Score on last try: 0 of 1 pts. See Details for more. You can retry this question below A test was given to a group of students. The grades and gender are summarized below If one student is chosen at random from those who took the test, Find the probability that the student got a ' C ' GIVEN they are female.

Answers

Answer 1

To find the probability that a randomly chosen student who took the test is female and got a 'C,' we need to consider the number of female students who got a 'C' and divide it by the total number of female students.

Let's assume there were 100 students who took the test, and out of them, 60 were females. Additionally, let's say that 20 students, including both males and females, received a 'C' grade. Out of these 20 students, 10 were females.

To calculate the probability, we divide the number of females who got a 'C' (10) by the total number of females (60). So the probability of a student being female and getting a 'C' is:

Probability = Number of females who got a 'C' / Total number of females

           = 10 / 60

           = 1/6

           ≈ 0.167 (rounded to three decimal places)

Therefore, the probability that a randomly chosen student who took the test is female and got a 'C' is approximately 0.167, or 1/6.

In conclusion, the probability of a student getting a 'C' given that they are female is approximately 1/6, based on the given information about the number of female students and the grades they received.

To know more about probability, visit;

https://brainly.com/question/13604758

#SPJ11


Related Questions

f(u)=u^3 and g(x)=u=2x ^4+3
find (f∘g) ′(1)

Answers

We plug in the values for f'(u), g'(x), and g(1): (f ∘ g) ′(1) = f'(5) g'(1) = 3(5)²(8)(5³) = 6000Therefore, (f ∘ g) ′(1) = 6000. Hence, option A) 6000 is the correct answer.

The given functions are: f(u)

= u³ and g(x)

= u

= 2x⁴ + 3. We have to find (f ∘ g) ′(1).Now, let's solve the given problem:First, we find g'(x):g(x)

= 2x⁴ + 3u

= g(x)u

= 2x⁴ + 3g'(x)

= 8x³Now, we find f'(u):f(u)

= u³f'(u)

= 3u²Now, we apply the Chain Rule:  (f ∘ g) ′(x)

= f'(g(x)) g'(x) We know that g(1)

= 2(1)⁴ + 3

= 5Now, we put x

= 1 in the Chain Rule:(f ∘ g) ′(1)

= f'(g(1)) g'(1) g(1)

= 5.We plug in the values for f'(u), g'(x), and g(1): (f ∘ g) ′(1)

= f'(5) g'(1)

= 3(5)²(8)(5³)

= 6000 Therefore, (f ∘ g) ′(1)

= 6000. Hence, option A) 6000 is the correct answer.

To know more about values visit:

https://brainly.com/question/30145972

#SPJ11

Calculate the Detention Time (TD) in hours given the following values. a) Lagoon volume (V)=1500 m3 b) Flow rate into lagoon (Q)=7.5 m3/ minute

Answers

The detention time (TD) is approximately 3.33 hours when considering a lagoon volume (V) of [tex]1500 m^3[/tex] and a flow rate into the lagoon (Q) of [tex]7.5 m^3/minute[/tex]. This calculation provides an estimate of the time it takes for the entire volume of the lagoon to be filled based on the given flow rate.

To calculate the detention time in hours, we first need to convert the flow rate from [tex]m^3/minute[/tex] to [tex]m^3/hour[/tex]. Since there are 60 minutes in an hour, we can multiply the flow rate by 60 to convert it. In this case, the flow rate is [tex]7.5 m^3/minute[/tex], so the flow rate in [tex]m^3/hour[/tex] is [tex]7.5 * 60 = 450 m^3/hour[/tex].

Now that we have the flow rate in [tex]m^3/hour[/tex], we can calculate the detention time by dividing the lagoon volume ([tex]1500 m^3[/tex]) by the flow rate ([tex]450 m^3/hour[/tex]).

[tex]TD = V / Q = 1500 m^3 / 450 m^3/hour[/tex]

Simplifying, we find that the detention time is approximately 3.33 hours.

To learn more about Flow rate, visit:

https://brainly.com/question/13254954

#SPJ11

ind The Derivative Of The Function. F(X)=5e^x/6e^x−7 F′(X)=

Answers

Given the function f(x) = 5e^x / 6e^x - 7 We need to find the derivative of the function.To find the derivative of the function, we need to apply the quotient rule.

The Quotient Rule is as follows:Let f(x) and g(x) be two functions. Then the derivative of the function f(x)/g(x) is given by f′(x) = [g(x) f′(x) − f(x) g′(x)] / [g(x)]^2

Now let us apply this rule to find the derivative of the given function. Here, f(x) = 5e^x

g(x) = 6e^x - 7

We can write the given function as f(x) = 5e^x / 6e^x - 7 = 5e^x [1 / (6e^x - 7)]

The derivative of the function is given by f′(x) = [g(x) f′(x) − f(x) g′(x)] / [g(x)]^2

= [6e^x - 7 (5e^x) / (6e^x - 7)^2

= (30e^x - 35) / (6e^x - 7)^2

Therefore, the derivative of the given function is f′(x) = (30e^x - 35) / (6e^x - 7)^2.

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

Find the slope of the line tangent to the graph of function f(x)=\ln (x) sin (π x) at x=1 2 -1 1 0

Answers

The slope of the line tangent to the graph of the function f(x) = ln(x)sin(πx) at x = 1 is -1.

The slope of the line tangent to the graph of the function f(x) = ln(x)sin(πx) at x = 1 can be found by using the following steps:

1. Find the first derivative of the function using the product rule: f'(x) = [ln(x)cos(πx)] + [(sin(πx)/x)]

2. Plug in the value of x = 1 to get the slope of the tangent line at that point:

f'(1) = [ln(1)cos(π)] + [(sin(π)/1)] = -1

Given a function f(x) = ln(x)sin(πx), we need to find the slope of the line tangent to the graph of the function at x = 1.

Using the product rule, we get:

f'(x) = [ln(x)cos(πx)] + [(sin(πx)/x)]

Next, we plug in the value of x = 1 to get the slope of the tangent line at that point:

f'(1) = [ln(1)cos(π)] + [(sin(π)/1)] = -1

Therefore, the slope of the line tangent to the graph of the function

f(x) = ln(x)sin(πx) at x = 1 is -1.

The slope of the line tangent to the graph of the function f(x) = ln(x)sin(πx) at x = 1 is -1.

