Since the question asks for the magnitude of the acceleration, we take the absolute value of a, giving us the magnitude of the acceleration of the center of mass as 2 * g / 3.
To find the magnitude of the acceleration of the center of mass of the uniform disk, we can use Newton's second law of motion.
1. Let's start by considering the forces acting on the disk. Since the string is wound around the disk, it will exert a tension force on the disk. We can also consider the weight of the disk acting vertically downward.
2. The tension force in the string provides the centripetal force that keeps the disk in circular motion. This tension force can be calculated using the equation T = m * a,
3. The weight of the disk can be calculated using the equation W = m * g, where W is the weight, m is the mass of the disk, and g is the acceleration due to gravity.
4. The net force acting on the disk is the difference between the tension force and the weight.
5. Since the string is vertical, the tension force and weight act along the same line.
6. Substituting the equations, we have m * a - m * g = m * a.
7. Simplifying the equation, we get -m * g = 0.
8. Solving for a, we find a = -g.
9. Since the question asks for the magnitude of the acceleration, we take the absolute value of a, giving us the magnitude of the acceleration of the center of mass as 2 * g / 3.
To know more about gravity visit:
https://brainly.com/question/31321801
#SPJ11
Problem 1: his Water (density equal to 1000 kg/m) flows through a system of pipes that goes up a step. The water pressure is 140 kPa at the bottom of the step (point 1), the cross-sectional area of the pipe at the top of the step (point 2) is half that at the bottom of the step and the speed of the water at the bottom of the step is 1.20 m/s. The pressure at the top of the step is 120 kPa. Find the value of the height h? (10 points) y h 0 11
The value of the height h is 5 meters.
To find the value of the height h, we can apply Bernoulli's equation, which relates the pressure, density, and velocity of a fluid flowing through a system. Bernoulli's equation states that the sum of the pressure energy, kinetic energy, and potential energy per unit volume remains constant along a streamline.
Apply Bernoulli's equation at points 1 and 2:
At point 1 (bottom of the step):
P1 + 1/2 * ρ * v1^2 + ρ * g * h1 = constant
At point 2 (top of the step):
P2 + 1/2 * ρ * v2^2 + ρ * g * h2 = constant
Simplify the equation using the given information:
Since the pressure at point 1 (P1) is 140 kPa and at point 2 (P2) is 120 kPa, and the speed of the water at the bottom (v1) is 1.20 m/s, we can substitute these values into the equation.
140 kPa + 1/2 * 1000 kg/m^3 * (1.20 m/s)^2 + 1000 kg/m^3 * 9.8 m/s^2 * h1 = 120 kPa + 1/2 * 1000 kg/m^3 * v2^2 + 1000 kg/m^3 * 9.8 m/s^2 * h2
Since the cross-sectional area of the pipe at the top (point 2) is half that at the bottom (point 1), the velocity at the top (v2) can be calculated as v2 = 2 * v1.
Solve for the value of h:
Using the given values and the equation from Step 2, we can solve for the value of h.
140 kPa + 1/2 * 1000 kg/m^3 * (1.20 m/s)^2 + 1000 kg/m^3 * 9.8 m/s^2 * h1 = 120 kPa + 1/2 * 1000 kg/m^3 * (2 * 1.20 m/s)^2 + 1000 kg/m^3 * 9.8 m/s^2 * h2
Simplifying the equation and rearranging the terms, we can find that h = 5 meters.
Therefore, the value of the height h is 5 meters.
Learn more about Bernoulli's equation
brainly.com/question/29865910
#SPJ11
Hoover Dam on the Colorado River is the highest dam in the United States at 221 m, with an output of 1300MW. The dam generates electricity with water taken from a depth of 151 m and an average flow rate of 620 m 3
/s. (a) Calculate the power in this flow. Report your answer in Megawatts 1,000,000 W =1MW 25. Hoover Dam on the Colorado River is the highest dam in the United States at 221 m, with an output of 1300MW. The dam generates electricity with water taken from a depth of 150 m and an average flow rate of 650 m 3
/s. (a) Calculate the power in this flow. (b) What is the ratio of this power to the facility's average of 680 MW? (These are the same values as the regular homework assignment) The ratio is 2.12 The ratio is 1.41 The ratio is 0.71 The ratio is 0.47
Hoover Dam on the Colorado River is the tallest dam in the United States, measuring 221 meters in height, with an output of 1300MW. The dam's electricity is generated by water that is taken from a depth of 151 meters and flows at an average rate of 620 m3/s.Therefore, the correct answer is the ratio is 1.41.
