Answer:
Richard will have $60,000 in his account in 20 years.
Step-by-step explanation:
(1) Multiply $250 x 12
(2) Multiply the answer of $250 x 12 which is 3000 by 20
(3) Final answer would be $60,000
Identify the slope and y-intercept of the line −2x+5y=−30.
Answer:
slope = 2/5 , y-intercept = -30
Step-by-step explanation:
-2x + 5y = -30
5y = 2x - 30
y = 2/5x - 6
we know that the general form is:
y = (slope)*x + (y- intercept)
so, from our equation, we can say that...
slope = 2/5
y- intercept = -30
Someone pls help me
The slope greater than one would be the last image, because for every step in x, you get more than one y step.
The slope between 1 and 0 would be the second image
And the slope less than 0 would be the third image
What is the distance between (−11, −20) and (−11, 5)?
−25 units
−15 units
15 units
25 units
Answer:
IT'S NOT -15 FOR SUREEE
Step-by-step explanation:
I Believe it's 15
pls help me hepl me
Answer:
b at most 199
Step-by-step explanation:so the total was 121 and there is a flat fee of 21.50 so you subtract that out and gat 99.5 since its .5 per mile its going to be divided giving 199 and that is the most she could have driven.
A statistics tutor wants to assess whether her remedial tutoring has been effective for her five students. She decides to conduct a related samples t-test and records the following grades for students prior to and after receiving her tutoring.
Tutoring
Before After
2.4 3.1
2.5 2.8
3.0 3.6
2.9 3.2
2.7 3.5
Test whether or not her tutoring is effective at a 0.05 level of significance. State the value of the test statistic. (Round your answer to three decimal places.)
t =
Compute effect size using estimated Cohen's d. (Round your answer to two decimal places.)
d =
Answer:
The test statistic value is, t = -5.245.
The effect size using estimated Cohen's d is 2.35.
Step-by-step explanation:
A paired t-test would be used to determine whether the remedial tutoring has been effective for the statistics tutor's five students.
The hypothesis can be defined as follows:
H₀: The remedial tutoring has not been effective, i.e. d = 0.
Hₐ: The remedial tutoring has been effective, i.e. d > 0.
Use Excel to perform the Paired t test.
Go to Data → Data Analysis → t-test: Paired Two Sample Means
A dialog box will open.
Select the values of the variables accordingly.
The Excel output is attached below.
The test statistic value is, t = -5.245.
Compute the effect size using estimated Cohen's d as follows:
[tex]\text{Cohen's d}=\frac{Mean_{d}}{SD_{d}}[/tex]
[tex]=\frac{0.54}{0.23022}\\\\=2.34558\\\\\approx 2.35[/tex]
Thus, the effect size using estimated Cohen's d is 2.35.
Which equation should be used to find the volume of the figure?
V=1/3(10)(6)(12)
V=1/2(10)(6)(12)
V=1/3(10)(6)(13)
V=1/2(10)(6)(13)
Answer:
The answer is option 1.
Step-by-step explanation:
Given that the volume of pyramid formula is:
[tex]v = \frac{1}{3} \times base \: area \times height[/tex]
The base area for this pyramid:
[tex]base \: area = area \: of \: rectangle[/tex]
[tex]base \: area = 10 \times 6[/tex]
Then you have to substitute the following values into the formula:
[tex]let \: base \: area = 10 \times 6 \\ let \: height = 12[/tex]
[tex]v = \frac{1}{3} \times 10 \times 6 \times 12[/tex]
Answer:
A. V = 1/3 (10)(6)(12)
Step-by-step explanation:
Just took the test and got it right
A school is 16km due west of a school q.
What is the bearing of q from p?
Answer:
16 km due west
Step-by-step explanation:
The bearing of the school p from school q is 16 km due west.
To find the bearing of school q from school p, we have to find the direction that the school q is with respect to school p.
Since p is directly west of q, then it implies that q must be directly east of p.
We now know the direction.
Since the distance from q to p is exactly the same as the distance from p to q, then, the distance from p to q is 16 km.
Hence, the bearing of q from p is 16 km due west.
: Bobby's Burger Palace had its
grand opening on Tuesday,
They had 164 1/2 lb of ground
beef in stock. They had 18 1/4
Ib left at the end of the day.
Each burger requires 1/4 lb of
ground beef. How many
hamburgers did they sell?