To know more about the tangent, visit:

brainly.com/question/10053881

#SPJ11

why does grim say that max is lucky? question 12 options: he won a hundred dollars he doesn't have to go to school in the fall he lives with gram and grim most people never have a good friend like kevin

Answers

The reason grim say that max is lucky is that most people never have a good friend like Kevin.

What was Grim say about Max ?

Grim tells Max that he is fortunate to have had a good friend who helped him realize he was intelligent and improved his self-esteem. Max concurs that Grim should get a firearm. Grim admits that he may, but Gram won't be made aware of it. Grim is devastated by the idea because he would never lie to Gram.

Max assures him that he would keep Grim's identity a secret and that he will remain indoors for the upcoming days.

Learn more about   friend at:

https://brainly.com/question/1973064

#SPJ4

For n∈Z, let A _n ={a∈Z∣a≤n}. Find each of the following sets. (a) A _3 ∪A _−3​
(b) A_3 ∩A_−3
(c) A _3 ∪(A_−3 )^c
(d) ∩ i=14 A_i

Answers

a. Their union consists of all integers between -3 and 3, inclusive.

b. A_3 and A_-3 both contain all integers between -3 and 3, inclusive, so their intersection is simply that same set.

c.  Their union consists of all integers less than or equal to 3 or greater than or equal to 4, which is the set of all integers.

d. ∩i=1^4 A_i = {0,1}.

(a) A_3 ∪ A_-3 = {-3, -2, -1, 0, 1, 2, 3}

Explanation: A_3 is the set of all integers less than or equal to 3, and A_-3 is the set of all integers less than or equal to -3. Thus, their union consists of all integers between -3 and 3, inclusive.

(b) A_3 ∩ A_-3 = {-3, -2, -1, 0, 1, 2, 3} ∩ {-3, -2, -1, 0, 1, 2, 3} = {-3, -2, -1, 0, 1, 2, 3}

Explanation: A_3 and A_-3 both contain all integers between -3 and 3, inclusive, so their intersection is simply that same set.

(c) A_3 ∪ (A_-3)^c

(Note: (A_-3)^c denotes the complement of A_-3.)

A_-3 = {...,-3,-2,-1}, so (A_-3)^c = {...,-5,-4}∪{4,5,...}

Therefore, A_3 ∪ (A_-3)^c = {...,-3,-2,-1,0,1,2,3,4,5,...}

Explanation: A_3 contains all integers less than or equal to 3, while (A_-3)^c contains all integers greater than or equal to 4. Thus, their union consists of all integers less than or equal to 3 or greater than or equal to 4, which is the set of all integers.

(d) ∩i=1^4 A_i

A_1 = {...,-1,0,1}

A_2 = {...,-2,-1,0,1,2}

A_3 = {...,-3,-2,-1,0,1,2,3}

A_4 = {...,-4,-3,-2,-1,0,1,2,3,4}

To find the intersection of these sets, we need to identify which elements are in all four sets. We can see that only 0 and 1 are in all four sets.

Therefore, ∩i=1^4 A_i = {0,1}.

Learn more about integer from

https://brainly.com/question/929808

#SPJ11

what is the probability of rolling a number greater than 4 or rolling a 2 on a fair six-sided die? enter the answer as a simplified fraction.

Answers

The probability for the given event is P = 0.5

How to find the probability?

The probability is given by the quotient between the number of outcomes that meet the condition and the total number of outcomes.

Here the condition is "rolling a number greater than 4 or rolling a 2"

The outcomes that meet the condition are {2, 5, 6}

And all the outcomes of the six-sided die are {1, 2, 3, 4, 5, 6}

So 3 out of 6 outcomes meet the condition, thus, the probability is:

P = 3/6 = 1/2 = 0.5

Learn more about probability at:

https://brainly.com/question/25870256

#SPJ4

A. Evaluate the different functions given below. Write your answer on a clean sheet of paper.-Show your complete solution. ( 2{pts} each) 1. f(x)=x^{2}+3 x-4 a. f(3 x-4) b. \

Answers

a. f(3x - 4) = (3x - 4)^2 + 3(3x - 4) - 4

b. f(-2) = (-2)^2 + 3(-2) - 4

To evaluate the function f(x) = x^2 + 3x - 4 at specific values, we substitute the given values into the function expression.

a. To evaluate f(3x - 4), we substitute 3x - 4 in place of x in the function expression:

f(3x - 4) = (3x - 4)^2 + 3(3x - 4) - 4

Expanding and simplifying the expression:

f(3x - 4) = (9x^2 - 24x + 16) + (9x - 12) - 4

= 9x^2 - 24x + 16 + 9x - 12 - 4

= 9x^2 - 15x

Therefore, f(3x - 4) simplifies to 9x^2 - 15x.

b. To evaluate f(-2), we substitute -2 in place of x in the function expression:

f(-2) = (-2)^2 + 3(-2) - 4

Simplifying the expression:

f(-2) = 4 - 6 - 4

= -6

Therefore, f(-2) is equal to -6.

a. f(3x - 4) simplifies to 9x^2 - 15x.

b. f(-2) is equal to -6.

To know more about functions, visit;
https://brainly.com/question/11624077
#SPJ11

For each of the following subsets of a given vector space, determine if the subset

W

is a subspace of

V

. a)

W={(x 1



,x 2



,x 3



,x 4



)εR 4

∣x 1



+2x 3



−3x 4



=0}V=R 4

b)

W={BεA 3×3



∣∣B∣=0}V=A 3×3



c)

W={p(x)εP 3



∣p(x)=a 3



x 3

+a 2



x 2

+a 1



x}V=P 3



d)

W={BεA 2×2



∣B=[ a

0



b

d



]}V=A 2×2

Answers

The sets of vectors that are subspaces of R3 are:

   1. all x such that x₂ is rational

   2. all x such that x₁ + 3x₂ = x₃

   3. all x such that x₁ ≥ 0

Set of vectors where x₂ is rational: To determine if this set is a subspace, we need to check if it satisfies the two conditions for a subspace: closure under addition and closure under scalar multiplication.

Set of vectors where x₂ = x₁²: Again, we need to verify if this set satisfies the two conditions for a subspace.

Closure under addition: Consider two vectors, x = (x₁, x₂, x₃) and y = (y1, y2, y3), where x₂ = x₁² and y2 = y1².

If we add these vectors, we get

z = x + y = (x₁ + y1, x₂ + y2, x₃ + y3).

For z to be in the set, we need

z2 = (x₁ + y1)².

