5/2 - CThus, the required answer is 5/2 - C.

Summary: Given that the vector field f(x, y) = <1 y, 1 x> is the gradient of f(x, y). We found f(x, y) = 1/2 y^2 + 1/2 xy^2 + 1/2 x^2 + C.Using this we computed f(1,2) - f(0,1) as 5/2 - C.

Learn more about Clairaut's theorem click here:

https://brainly.com/question/13513921

#SPJ11

Suppose that the price-demand and the price-supply equations are given respectively by the following: p= D(x) = 50 - 0.24x, p = S(x) = 14 +0.00122²
(a) Determine the equilibrium price p and the equilibrium quantity .
(b) Calculate the total savings to buyers who are willing to pay more than the equilibrium price p.
(c) Calculate the total gain to sellers who are willing to supply units less than the equilibrium price p.

Answers

To determine the equilibrium price and quantity, we need to find the point where the demand and supply curves intersect. We can do this by setting the price equations equal to each other:

D(x) = S(x)

50 - 0.24x = 14 + 0.00122x²

Now, let's solve this equation to find the equilibrium quantity (x) and price (p).

(a) Solving for equilibrium quantity and price:

50 - 0.24x = 14 + 0.00122x²

Rearranging the equation:

0.00122x² + 0.24x - 36 = 0

This is a quadratic equation. We can solve it by factoring, completing the square, or using the quadratic formula. Let's use the quadratic formula:

x = (-b ± √(b² - 4ac)) / 2a

In this case, a = 0.00122, b = 0.24, and c = -36. Plugging in these values:

x = (-0.24 ± √(0.24² - 4 * 0.00122 * -36)) / (2 * 0.00122)

Calculating the value inside the square root:

√(0.24² - 4 * 0.00122 * -36) ≈ 28.102

Substituting this value back into the equation:

x = (-0.24 ± 28.102) / 0.00244

We have two solutions for x:

x₁ = (-0.24 + 28.102) / 0.00244 ≈ 11632.79

x₂ = (-0.24 - 28.102) / 0.00244 ≈ -9723.19

Since quantity cannot be negative in this context, we discard x₂ = -9723.19.

Now, let's calculate the equilibrium price (p) by substituting the value of x into either the demand or supply equation:

p = D(x) = 50 - 0.24x

p = 50 - 0.24 * 11632.79 ≈ $-2776.90

However, a negative price doesn't make sense in this context, so we discard this result.

Therefore, we only have one valid solution:

Equilibrium quantity: x = 11632.79

Equilibrium price: p = D(x) = 50 - 0.24 * 11632.79 ≈ $-2776.90 (discarded)

(b) To calculate the total savings to buyers willing to pay more than the equilibrium price, we need to find the area between the demand curve and the equilibrium price line. However, since we don't have a valid equilibrium price in this case, we cannot calculate this value.

(c) Similarly, since we don't have a valid equilibrium price, we cannot calculate the total gain to sellers willing to supply units less than the equilibrium price.

To learn more about quadratic equation visit:

brainly.com/question/29269455

#SPJ11

. Ella recently took two test—a math and a Spanish test. The math test had an average of 55 and a standard deviation of 5 points. The Spanish test had an average of 82 points and standard deviation of 7. Ella scores a 66 in math and 95 in Spanish. Compared to the class average, on which test did Ella do better? Explain and justify your answer with numbers.
Subject Ella's score Class average Class standard deviation
Math 66 55 5
Spanish 95 82 7

Answers

In statistics, comparing an individual’s performance to the class average is a very common question. To solve the given problem, we will compare Ella’s math and Spanish scores to the class averages. We will calculate the z-score to compare her performance and see which score was relatively better.

The z-scores for Ella’s test scores.z math =(66 – 55) / 5= 2.2 z Spanish =(95 – 82) / 7= 1.86 Now let’s explain the z-score obtained: For the math test, Ella’s z-score is 2.2 which means that she scored 2.2 standard deviations above the class average. For the Spanish test, Ella’s z-score is 1.86 which means that she scored 1.86 standard deviations above the class average. A positive z-score indicates that Ella performed better than the class average and a negative z-score indicates that she performed worse.Now, let’s compare the z-scores obtained for each test. Since Ella’s z-score for math is higher than her z-score for Spanish, Ella did better on the math test than the Spanish test.

Therefore, we can say that Ella performed better on the math test than on the Spanish test when compared to the class average.