The left and right page numbers of an open book are two consecutive integers whose sum is 389. Find these page numbers
Step-by-step explanation:
Maybe the page numbers can be 143 and 246
143 + 246 = 389
Answer:
194 and 195
Step-by-step explanation:
x = 1st page
x + 1 = 2nd page
x + x + 1 = 389
2x + 1 = 389
2x = 388
x = 194
x + 1 = 195
Choose the equation of the horizontal line that passes through the point (−5, 9). y = −5 y = 9 x = −5 x = 9
Answer:
y = 9
Step-by-step explanation:
Since we are trying to find a horizontal line, our line would have to be y = [a number]. That takes our x = -5 and x = 9 out as answer choices. We are left with y = -5 and y = 9. y = 9 is correct because the horizontal line is the y-values, and since in (-5, 9), our y-value is 9, our line is y = 9.
g red bell pepper seeds germinates 85% of the time. planted 25 seeds. What is the probability that 20 or more germinate
Answer:
[tex] P(X\geq 20)= P(X=20)+P(X=21)+P(X=22)+P(X=23)+P(X=24)+P(X=25)[/tex]
And replacing using the mass function we got:
[tex]P(X=20)=(25C20)(0.85)^{20} (1-0.85)^{25-20}=0.156[/tex]
[tex]P(X=21)=(25C21)(0.85)^{21} (1-0.85)^{25-21}=0.211[/tex]
[tex]P(X=22)=(25C22)(0.85)^{22} (1-0.85)^{25-22}=0.217[/tex]
[tex]P(X=23)=(25C23)(0.85)^{23} (1-0.85)^{25-23}=0.161[/tex]
[tex]P(X=24)=(25C24)(0.85)^{24} (1-0.85)^{25-24}=0.0759[/tex]
[tex]P(X=25)=(25C25)(0.85)^{25} (1-0.85)^{25-25}=0.0172[/tex]
And adding the values we got:
[tex] P(X\geq 20) = 0.8381[/tex]
Step-by-step explanation:
Let X the random variable of interest, on this case we now that:
[tex]X \sim Binom(n=25, p=0.85)[/tex]
The probability mass function for the Binomial distribution is given as:
[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]
Where (nCx) means combinatory and it's given by this formula:
[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]
We want to find the following probability:
[tex] P(X\geq 20)= P(X=20)+P(X=21)+P(X=22)+P(X=23)+P(X=24)+P(X=25)[/tex]
And replacing using the mass function we got:
[tex]P(X=20)=(25C20)(0.85)^{20} (1-0.85)^{25-20}=0.156[/tex]
[tex]P(X=21)=(25C21)(0.85)^{21} (1-0.85)^{25-21}=0.211[/tex]
[tex]P(X=22)=(25C22)(0.85)^{22} (1-0.85)^{25-22}=0.217[/tex]
[tex]P(X=23)=(25C23)(0.85)^{23} (1-0.85)^{25-23}=0.161[/tex]
[tex]P(X=24)=(25C24)(0.85)^{24} (1-0.85)^{25-24}=0.0759[/tex]
[tex]P(X=25)=(25C25)(0.85)^{25} (1-0.85)^{25-25}=0.0172[/tex]
And adding the values we got:
[tex] P(X\geq 20) = 0.8381[/tex]
3. Your friend is solving a system of linear equations and finds the following solution:
0=5
What is the solution of the system? Explain your reasoning.
Answer:
No solution.
Step-by-step explanation:
Because the equations are combined but the final answers are not equal, the equations have no solution. This is because "no matter what value is plugged in for the variable, you will ALWAYS get a contradiction".
Hope this helps!
There is a set of 100 obserations with a mean of 46 and a standard deviation of 0. What is the value of smallest obserstion in a set?
Answer:
Solution = 46
Step-by-step explanation:
I believe you meant standard deviation. Standard deviation is defined as the variation of the data set, or the differences between the values in this set. In order for the standard deviation to be 0, all values should be the same.
Now if the mean is 46, the smallest possible number of each value in the data set should be 46 as well. This is considering the mean is the average of the values, and hence any number of values in the data set being 46 will always have a mean of 46. Let me give you a demonstration -
[tex]Ex. [ 46, 46, 46 ], and, [46, 46, 46, 46, 46]\\Average = 46 + 46 + 46 / 3 = 46,\\Average = 46 + 46 + 46 + 46 + 46 / 5 = 46[/tex]
As you can see, the average is 46 in each case. This proves that a data set consisting of n number of values in it, each value being 46, or any constant value for that matter, always has a mean similar to the value inside the set, in this case 46. And, that the value of the smallest standard deviation is 46.