However, (x₁ + y1)² is not necessarily equal to

x₁² + y1², unless y1 = 0.

Therefore, the set is not closed under addition.

Closure under scalar multiplication: Let's take a vector x = (x₁, x₂, x₃) where x₂ = x₁² and multiply it by a scalar c. The resulting vector cx = (cx₁, cx₂, cx₃) has cx₂ = (cx₁)². Since squaring a scalar preserves its non-negativity, cx₂ is non-negative if x₂ is non-negative. However, this set allows for negative values of x₂ (e.g., (-1, 1, 0)), which means cx₂ can be negative as well. Therefore, this set is not closed under scalar multiplication.

Conclusion: The set of vectors where x₂ = x₁² is not a subspace of R3.

To know more about vector here

https://brainly.com/question/29740341

#SPJ4

Complete Question:

Which of the following set of vectors x = (x₁, x₂, x₃) and R³ is a subspace of R³?

1. all x such that x₂ is rational

2. all x such that x₁ + 3x₂ = x₃

3. all x such that x₁ ≥ 0

4. all x such that x₂=x₁²

Using the fact that the sum of the lengths of any two sides of a triangle exceeds the length of the third side, find all possible values of x for which the following triangle exists.

Answers

The valid range for x, the length of one side of the triangle, is given by:

x > |b - c| and x < b + c, where |b - c| denotes the absolute value of (b - c).

To find all possible values of x for which the given triangle exists, we can apply the triangle inequality theorem, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.

Let's assume the lengths of the three sides of the triangle are a, b, and c. According to the triangle inequality theorem, we have three conditions:

1. a + b > c

2. b + c > a

3. c + a > b

In this case, we are given one side with length x, so we can express the conditions as:

1. x + b > c

2. b + c > x

3. c + x > b

By examining these conditions, we can determine the range of values for x. Each condition provides a specific constraint on the lengths of the sides.

To find all possible values of x, we need to consider the overlapping regions that satisfy all three conditions simultaneously. By analyzing the relationships among the variables and applying mathematical reasoning, we can determine the range of valid values for x that allow the existence of the triangle.

learn more about "triangle ":- https://brainly.com/question/1058720

#SPJ11

I used to work Nine hours a day minus one which is for lunch so in reality I work eight hours a day
so my question is now that I'm part time meaning I go to school from 8 AM to 12 PM and my lunch break which is one entirely hour free from 12 to 1 PM
how many hours do I really work in a day is it ?five hours or four hours??

Answers

The total time you spend working in a day is 4 hours.

If you work from 8 AM to 12 PM and have a one-hour lunch break from 12 PM to 1 PM, the total time you spend at work is 4 hours. However, considering that you have a one-hour lunch break, your actual working hours would be 3 hours.

From 8 AM to 12 PM, you work for 4 hours.

From 12 PM to 1 PM, you have a lunch break and don't work.

Therefore, the total time you spend working in a day is 4 hours.

Learn more about Working hours here

https://brainly.com/question/28211246

#SPJ11

A spherical balloon is inflated so that its volume is increasing at the rate of 2.4 cubic feet per minute. How rapidly is the diameter of the balloon increasing when the diameter is 1.2 feet? ____ft/min A 16 foot ladder is leaning against a wall. If the top slips down the wall at a rate of 2ft/s, how fast will the foot of the ladder be moving away from the wall when the top is 12 feet above the ground?____ ft/s

Answers

A) when the diameter of the balloon is 1.2 feet, the diameter is increasing at a rate of approximately 0.853 feet per minute .

B) when the top of the ladder is 12 feet above the ground, the foot of the ladder is moving away from the wall at a rate of approximately 0.8817 ft/s.

To find the rate at which the diameter of the balloon is increasing, we can use the relationship between the volume and the diameter of a sphere. The volume of a sphere is given by the formula V = (4/3)πr^3, where r is the radius of the sphere. Since the diameter is twice the radius, we have d = 2r.

Given that the volume is increasing at a rate of 2.4 cubic feet per minute, we can differentiate the volume equation with respect to time t to find the rate of change of volume with respect to time:

dV/dt = (4/3)π(3r²)(dr/dt)

Since we are interested in finding the rate at which the diameter (d) is increasing, we substitute dr/dt with dd/dt:

dV/dt = (4/3)π(3r²)(dd/dt)

We also know that r = d/2, so we substitute it into the equation:

dV/dt = (4/3)π(3(d/2)²)(dd/dt)

= (4/3)π(3/4)d²(dd/dt)

= πd²(dd/dt)

Now we can substitute the given values: d = 1.2 ft and dV/dt = 2.4 ft³/min:

2.4 = π(1.2)²(dd/dt)

Solving for dd/dt, we have:

dd/dt = 2.4 / (π(1.2)²)

dd/dt ≈ 0.853 ft/min

Therefore, when the diameter of the balloon is 1.2 feet, the diameter is increasing at a rate of approximately 0.853 feet per minute.

For the second question, we can use similar reasoning. Let h represent the height of the ladder, x represent the distance from the foot of the ladder to the wall, and θ represent the angle between the ladder and the ground.

We have the equation:

x² + h² = 16²

Differentiating both sides with respect to time t, we get:

2x(dx/dt) + 2h(dh/dt) = 0

We are given that dx/dt = 2 ft/s and want to find dh/dt when h = 12 ft.

Using the Pythagorean theorem, we can find x when h = 12:

x² + 12² = 16²

x² + 144 = 256

x² = 256 - 144

x² = 112

x = √112 ≈ 10.58 ft

Substituting the values into the differentiation equation:

2(10.58)(2) + 2(12)(dh/dt) = 0

21.16 + 24(dh/dt) = 0

24(dh/dt) = -21.16

dh/dt = -21.16 / 24

dh/dt ≈ -0.8817 ft/s

Therefore, when the top of the ladder is 12 feet above the ground, the foot of the ladder is moving away from the wall at a rate of approximately 0.8817 ft/s.

To know more about diameter click here :

https://brainly.com/question/29844000

#SPJ4

Let S and T be sets. Prove that S∩(S∪T)=S and S∪(S∩T)=S. 0.4 Let S and T be sets. Prove that S∪T=T iff S⊆T.

Answers

We have shown that every element in T also belongs to S∪T. Combining the above arguments, we can conclude that S∪T=T iff S⊆T.

To prove this statement, we need to show that every element in the left-hand side also belongs to the right-hand side and vice versa.