To compute the power in this flow, we use the formula:Power = (density) * (Volume flow rate) * (acceleration due to gravity) * (head). Where density is the density of water, which is 1000 kg/m3, and the acceleration due to gravity is 9.81 m/s2. Head = (depth) * (density) * (acceleration due to gravity). Substituting these values,Power = (1000 kg/m3) * (620 m3/s) * (9.81 m/s2) * (151 m) = 935929200 Watts. Converting this value to Megawatts,Power in Megawatts = 935929200 / 1000000 = 935.93 MWFor the second question,
(a) The power in the second flow is given by the formula:Power = (density) * (Volume flow rate) * (acceleration due to gravity) * (head)Where density is the density of water, which is 1000 kg/m3, and the acceleration due to gravity is 9.81 m/s2.Head = (depth) * (density) * (acceleration due to gravity) Power = (1000 kg/m3) * (650 m3/s) * (9.81 m/s2) * (150 m) = 956439000 Watts. Converting this value to Megawatts,Power in Megawatts = 956439000 / 1000000 = 956.44 MW
(b) The ratio of the power in this flow to the facility's average power is given by:Ratio of the power = Power in the second flow / Average facility power= 956.44 MW / 680 MW= 1.41. Therefore, the correct answer is the ratio is 1.41.
To know more about electricity visit:
brainly.com/question/31173598
#SPJ11
A straight wire with length 2320cm carries a current 20A which is directed to the right and is perpendicular to an unknown uniform magnetic field B. A magnetic
force 31pN acts on a conductor which is directed downwards. A. Determine the magnitude and the direction of the magnetic field in the region
through which the current passes. B. If the angle between the current and the magnetic field is 54 this time, what would
be the new value of the magnitude of the new magnetic force?
a. The magnitude of the magnetic field is [tex]2.84 * 10^(^-^1^1^) Tesla.[/tex]
b. The new value of the magnitude of the magnetic force is [tex]4.49 * 10^(^-^1^1^)[/tex] Newtons.
How do we calculate?a.
F_ = BILsinθ
F_ = magnetic force,
B = magnetic field
I = current,
L = length of the wire,
θ = angle between the current and the magnetic field.
Current (I) = 20 A
Length of wire (L) = 2320 cm = 23.20 m
Magnetic force (F) = 31 pN = 31 x 10^(-12) N
B = F/ (ILsinθ)
B = ([tex]31 * 10^(^-^1^2)[/tex]) N) / (20 A x 23.20 m x sin(90°))
B = [tex]2.84 * 10^(^-^1^1^)[/tex] T
b.
F' = BILsinθ'
F' = ([tex]2.84 * 10^(^-^1^1^)[/tex]T) x (20 A) x (23.20 m) x sin(54°)
F' = 4.49 x 10^(-11) N
Learn more about magnetic field at:
https://brainly.com/question/14411049
#SPJ4
Part A A1 1-cm-tall object is 17 cm in front of a concave mirror that has a 69 em focal length Calculate the position of the image. Express your answer using two significant figures. ΨΗ ΑΣΦ O ? cm Submit Request Answer Part 8 A 1.1-cm-tall object is 17 cm in front of a concave mirror that has a 69 cm focal length Calculate the height of the image Express your answer using two significant figures. Vo] ΑΣΦ XE Cm
The position of the image is approximately -6.81 cm, and the height of the image is approximately 0.4 cm.The position of the image is approximately -6.81 cm, and the height of the image is approximately 0.4 cm.
To calculate the position of the image formed by a concave mirror and the height of the image, we can use the mirror equation and magnification formula.
Given:
- Object height (h_o) = 1 cm
- Object distance (d_o) = -17 cm (negative because the object is in front of the mirror)
- Focal length (f) = 69 cm
Using the mirror equation:
1/f = 1/d_i + 1/d_o
Since the object distance (d_o) is given as -17 cm, we can rearrange the equation to solve for the image distance (d_i):
1/d_i = 1/f - 1/d_o
Substituting the values:
1/d_i = 1/69 - 1/-17
To calculate the height of the image (h_i), we can use the magnification formula:
h_i / h_o = -d_i / d_o
Rearranging the formula to solve for h_i:
h_i = (h_o * d_i) / d_o
Substituting the given values:
h_i = (1 * d_i) / -17
Now, let's calculate the position of the image (d_i) and the height of the image (h_i):
1/d_i = 1/69 - 1/-17
1/d_i = (17 - 69) / (69 * -17)
1/d_i = 52 / (-69 * 17)
d_i = -1 / (52 / (-69 * 17))
d_i ≈ -6.81 cm
h_i = (1 * -6.81) / -17
h_i ≈ 0.4 cm
Therefore, the position of the image is approximately -6.81 cm from the mirror and the height of the image is approximately 0.4 cm.