The steps to prove the Law of Sines with reference to ∆ABC are given. Arrange the steps in the correct order.
1). Draw a perpendicular from point A to side BC. Let AD = h
2). sin A = h/c and sin C = h/a
3). h = c Sin A, h = a sin C
4). c Sin A =a sin C
5). Divide both side by Sin A * Sin C
6). c Sin A/(Sin A * Sin C) =a sin C/(Sin A * Sin C)
7). c/sin C = a/Sin A
8). Similarly prove that, c/sin C = b/Sin B
9). c/sin C = b/Sin B = a/Sin A
correct on plato
Suppose that a certain brand of light bulb has a mean life of 450 hours and a standard deviation of 73 hours. Assuming the data are bell-shaped: (Show work to get full credit)
a. Would it be unusual for a light bulb to have a life span of 320 hours? 615 hours? Justify each response.
b. According to the Empirical Rule, 99.7% of the light bulbs have a lifetime between what two values?
c. Determine the percentage of light bulbs that will have a life between 304 and 596 hours.
Answer:
yes it is correct
Step-by-step explanation:
plz give brainliest.
If Brooklyn College students have an IQ of 100, on average, with a standard deviation of 16 points, and I collect 48 BC Psychology students to see how Psych majors compare to all of BC, find the following:_______.
1. mu =
2. sigma =
3. mu _x bar =
4. sigma _x bar =
Answer:
1 [tex]\mu = 100[/tex]
2 [tex]\sigma = 16[/tex]
3 [tex]\mu_x = 100[/tex]
4 [tex]\sigma _{\= x } = 2.309[/tex]
Step-by-step explanation:
From the question
The population mean is [tex]\mu = 100[/tex]
The standard deviation is [tex]\sigma = 16[/tex]
The sample mean is [tex]\mu_x = 100[/tex]
The sample size is [tex]n = 48[/tex]
The mean standard deviation is [tex]\sigma _{\= x } = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma _{\= x } = \frac{16 }{\sqrt{48} }[/tex]
[tex]\sigma _{\= x } = 2.309[/tex]
Four different digits from 1 to 9 are required to open a safe.
1. The sum of the digits is 20.
2. The first digit is greater than the third.
3. The second and fourth digits differ by at least 5.
4. Exactly two digits are squares.
5. The first and fourth digits add up to a prime number.
6. The fourth digit is the lowest.
Can you find the four-digit combination?
Answer: 5942
Step-by-step explanation:
Clue 4 states exactly two of the digits = 1, 4, or 9
Clue 1 leaves us with the following combinations:
1, 9, 2, 8
1, 9, 3, 7 eliminate by clue 5
4, 9, 2, 5
1, 4, 7, 8
Clue 5 directs us to the following order for 1,9,2,8
2 __ __ 1 --> 2981 or 2891 eliminate by clue 2
9 __ __ 8 --> 9128 or 9218 eliminate by clue 6
9 __ __ 2 --> 9182 or 9812 eliminate by clue 6
Clue 5 directs us to the following order for 4,9,2,5
5 __ __ 2 --> 5492 or 5942 eliminate 5492 by clue 2
9 __ __ 2 --> 9452 or 9542 eliminate by clue 3
Clue 5 directs us to the following order for 1,4,7,8
4 __ __ 1 --> 4781 or 4871 eliminate by clue 2
The only combination not eliminated is 5-9-4-2, which satisfies all six clues.
1) 5 + 9 + 4 + 2 = 20
2) 5 > 4
3) 9 - 2 > 5
4) 4 & 9 but not 1 are included
5) 5 + 2 = 7, which is a prime number
6) 2 < 5, 9, 4
15 3/4 is what decimal
━━━━━━━☆☆━━━━━━━
▹ Answer
15.75
▹ Step-by-Step Explanation
3 ÷ 4 = .75
15 + .75 = 15.75
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
8716 no es divisible por 4
Answer:
False
Step-by-step explanation:
No esta verdad.