First, consider an element x in S∩(S∪T). This means that x belongs to both S and S∪T. Since S is a subset of S∪T, x must also belong to S. Therefore, we have shown that every element in S∩(S∪T) also belongs to S.

Next, consider an element y in S. Since S is a subset of S∪T, y also belongs to S∪T. Moreover, since y belongs to S, it also belongs to S∩(S∪T). Therefore, we have shown that every element in S belongs to S∩(S∪T).

Combining the above arguments, we can conclude that S∩(S∪T)=S.

Proof of S∪(S∩T)=S:

Similarly, to prove this statement, we need to show that every element in the left-hand side also belongs to the right-hand side and vice versa.

First, consider an element x in S∪(S∩T). There are two cases to consider: either x belongs to S or x belongs to S∩T.

If x belongs to S, then clearly it belongs to S as well. If x belongs to S∩T, then by definition, it belongs to both S and T. Since S is a subset of S∪T, x must also belong to S∪T. Therefore, we have shown that every element in S∪(S∩T) also belongs to S.

Next, consider an element y in S. Since S is a subset of S∪(S∩T), y also belongs to S∪(S∩T). Moreover, since y belongs to S, it also belongs to S∪(S∩T). Therefore, we have shown that every element in S belongs to S∪(S∩T).

Combining the above arguments, we can conclude that S∪(S∩T)=S.

Proof of S∪T=T iff S⊆T:

To prove this statement, we need to show two implications:

If S∪T = T, then S is a subset of T.

If S is a subset of T, then S∪T = T.

For the first implication, assume S∪T = T. We need to show that every element in S also belongs to T. Consider an arbitrary element x in S. Since x belongs to S∪T and S is a subset of S∪T, it follows that x belongs to T. Therefore, we have shown that every element in S also belongs to T, which means that S is a subset of T.

For the second implication, assume S is a subset of T. We need to show that every element in T also belongs to S∪T. Consider an arbitrary element y in T. Since S is a subset of T, y either belongs to S or not. If y belongs to S, then clearly it belongs to S∪T. Otherwise, if y does not belong to S, then y must belong to T\ S (the set of elements in T that are not in S). But since S∪T = T, it follows that y must also belong to S∪T. Therefore, we have shown that every element in T also belongs to S∪T.

Combining the above arguments, we can conclude that S∪T=T iff S⊆T.

Learn more about Elements from

https://brainly.com/question/25916838

#SPJ11

Describe the additive inverse of a vector, (v1, v2, v3, v4, v5), in the vector space. R5
(-V1,-V2,-V3,-V4,-V5)

Answers

The additive inverse of a vector (v1, v2, v3, v4, v5) in the vector space R5 is (-v1, -v2, -v3, -v4, -v5).

In simpler terms, the additive inverse of a vector is a vector that when added to the original vector results in a zero vector.

To find the additive inverse of a vector, we simply negate all of its components. The negation of a vector component is achieved by multiplying it by -1. Thus, the additive inverse of a vector (v1, v2, v3, v4, v5) is (-v1, -v2, -v3, -v4, -v5) because when we add these two vectors, we get the zero vector.

This property of additive inverse is fundamental to vector addition. It ensures that every vector has an opposite that can be used to cancel it out. The concept of additive inverse is essential in linear algebra, as it helps to solve systems of equations and represents a crucial property of vector spaces.

Know more about additive inverse of a vector here:

https://brainly.com/question/33059271

#SPJ11

Albert and Diane collect CDs. Diane has two more than four times as many CDs as Albert. They have a total of 32 CD's. How many CDs does Albert have?

Answers

From the given information in the question ,we have formed linear equations and solved them , i. e, y = 4x + 2. ALbert has 6CDs.

Let the number of CDs that Albert have be x. Also, let the number of CDs that Diane have be y. Then, y = 4x + 2.It is given that they have a total of 32 CDs. Therefore, x + y = 32. Substituting y = 4x + 2 in the above equation, we get: x + (4x + 2) = 32Simplifying the above equation, we get:5x + 2 = 32. Subtracting 2 from both sides, we get:5x = 30. Dividing by 5 on both sides, we get: x = 6Therefore, Albert has 6 CDs. Answer: 6.

Let's learn more about equation:

https://brainly.com/question/29174899

#SPJ11


If two events A and B have the same (non-zero)
probability...
the two events are mutually exclusive.

the two events are independent.

the two events are complements.

none of these other statements a

Answers

none of these statements can be concluded solely based on the information that two events have the same (non-zero) probability.

None of these statements are necessarily true if two events A and B have the same (non-zero) probability. Let's consider each statement individually:

1) The two events are mutually exclusive: This means that the occurrence of one event excludes the occurrence of the other. If two events have the same (non-zero) probability, it does not imply that they are mutually exclusive. For example, rolling a 3 or rolling a 4 on a fair six-sided die both have a probability of 1/6, but they are not mutually exclusive.

2) The two events are independent: This means that the occurrence of one event does not affect the probability of the other event. Having the same (non-zero) probability does not guarantee independence. Independence depends on the conditional probabilities of the events. For example, if A and B are the events of flipping two fair coins and getting heads, the occurrence of A affects the probability of B, making them dependent.

3) The two events are complements: Complementary events are mutually exclusive events that together cover the entire sample space. If two events have the same (non-zero) probability, it does not imply that they are complements. Complementary events have probabilities that sum up to 1, but events with the same probability may not be complements.

Learn more about probability here :-

https://brainly.com/question/31828911

#SPJ11

Let A, B, and C be sets in a universal set U. We are given n(U) = 47, n(A) = 25, n(B) = 30, n(C) = 13, n(A ∩ B) = 17, n(A ∩ C) = 7, n(B ∩ C) = 7, n(A ∩ B ∩ C^C) = 12. Find the following values.
(a) n(A^C ∩ B ∩ C)
(b) n(A ∩ B^C ∩ C^C)

Answers

(a) n(A^C ∩ B ∩ C) = 0

(b) n(A ∩ B^C ∩ C^C) = 13

To find the values, we can use the principle of inclusion-exclusion and the given information about the set sizes.

(a) n(A^C ∩ B ∩ C):

We can use the principle of inclusion-exclusion to find the size of the set A^C ∩ B ∩ C.

n(A ∪ A^C) = n(U) [Using the fact that the union of a set and its complement is the universal set]

n(A) + n(A^C) - n(A ∩ A^C) = n(U) [Applying the principle of inclusion-exclusion]

25 + n(A^C) - 0 = 47 [Using the given value of n(A) = 25 and n(A ∩ A^C) = 0]

Simplifying, we find n(A^C) = 47 - 25 = 22.