To know more about Standard Deviation visit-

https://brainly.com/question/29115611

#SPJ11

Other Questions
Write the equation x+ex = cos x as three different root finding problems g(x), g(x) and g(x). Rank the functions from fastest to slowest convergence at x = 0.5. Solve the equation using Bisection Method and Regula Falsi (use roots = -0.5 and I) The median weight of a boy whose age is between 0 and 36 months can be approximated by the function w(1)-9.99+1.161-0.00391 +0.0002311 where t is measured in months and wis measured in pounds. Use this approximation to find the following for a boy with median weight in parts a) and b) below a) The weight of the baby at age 13 months. The approximate weight of the baby at age 13 months is tbs (Round to two decimal places as needed.) Which of the following is included in logistics?a. Creating teams and increase communication in the companyb. Raw materialC Employees transportationd. Maintaining products 00 Use the limit comparison test to determine if the series converges or diverges. 3n2 +7 15. =1 n3 + 8 0 16. 32 + 6 n5 + 2n + 1 n=1 00 17. 4n2-1 n3 + + 6n + 2 n=1 18. 2n2-7 n4 + 7 + 6 + n=1 provide the product for the following reaction kmno4 naoh h2o h3o Jim observes two small plants in a garden. He records the growth of Plant 1 over several days as shown in the given table. He also determines that the function y = 2 + 2.5x represents the height y (in centimeters) of Plant 2 over x days. Which statement correctly compares the growth of the plants? Plant 2 grows faster than Plant 1.The slope of the table of values is 4.52.510 = 2 Plant 1 grows at a rate of 2 cm per day. The slope of y = 2 + 2.5x is 2.5 Plant 2 grows at a rate of 2.5 cm per day. Plant 2 grows faster. How large is a wolf pack? The following information is from a random sample of winter wolf packs. Winter pack size are given below. Compute the mean, median, and mode for the size of winter wolf packs. (Round your mean to four decimal places.) 3 11 8 6 8 8 3 5 4 14 4 16 5 5 3 9 8 9 mean median mode 3. Did the Covid-19 recession shift the aggregate demand (AD) curve? If so, how? Did the Covid-19 recession shift the aggregate supply (AS) curve? If so, how? Explain your answers. accepted. Question #1 (30 Marks) Amherst Metal Works produces two types of metal lamps. Amherst manufactures 20,000 basic lamps and 5,000 designer lamps. Its activity-based costing system uses two indirect-cost pools. One cost pool is for setup costs and the other for general manufacturing overhead. Amherst allocates setup costs to the twolamps based on setup labour-hours and general manufacturing overhead costs on the basis of directmanufacturing labour-hours. It provides the following budgeted cost information. Basic Designer Total Direct materials per lamp $ 85 Direct manufacturing labour hours per lamp 0.5 hours 0.6 hours $ 20 $ Direct manufacturing labour rate per hour Set up costs 114,000 Lamps produced perbatch 250 50 Setup-hours per batch 1 hour 3 hours General manufacturing overhead costs 130,000 Required:Calculate the total budgeted costs of the basic and designer lamps using Amherst's activity- based costing system. 1. What is the budgeted setup rate per hour? (3 marks) 2. What is the overhead rate for genera manufacturing overhead? (3 marks) 3. Nowcalculate the budgeted direct costs of basic and designer lamps if Amherst allocates overhead costs in each department using activity based costing. Then complete the indirect allocation of costs for the basic and designer lamps. Lastly, in each case calculate the totals for both types of lamps combined. (24 marks) 15 20 Assuming that the equations define x and y implicitly as differentiable functions x = f(t), y = g(t), find the slope of the curve x = f(t), y = g(t) at the given value of t. x=t+ty+2t = 2x+t Given the following market equations: Supply: Qs = -1+1p Demand: Qd = 70 - 2p Solve for the equilibrium price = $ How would MMM use the BCG portfolio analysis to assesstheir product / business strategy? Hello,Please find the distance d between P1 and P2.Thanks- P = (3, 4); P = (5, 4) 2 . P = (7, 3); P = (4,0) P = (5, 2); P2 = (6, 1) . P = (0. 2, 0. 3); P = (2. 3, 1. 1) P = (a, b); P = (0, 0) For Gundy Company, units to be produced are 6,200 in quarter 1 and 8,680 in quarter 2. It takes 1.6 hours to make a finished unit, and the expected hourly wage rate is $16 per hour. Prepare a direct labor budget by quarters for the 6 months ending June 30, 2022. A. Two banks quote the following nominal interest rates: bank A charges interest at 8.08% per annum compounded semi-annually and bank B charges 8.75% per annum compounded quarterly. Calculate the APR to show which bank charges the most interest. (2 marks) B. Suppose you have 50 000 to invest: I. If interest rate is 5.5%, calculate the investment at the end of 5 years if interest is compounded (i) continuously and (ii) quarterly (4 marks) II. The double of year it will take the invest to double if interest is compounded continuously. (2 marks) "NOTE: I'm confused if this question has severalanswers within the options provided!!Which of the following sets is orthogonal? A) {(4,2,0), (0, 0, 1), (1, -2,0)} B) {(4, 3, 1), (0, 1, -1), (1, 1, -1)} C) {(-1,3,0), (0, 0, -1), (1, 1, 0), (3, 3, -2)} D) {(1,2,3), (2, 4, -1)} E) {(-1, 3, 0), (0, 0, -1), (1, 1, 0)} Find Tan A and Tan B. write each answer as a fraction and as a decimal rounded into four places. Determine the oxidation number of sulfur in each of the following substances:barium sulfate, BaSO4 State the disruption features of Blockchain technology to thetraditional finance. What is Defi and how it would affect financialmarkets? What is NTF and what do you think" Kansas Company uses a standard cost accounting system. In 2017, the company produced 28,000 units. Each unit took several pounds of direct materials and 1.6 standard hours of direct labor at a standard hourly rate of $12.00. Normal capacity was 50,000 direct labor hours. During the year, 117,000 pounds of raw materials were purchased at $0.92 per pound. All materials purchased were used during the year. Instructions (a) If the materials price variance was $3,510 favorable, what was the standard materials price per pound? (b) If the materials quantity variance was $4,750 unfavorable, what was the standard materials quantity per unit? (c) What were the standard hours allowed for the units produced? (d) If the labor quantity variance was $7,200 unfavorable, what were the actual direct labor hours worked? (e) the labor price variance was $9,080 favorable, what was the actual rate per hour? (f) If total budgeted manufacturing overhead was $360,000 at normal capacity, what was the predetermined overhead rate? (g) What was the standard cost per unit of product? (h) How much overhead was applied to production during the year? (i) Using one or more answers above, what were the total costs assigned to work in process?