8716/4 = 2179 (divisible por 4)
the bus fare in a city is $2.00. people who use the bus have the option of purchashing a monthly coupoun book is $20.00. with the copoun bok, the fare is reduced to $1.00 Determine the number of times in a month the bus be used so that the total monthly cost without the coupon book is the same as the total monthly cost with the coupon book
Answer:
but I can do it if you want but I don't you too too y u your help and you have time can you
Step-by-step explanation:
guy who was it that you are not going to be able to make it to the meeting tonight but I can tomorrow if you have time can you come to my house
Peter samples her class by selecting 5 girls and 7 boys. This type of sampling is called?
Answer:
Hello!
______________________
Peter samples her class by selecting 5 girls and 7 boys. This type of sampling is called?
This type of sampling is called Stratified.
Hope this helped you!
:D
What is the equation of the line that is parallel to the given line and passes through the point (12, -2)? A) y = -6/5x + 10 B) y= -6/5x + 12 C) y = -5/6x -10 D) y = 5/6x - 12
Answer:
D
Step-by-step explanation:
Parallel lines are those that have the same slope, or coefficient of x.
Here, let's calculate the slope of the given line. Slope is the difference in the y-coordinates divided by the difference in the x-coordinates, so given the two coordinates (12, 6) and (0, -4):
slope = m = (-4 - 6) / (0 - 12) = -10 / (-12) = 10/12 = 5/6
So the slope is 5/6. That means the equation we want should also have a slope of 5/6. Already, we can eliminate A, B, and C, leaving D as our answer. But, let's check.
The equation of a line can be written as [tex]y-y_1=m(x-x_1)[/tex], where m is the slope and [tex](x_1,y_1)[/tex] is the coordinates of a given point.
Here, our slope is 5/6 and our given point is (12, -2). So plug these in:
[tex]y-y_1=m(x-x_1)[/tex]
[tex]y-(-2)=(5/6)(x-12)[/tex]
[tex]y+2=\frac{5}{6} x-10[/tex]
[tex]y=\frac{5}{6} x-12[/tex]
This matches D, so we know that it's the correct answer.
~ an aesthetics lover
The answer is D I just took the test
pls help me pls pls
Answer:
B
Step-by-step explanation:
the slope of parallel lines are equal
The surface area of an open-top box with length L, width W, and height H can be found using the
formula:
A = 2LH + 2WH + LW
Find the surface area of an open-top box with length 9 cm, width 6 cm, and height 4 cm.
Answer:
174 square cm
Step-by-step explanation:
2(9×4) + 2(6×4)+ 9×6
2(36) + 2(24) + 54
72 + 48 + 54
120 + 54
174
The head of maintenance at XYZ Rent-A-Car believes that the mean number of miles between services is 3639 3639 miles, with a variance of 145,161 145,161 . If he is correct, what is the probability that the mean of a sample of 41 41 cars would differ from the population mean by less than 126 126 miles
Answer:
96.6% probability that the mean of a sample would differ from the population mean by less than 126 miles
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
A reminder is that the standard deviation is the square root of the variance.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
[tex]\mu = 3639, \sigma = \sqrt{145161} = 381, n = 41, s = \frac{381}{\sqrt{41}} = 59.5[/tex]
Probability that the mean of the sample would differ from the population mean by less than 126 miles
This is the pvalue of Z when X = 3639 + 126 = 3765 subtracted by the pvalue of Z when X = 3639 - 126 = 3513. So
X = 3765
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{3765 - 3639}{59.5}[/tex]
[tex]Z = 2.12[/tex]
[tex]Z = 2.12[/tex] has a pvalue of 0.983
X = 3513
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{3513 - 3639}{59.5}[/tex]
[tex]Z = -2.12[/tex]
[tex]Z = -2.12[/tex] has a pvalue of 0.017
0.983 - 0.017 = 0.966
96.6% probability that the mean of a sample would differ from the population mean by less than 126 miles
A farmer is tracking the number of soybeans his land is yielding each year. He finds that the function f(x) = −x2 + 20x + 100 models the crops in pounds per acre over x years. Find and interpret the average rate of change from year 10 to year 20.
Answer:
The farmer should expect to LOSE 10 pounds of soybeans per acre per year
Step-by-step explanation:
f(x)=-x^2 + 20x + 100
just find how many soybeans his land will yield (per acre) after 10 and 20 years:
After 10: 200 pounds of soybeans/acre
After 20: 100 pounds of soybeans/acre
Because 10 years have passed and they lost 100 pounds of soybean production per acre, the farmer should expect to lose 10 pounds of soybeans per acre per year (-10 pounds of soybeans per acre/year)
Compute the critical value z Subscript alpha divided by 2 that corresponds to a 86% level of confidence.