Now, let's find n(A^C ∩ B ∩ C).

n(A^C ∩ B ∩ C) = n(B ∩ C) - n(A ∩ B ∩ C) [Using the principle of inclusion-exclusion]

= 7 - 7 [Using the given value of n(B ∩ C) = 7 and n(A ∩ B ∩ C) = 7]

Therefore, n(A^C ∩ B ∩ C) = 0.

(b) n(A ∩ B^C ∩ C^C):

Using the principle of inclusion-exclusion, we can find the size of the set A ∩ B^C ∩ C^C.

n(B ∪ B^C) = n(U) [Using the fact that the union of a set and its complement is the universal set]

n(B) + n(B^C) - n(B ∩ B^C) = n(U) [Applying the principle of inclusion-exclusion]

30 + n(B^C) - 0 = 47 [Using the given value of n(B) = 30 and n(B ∩ B^C) = 0]

Simplifying, we find n(B^C) = 47 - 30 = 17.

Now, let's find n(A ∩ B^C ∩ C^C).

n(A ∩ B^C ∩ C^C) = n(A) - n(A ∩ B) - n(A ∩ C) + n(A ∩ B ∩ C) [Using the principle of inclusion-exclusion]

= 25 - 17 - 7 + 12 [Using the given values of n(A) = 25, n(A ∩ B) = 17, n(A ∩ C) = 7, and n(A ∩ B ∩ C) = 12]

Therefore, n(A ∩ B^C ∩ C^C) = 13.

In summary:

(a) n(A^C ∩ B ∩ C) = 0

(b) n(A ∩ B^C ∩ C^C) = 13

Learn more about inclusion-exclusion  from

https://brainly.com/question/30995367

#SPJ11








About 6 % of the population has a particular genetic mutation. 800 people are randomly selected. Find the mean for the number of people with the genetic mutation in such groups of 800 .

Answers

The mean for the number of people with the genetic mutation in groups of 800 is 48.

The mean for the number of people with the genetic mutation in a group of 800 can be calculated using the formula:

Mean = (Probability of success) * (Sample size)

In this case, the probability of success is the proportion of the population with the genetic mutation, which is given as 6% or 0.06. The sample size is 800.

Mean = 0.06 * 800

Mean = 48

Therefore, the mean for the number of people with the genetic mutation in groups of 800 is 48.

Learn more about  number from

https://brainly.com/question/27894163

#SPJ11

Find the indicated limit.
lim (8t2 − 3t + 1)
t→4

Answers

lim (8t^2 - 3t + 1) as t approaches 4 = 117.This means that as t gets closer and closer to 4, the function (8t^2 - 3t + 1) approaches the value of 117.

To find the limit of the function (8t^2 - 3t + 1) as t approaches 4, we can evaluate the function at t = 4.

Plugging in t = 4 into the function, we have:

(8(4^2) - 3(4) + 1) = (8(16) - 12 + 1) = (128 - 12 + 1) = 117.

Hence, the value of the function at t = 4 is 117.

Now, to determine the limit, we need to see if the function approaches a particular value as t gets arbitrarily close to 4.

By evaluating the function at t = 4, we find that the function is defined and continuous at t = 4. Therefore, the limit of the function as t approaches 4 is equal to the value of the function at t = 4, which is 117.

In summary, we have:

lim (8t^2 - 3t + 1) as t approaches 4 = 117.

This means that as t gets closer and closer to 4, the function (8t^2 - 3t + 1) approaches the value of 117.

To learn more about limit click here:

brainly.com/question/33613844

#SPJ11

Read the following statements I through V: 1. Zero (0) II. One (1) III. Two (2) IV. Either Zero (0) or One (1) V. Neither Zero (0) nor One (1) What is the skewness of the normal distribution? 1 II III IV V II or III None of the above

Answers

Skewness of the normal distribution. When it comes to normal distribution, the skewness is equal to zero.

Skewness is a measure of the distribution's symmetry. When a distribution is symmetric, the mean, median, and mode will all be the same. When a distribution is skewed, the mean will typically be larger or lesser than the median depending on whether the distribution is right-skewed or left-skewed. It is not appropriate to discuss mean or median in the case of normal distribution since it is a symmetric distribution.

Therefore, the answer is None of the above.

In normal distribution, the skewness is equal to zero, and it is not appropriate to discuss mean or median in the case of normal distribution since it is a symmetric distribution.

To know more about Skewness visit:

brainly.com/question/15422644

#SPJ11

A friend offers you a free ticket to a concert, which you decide to attend. The concert takes 4 hours and costs you $15 for transportation. If you had not attended the concert, you would have worked at your part-time job earning $15 per hour. What is the true cost of you attending the concert?

Answers

The true cost of you attending the concert is $60.

The correct answer for the given problem is as follows:

Opportunity cost is the true cost of you attending the concert.

The reason being, the person had to give up an alternative use of their time to attend the concert.

In the given situation, if the person had not attended the concert they would have worked at their part-time job earning $15 per hour.

Thus, the opportunity cost for attending the concert is equal to the amount of money you would have earned had you not gone to the concert.

So, the opportunity cost of attending the concert would be: $15/hour × 4 hours = $60

The true cost of you attending the concert is $60.

Know more about cost:

https://brainly.com/question/17120857

#SPJ11

Juwan was asked to prove if x(x-2)(x+2)=x^(3)-4x represents a polynomial identity. He states that this relationship is not true and the work he used to justify his thinking is shown Step 1x(x-2)(x+2)

Answers

The equation x(x-2)(x+2) = x^3 - 4x represents a polynomial identity. This means that the relationship holds true for all values of x.

To determine whether the given expression x(x-2)(x+2) = x^3 - 4x represents a polynomial identity, we can expand both sides of the equation and compare the resulting expressions.

Let's start by expanding the expression x(x-2)(x+2):

x(x-2)(x+2) = (x^2 - 2x)(x+2) [using the distributive property]

= x^2(x+2) - 2x(x+2) [expanding further]

= x^3 + 2x^2 - 2x^2 - 4x [applying the distributive property again]

= x^3 - 4x

As we can see, expanding the expression x(x-2)(x+2) results in x^3 - 4x, which is exactly the same as the expression on the right-hand side of the equation.