Answer:
z = 1.476
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1-0.86}{2} = 0.07[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].
So it is z with a pvalue of [tex]1-0.07 = 0.93[/tex], so [tex]z = 1.476[/tex]
The answer is z = 1.476
Find a parabola with equation y = ax2 + bx + c that has slope 5 at x = 1, slope −11 at x = −1, and passes through the point (2, 18).
By "slope" I assume you mean slope of the tangent line to the parabola.
For any given value of x, the slope of the tangent to the parabola is equal to the derivative of y :
[tex]y=ax^2+bx+c\implies y'=2ax+b[/tex]
The slope at x = 1 is 5:
[tex]2a+b=5[/tex]
The slope at x = -1 is -11:
[tex]-2a+b=-11[/tex]
We can already solve for a and b :
[tex]\begin{cases}2a+b=5\\-2a+b=-11\end{cases}\implies 2b=-6\implies b=-3[/tex]
[tex]2a-3=5\implies 2a=8\implies a=4[/tex]
Finally, the parabola passes through the point (2, 18); that is, the quadratic takes on a value of 18 when x = 2:
[tex]4a+2b+c=18\implies2(2a+b)+c=10+c=18\implies c=8[/tex]
So the parabola has equation
[tex]\boxed{y=4x^2-3x+8}[/tex]
Using function concepts, it is found that the parabola is: [tex]y = 4x^2 - 3x + 14[/tex]
----------------------------
The parabola is given by:
[tex]y = ax^2 + bx + c[/tex]
----------------------------
Slope 5 at x = 1 means that [tex]y^{\prime}(1) = 5[/tex], thus:
[tex]y^{\prime}(x) = 2ax + b[/tex]
[tex]y^{\prime}(1) = 2a + b[/tex]
[tex]2a + b = 5[/tex]
----------------------------
Slope -11 at x = -1 means that [tex]y^{\prime}(-1) = -11[/tex], thus:
[tex]-2a + b = -11[/tex]
Adding the two equations:
[tex]2a - 2a + b + b = 5 - 11[/tex]
[tex]2b = -6[/tex]
[tex]b = -\frac{6}{2}[/tex]
[tex]b = -3[/tex]
And
[tex]2a - 3 = 5[/tex]
[tex]2a = 8[/tex]
[tex]a = \frac{8}{2}[/tex]
[tex]a = 4[/tex]
Thus, the parabola is:
[tex]y = 4x^2 - 3x + c[/tex]
----------------------------
It passes through the point (2, 18), which meas that when [tex]x = 2, y = 18[/tex], and we use it to find c.
[tex]y = 4x^2 - 3x + c[/tex]
[tex]18 = 4(2)^2 - 3(4) + c[/tex]
[tex]c + 4 = 18[/tex]
[tex]c = 14[/tex]
Thus:
[tex]y = 4x^2 - 3x + 14[/tex]
A similar problem is given at https://brainly.com/question/22426360
Pls help me help me
Answer:
C.
Step-by-step explanation:
When two lines are parallel, their slopes are the same.
Since the slope of line l is 2/7, the slope of its parallel line m must also be 2/7.
The answer is C.
Answer:
C. 2/7
Step-by-step explanation:
Parallel lines are lines that have the same slopes.
We know that line l is parallel to line m.
Therefore, the slope of line l is equal to the slope of line m.
[tex]m_{l} =m_{m}[/tex]
We know that line l has a slope of 2/7.
[tex]\frac{2}{7} =m_{m}[/tex]
So, line m also has a slope of 2/7. The answer is C. 2/7
A square with side lengths of 3 cm is reflected vertically over a horizontal line of reflection that is 2 cm below the bottom edge of the square. What is the distance between the points C and C’? cm What is the perpendicular distance between the point B and the line of reflection? cm What is the distance between the points A and A’? cm
Answer:
a) 4 cm
b) 5 cm
c) 10 cm
Step-by-step explanation:
The side lengths of the reflected square are equal to the original, and the distance from the axis(2) also remains the same. From there, it is just addition.
Hope it helps <3
Answer:
A) 4
B) 5
C) 10
Step-by-step explanation:
edge2020