Therefore, the equation x(x-2)(x+2) = x^3 - 4x represents a polynomial identity. This means that the relationship holds true for all values of x.

To learn more about polynomial

https://brainly.com/question/1496352

#SPJ11

Solve the ODE: (3x ^2+10xy−4)+(−6y^2+5x^2−3)y ′ =0 Entry format: Write your solution equation so that: (1) The equation is in implicit form. (2) The highest degree term containing only x has a coefficient of 1 . (3) Constants are combined and moved to the RHS of the equation.

Answers

Thus, the required solution equation is:  (3x^2 + 5x^2 - 6y^2) y' = 4 - 10xy.

The given ODE is:

[tex](3x^2 + 10xy - 4) + (-6y^2 + 5x^2 - 3)y' = 0[/tex]

We need to solve the given ODE.

For that, we need to rearrange the given ODE such that it is in implicit form.

[tex](3x^2 + 5x^2 - 6y^2) y' = 4 - 10xy[/tex]

We need to divide both sides by[tex](3x^2 + 5x^2 - 6y^2)[/tex]to get the implicit form of the given ODE:

[tex]y' = (4 - 10xy)/(3x^2 + 5x^2 - 6y^2)[/tex]

Now, we need to move the constants to the RHS of the equation, so the solution equation becomes

[tex]y' = (4 - 10xy)/(3x^2 + 5x^2 - 6y^2) \\=3x^2 y' + 5x^2 y' - 6y^2 y' \\= 4 - 10xy[/tex]

Know more about the ODE

https://brainly.com/question/33367519

#SPJ11

The graph of the function g is formed by applying the indicated sequence of transformations to the given function t. Find an equation for the function g and graph g using -5sxs5 and -5sys5. The graph of f(x) = (x) is reflected in the x-axis and shifted 4 units to the right and down 2 units.

Answers

An equation for the function g is g(x) = -(x - 4) - 2.

To find the equation for the function g, we need to apply the given sequence of transformations to the function t(x) = x. Let's go through each transformation step by step.

Reflection in the x-axis: This transformation changes the sign of the y-coordinate. So, t(x) = x becomes t₁(x) = -x.

Shift 4 units to the right: To shift t₁(x) = -x to the right by 4 units, we subtract 4 from x. Therefore, t₂(x) = -(x - 4).

Shift down 2 units: To shift t₂(x) = -(x - 4) down by 2 units, we subtract 2 from the y-coordinate. Thus, t₃(x) = -(x - 4) - 2.

Combining these transformations, we obtain the equation for g(x):

g(x) = -(x - 4) - 2.

Now, let's graph g in the given domain of -5 to 5.

By substituting x-values within this range into the equation g(x) = -(x - 4) - 2, we can find corresponding y-values and plot the points. Connecting these points will give us the graph of g(x).

Here's the graph of g(x) on the given domain:

    |       .

    |      .

    |     .

    |    .

    |   .

    |  .

    | .

-----+------------------

    |

    |

The graph is a downward-sloping line that passes through the point (4, -2). It starts from the top left and extends diagonally to the bottom right within the given domain.

For more such questions on equation

https://brainly.com/question/17145398

#SPJ8

The following are distances (in miles) traveled to the workplace by 6 employees of a certain brokerage firm. 2,32,1,27,16,18 Find the standard deviation of this sample of distances. Round your answer to two decimal places. (If necessary, consult a list of formulas.)

Answers

The standard deviation of this sample of distances is 11.69.

The standard deviation of this sample of distances is 11.69. To find the standard deviation of the sample of distances, we can use the formula for standard deviation given below; Standard deviation.

=[tex]√[∑(X−μ)²/n][/tex]

Where X represents each distance, μ represents the mean of the sample, and n represents the number of distances. Therefore, we can begin the calculations by finding the mean of the sample first: Mean.

= (2+32+1+27+16+18)/6= 96/6

= 16

This mean tells us that the average distance traveled by each of the employees is 16 Miles. Now, we can substitute the values into the formula: Standard deviation

[tex][tex]= √[∑(X−μ)²/n] = √[ (2-16)² + (32-16)² + (1-16)² + (27-16)² + (16-16)² + (18-16)² / 6 ]= √[256+256+225+121+0+4 / 6]≈ √108[/tex]

= 11.69[/tex]

(rounded to two decimal places)

The standard deviation of this sample of distances is 11.69.

To know more about sample visit:

https://brainly.com/question/32907665

#SPJ11

Suppose that y is a solution to a first-order, d-dimensional, nonautonomous ODE dy/dt = f(t, y). (So a solution y = (y1,...,yd) can be thought of as a map R→ R^d, and f: RxR^d→ R^d.) Write a first- order, (d+1)-dimensional, autonomous ODE that is solved by w(t) = (t, y(t)). That is, t→ w(t) is a map from R→ R^d+1 (whose first component is t and whose last d components are given by the components of y), and I am asking you to find a function F: R^d+1 → R^d+1 such that dw/dt= F(w). (Hint: you know that dy/dt = f(t, y), and you also know what dt/dt is, so you can write down all of the components of dw/dt; this will become F(w). If the notation is confusing, start with the case when d = 1.) The upshot of this problem is that any non-autonomous ODE can be turned into an autonomous ODE, at the cost of increasing the dimension.

Answers

the first-order, (d+1)-dimensional, autonomous ODE solved by [tex]\(w(t) = (t, y(t))\) is \(\frac{dw}{dt} = F(w) = \left(1, f(w_1, w_2, ..., w_{d+1})\right)\).[/tex]

To find a first-order, (d+1)-dimensional, autonomous ODE that is solved by [tex]\(w(t) = (t, y(t))\)[/tex], we can write down the components of [tex]\(\frac{dw}{dt}\).[/tex]

Since[tex]\(w(t) = (t, y(t))\)[/tex], we have \(w = (w_1, w_2, ..., w_{d+1})\) where[tex]\(w_1 = t\) and \(w_2, w_3, ..., w_{d+1}\) are the components of \(y\).[/tex]

Now, let's consider the derivative of \(w\) with respect to \(t\):

[tex]\(\frac{dw}{dt} = \left(\frac{dw_1}{dt}, \frac{dw_2}{dt}, ..., \frac{dw_{d+1}}{dt}\right)\)[/tex]

We know that[tex]\(\frac{dy}{dt} = f(t, y)\), so \(\frac{dw_2}{dt} = f(t, y_1, y_2, ..., y_d)\) and similarly, \(\frac{dw_3}{dt} = f(t, y_1, y_2, ..., y_d)\), and so on, up to \(\frac{dw_{d+1}}{dt} = f(t, y_1, y_2, ..., y_d)\).[/tex]

Also, we have [tex]\(\frac{dw_1}{dt} = 1\), since \(w_1 = t\) and \(\frac{dt}{dt} = 1\)[/tex].

Therefore, the components of [tex]\(\frac{dw}{dt}\)[/tex]are given by:

[tex]\(\frac{dw_1}{dt} = 1\),\\\(\frac{dw_2}{dt} = f(t, y_1, y_2, ..., y_d)\),\\\(\frac{dw_3}{dt} = f(t, y_1, y_2, ..., y_d)\),\\...\(\frac{dw_{d+1}}{dt} = f(t, y_1, y_2, ..., y_d)\).\\[/tex]

Hence, the function \(F(w)\) that satisfies [tex]\(\frac{dw}{dt} = F(w)\) is:\(F(w) = \left(1, f(w_1, w_2, ..., w_{d+1})\right)\).[/tex]

[tex]\(w(t) = (t, y(t))\) is \(\frac{dw}{dt} = F(w) = \left(1, f(w_1, w_2, ..., w_{d+1})\right)\).[/tex]

Learn more about dimensional here :-

https://brainly.com/question/14481294

#SPJ11

Compute Euler’s totient function ϕ(m) in the following cases: 1)
m is prime. 2) m = p^k for some prime p and positive integer k. 3)
m = p.q, for different prime numbers p and q.

Answers

1) If m is prime, then phi(m) = m -1.

2) For m = pk where p is prime and k is positive integer, phi(m) = p(k - 1)(p - 1).

3) If m = pq where p and q are distinct primes, phi(m) = (p - 1)(q - 1).

1) If m is prime, then the Euler totient function phi of m is m - 1.

The proof of this fact is given below:

If m is a prime number, then it has no factors other than 1 and itself. Thus, all the integers between 1 and m-1 (inclusive) are coprime with m. Therefore,

phi(m) = (m - 1.2)

Let m = pk,

where p is a prime number and k is a positive integer.

Then phi(m) is given by the following formula:

phi(m) = pk - pk-1 = p(k-1)(p-1)

The proof of this fact is given below:

Let a be any integer such that 1 ≤ a ≤ m.

We claim that a is coprime with m if and only if a is not divisible by p.

Indeed, suppose that a is coprime with m. Since p is a prime number that divides m, it follows that p does not divide a. Conversely, suppose that a is not divisible by p. Then a is coprime with p, and hence coprime with pk, since pk is divisible by p but not by p2, p3, and so on. Thus, a is coprime with m.

Now, the number of integers between 1 and m that are divisible by p is pk-1, since they are given by p, 2p, 3p, ..., (k-1)p, kp. Therefore, the number of integers between 1 and m that are coprime with m is m - pk-1 = pk - pk-1, which gives the formula for phi(m) in terms of p and (k.3)

Let m = pq, where p and q are distinct prime numbers. Then phi(m) is given by the following formula:

phi(m) = (p-1)(q-1)

The proof of this fact is given below:

Let a be any integer such that 1 ≤ a ≤ m. We claim that a is coprime with m if and only if a is not divisible by p or q. Indeed, suppose that a is coprime with m. Then a is not divisible by p, since otherwise a would be divisible by pq = m.

Similarly, a is not divisible by q, since otherwise a would be divisible by pq = m. Conversely, suppose that a is not divisible by p or q. Then a is coprime with both p and q, and hence coprime with pq = m. Therefore, a is coprime with m.

Now, the number of integers between 1 and m that are divisible by p is q-1, since they are given by p, 2p, 3p, ..., (q-1)p.

Similarly, the number of integers between 1 and m that are divisible by q is p-1. Therefore, the number of integers between 1 and m that are coprime with m is m - (p-1) - (q-1) = pq - p - q + 1 = (p-1)(q-1), which gives the formula for phi(m) in terms of p and q.

Learn more about Euler totient function: https://brainly.com/question/8897795

#SPJ11

What is the value of the expression (2)/(5)-:(1)/(6)?

Answers

The value of the expression (2)/(5)-:(1)/(6) is -22/15. This expression involves fractions and division, which means that we need to follow the order of operations or PEMDAS (parentheses, exponents, multiplication and division, addition and subtraction) to simplify it.

The first step is to simplify the division sign by multiplying by the reciprocal of the second fraction. Thus, the expression becomes: (2/5) ÷ (1/6) = (2/5) × (6/1) = 12/5.Then, we subtract this fraction from 2/5. To do that, we need to have a common denominator, which is 5 × 3 = 15.

Thus, the expression becomes:(2/5) - (12/5) = -10/5 = -2. Therefore, the value of the expression (2)/(5)-:(1)/(6) is -2 or -2/1 or -20/10. We can also write it as a fraction in simplest form, which is -2/1. Therefore, the expression (2)/(5)-:(1)/(6) can be simplified using the order of operations, which involves PEMDAS (parentheses, exponents, multiplication and division, addition and subtraction).

First, we simplify the division sign by multiplying by the reciprocal of the second fraction. Then, we find a common denominator to subtract the fractions. Finally, we simplify the fraction to get the answer, which is -2, -2/1, or -20/10.

To know more about  PEMDAS  refer here:

https://brainly.com/question/36185

#SPJ11

A line with an undefined slope passes through the points (-5,-2) and (u,5). What is the value of u ?

Answers

The value of u is 0. A line with an undefined slope has an equation of the form x = k, where k is a constant value.

To determine the value of u, we need to find the x-coordinate of the point (u,5) on this line. We know that the line passes through the point (-5,-2), so we can use this point to find the value of k.For a line passing through the points (-5,-2) and (u,5), the slope of the line is undefined since the line is vertical.

Therefore, the line is of the form x = k.To find the value of k, we know that the line passes through (-5,-2). Substituting -5 for x and -2 for y in the equation x = k, we get -5 = k.Thus, the equation of the line is x = -5. Substituting this into the equation for the point (u,5), we get:u = -5 + 5u = 0

To know more about slope  visit:-

https://brainly.com/question/3605446

#SPJ11

The makers of a soft drink want to identify the average age of its consumers. A sample of 35 consumers was taken. The average age in the sample was 21 years with a standard deviation of 6 years
a) Calculate the Margin of Error for a 97% level of confidence for the true average age of the consumers.
b) Determine a 97% confidence interval estimate for the true average age of the consumers.
c) Calculate the Margin of Error for a 90% level of confidence for the true average age of the consumers.
d )Determine a 90% confidence interval estimate for the true average age of the consumers.
e) Discuss why the 97% and 90% confidence intervals are different.
f) How large the sample must be in order to obtain 97% confidence interval with margin of error equal to 2 years (planning value for population standard deviation is 6)

Answers

a) Margin of error for 97% confidence: 2.55 years

b) 97% confidence interval: 18.45 to 23.55 years

c) Margin of error for 90% confidence: 1.83 years

d) 90% confidence interval: 19.17 to 22.83 years

e) The confidence intervals are different due to the variation in confidence levels.

f) Sample size required for 97% confidence interval with a margin of error of 2 years: at least 314.

a) To calculate the margin of error, we first need the critical value corresponding to a 97% confidence level. Let's assume the critical value is 2.17 (obtained from the t-table for a sample size of 35 and a 97% confidence level). The margin of error is then calculated as

(2.17 * 6) / √35 = 2.55.

b) The 97% confidence interval estimate is found by subtracting the margin of error from the sample mean and adding it to the sample mean. So, the interval is 21 - 2.55 to 21 + 2.55, which gives us a range of 18.45 to 23.55.

c) Similarly, we calculate the margin of error for a 90% confidence level using the critical value (let's assume it is 1.645 for a sample size of 35). The margin of error is

(1.645 * 6) / √35 = 1.83.

d) Using the margin of error from part c), the 90% confidence interval estimate is

21 - 1.83 to 21 + 1.83,

resulting in a range of 19.17 to 22.83.

e) The 97% and 90% confidence intervals are different because they are based on different levels of confidence. A higher confidence level requires a larger margin of error, resulting in a wider interval.

f) To determine the sample size required for a 97% confidence interval with a margin of error equal to 2, we use the formula:

n = (Z² * σ²) / E²,

where Z is the critical value for a 97% confidence level (let's assume it is 2.17), σ is the assumed population standard deviation (6), and E is the margin of error (2). Plugging in these values, we find

n = (2.17² * 6²) / 2²,

which simplifies to n = 314. Therefore, a sample size of at least 314 is needed to obtain a 97% confidence interval with a margin of error equal to 2 years.

To know more about statistics, visit:

https://brainly.com/question/19863416

#SPJ11

Other Questions
a patient arrives at the clinic complaining of pain in the posterior upper right arm that occurs when the lower arm is extended. which muscle does the nurse teach the patient that this involves? ACME Incorporated redeemed $150,000 face value, 12% bonds on July 31 at 102 . The bond's amortized cost at the redemption was $127,500. Required: Prepare the journal entry to record the redemption of the bonds assuming the interest for the period has already been paid. Assume Nortel Networks contracted to provide a customer with Internet infrastructure for $2,250,000. The project began in 2016 and was completed in 2017. Data relating to the contract are summarized below: Compute the amount of revenue and gross profit or loss to be recognized in 2016 and 2017 assuming Nortel recognizes revenue over time according to percentage of 1. completion. (Use percentages as calculated and rounded in the table below to arrive at your final answer. Losses and expenses should be indicated with a minus sign.) 2. Compute the amount of revenue and gross profit or loss to be recognized in 2016 and 2017 assuming this project does not qualify for revenue recognition over time. 3. Prepare a partial balance sheet to show how the information related to this contract would be presented at the end of 2016 assuming Nortel recognizes revenue over time according to percentage of completion. 4. Prepare a partial balance sheet to show how the information related to this contract would be presented at the end of 2016 assuming this project does not qualify for revenue recognition over time. How many moles are there in 4.78 gallons of a solution that is0.526 M? Find the area inside one leaf of the rose: r=2sin(3) What would most likely happen if a person skipped step 3? the eggs would be undercooked. the eggs would not be blended. the eggs would not be folded. the eggs would stick to the pan. Consider a Diffie-Hellman scheme with a common prime q=11 and a primitive root a=2. a. If user A has public key YA=9, what is A s private key XA? b. If user B has public key YB=3, what is the secret key K shared with A ? How do the physical and societal effects of aging impact retirement decisions for older adults? Which excerpt from the 1879 speech by Joseph is the best example of pathos?. 1)Windowsnetstat -bipconfigLinuxifconfignetstat -a | more True or False. Certain budget reports are prepared monthly, whereas others are prepared more frequently depending on the activities being monitored Why would you need to adjust the permissions of files and folders in the organization you are working for?Is it helpful to create groups of users and then allow them access to certain folders and files? Why or why not?As an administrator, would you restrict the use of shared printers? Why or why not? Post your findings on the differences between short-run and long-run aggregate demand and between short-run and long-run aggregate supply.Post your explanatory notes on the comparison and contrast of aggregate demand and aggregate supply in terms of creating short-run and long-run equilibrium. 1 #include 2 #include "string.h" 3. struct Student \{ 4 char Name [20]; 5 char Course [20]; 6 char Grade [20]; 7 int Year; }; 8 - int main() \{ 9 struct Student student; strcpy(student.Name, "Paul Smith"); strcpy(student. Course, "Math"); strcpy(student.Grade, "Freshman"); student. Year = 2003; printf("Name: % s \ ", student.Name); printf("Course: %s\n ", student. Course); printf("Grade: \%s \n , student. Grade); printf("Year of Graduation: % d \ ", student. Year); return 0; 3 Which of the following is characteristic of antibodies?A) incapable of being transferred from one person to anotherB) three binding sites per antibody monomerC) carbohydrate structureD) composed of heavy and light polypeptide chains if scientist discovered that the mountain ranges in north america and Eurasia were made of sinilar rock but of different ages, would this still support continental drift theory? Let X be a random variable with mean and variance 2. If we take a sample of size n,(X1,X2 ,Xn) say, with sample mean X~ what can be said about the distribution of X and why? Formulating questions and collecting data utilizes the skill of ____.A. evaluatingB. integratingC. generatingD. information gathering the primary purpose of the _____ is to eliminate situations in which women, working alongside men or replacing men, are paid lower wages for doing substantially the same job. A long-term debt issue sold simultaneously in several different national capital markets, but denominated in a currency different than the nation of that issue is called a(an) : Multiple Choice a) world bond.b) international capital bond. c) floating bond.