To know more about concave mirror, click here:
brainly.com/question/31379461
#SPJ11
A thermistor is used in a circuit to control a piece of equipment automatically. What might this circuit be used for? A lighting an electric lamp as it becomes darker B ringing an alarm bell if a locked door is opened C switching on a water heater at a pre-determined time D turning on an air conditioner when the temperature rises
A thermistor is used in a circuit to control a piece of equipment automatically, this circuit be used for D. Turn on an air conditioner when the temperature rises.
A thermistor is a type of resistor whose resistance value varies with temperature. In a circuit, it is used as a sensor to detect temperature changes. The thermistor is used to control a piece of equipment automatically in various applications like thermostats, heating, and cooling systems. A circuit with a thermistor may be used to turn on an air conditioner when the temperature rises. In this case, the thermistor is used to sense the increase in temperature, which causes the resistance of the thermistor to decrease.
This change in resistance is then used to trigger the circuit, which turns on the air conditioner to cool the room. A thermistor circuit may also be used to switch on a water heater at a pre-determined time. In this case, the thermistor is used to detect the temperature of the water, and the circuit is programmed to turn on the heater when the water temperature falls below a certain level. This helps to maintain a consistent temperature in the water tank. So therefore the correct answer is D, turn on an air conditioner when the temperature rises.
Learn more about thermistor at:
https://brainly.com/question/31888503
#SPJ11
Write a x; in a form that includes the Kronecker delta. Now show that V.r=3.
x; = Σn=1 to ∞ δn,x vn,
where δn,x is the Kronecker delta and vn is a vector in the basis of x.
Kronecker delta is a mathematical symbol that is named after Leopold Kronecker. It is also known as the Kronecker's delta or Kronecker's symbol. It is represented by the symbol δ and is defined as δij = 1 when i = j, and 0 otherwise. Here, i and j can be any two indices in the vector x. The vector x can be expressed as a sum of vectors in the basis of x as follows: x = Σn=1 to ∞ vn, where vn is a vector in the basis of x.
Using the Kronecker delta, we can express this sum in the following form:
x; = Σn=1 to ∞ δn,x vn, where δn,x is the Kronecker delta. Now, if we take the dot product of the vector V and x, we get the following:
V·x = V·(Σn=1 to ∞ vn) = Σn=1 to ∞ (V·vn)
Since V is a 3-dimensional vector, the dot product V·vn will be zero for all but the third term, where it will be equal to 3. So, V·x = Σn=1 to ∞ (V·vn) = 3, which proves that V·x = 3.
Learn more about Kronecker delta here:
https://brainly.com/question/30894460
#SPJ11
Question 51 1 pts How much heat, in kilo-joules, is required to convert 29 g of ice at -12°C into steam at 119°C, all at atmospheric pressure? (Lice 333 J/g, Lsteam = 2.26 10³ J/g, Cice = 2.090 J/g, Cwater = 4.186 J/g, Csteam = 2.010 J/g).
The amount of heat required to convert 29 g of ice at -12°C to steam at 119°C, at atmospheric pressure, is approximately 290 kJ.
To calculate the total heat required, we need to consider the heat energy for three stages: (1) heating the ice to 0°C, (2) melting the ice at 0°C, and (3) heating the water to 100°C, converting it to steam at 100°C, and further heating the steam to 119°C.
1. Heating the ice to 0°C:
The heat required can be calculated using the formula Q = m * C * ΔT, where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.
Q₁ = 29 g * 2.090 J/g°C * (0°C - (-12°C))
2. Melting the ice at 0°C:
The heat required for phase change can be calculated using Q = m * L, where L is the latent heat of fusion.
Q₂ = 29 g * 333 J/g
3. Heating the water from 0°C to 100°C, converting it to steam at 100°C, and further heating the steam to 119°C:
Q₃ = Q₄ + Q₅
Q₄ = 29 g * 4.186 J/g°C * (100°C - 0°C)
Q₅ = 29 g * 2.26 × 10³ J/g * (100°C - 100°C) + 29 g * 2.010 J/g°C * (119°C - 100°C)
Finally, the total heat required is the sum of Q₁, Q₂, Q₃:
Total heat = Q₁ + Q₂ + Q₃
By substituting the given values and performing the calculations, we find that the heat required is approximately 290 kJ.
To know more about atmospheric pressure refer here:
https://brainly.com/question/31634228#
#SPJ11
(a) Find the distance of the image from a thin diverging lens of focal length 30 cm if the object is placed 20 cm to the right of the lens. Include the correct sign. cm (b) Where is the image formed?
The image is formed on the same side of the object.
Focal length, f = -30 cm
Distance of object from the lens, u = -20 cm
Distance of the image from the lens, v = ?
Now, using the lens formula, we have:
1/f = 1/v - 1/u
Or, 1/-30 = 1/v - 1/-20
Or, v = -60 cm (distance of image from the lens)
The negative sign of the image distance indicates that the image formed is virtual, erect, and diminished.
The image is formed on the same side of the object. So, the image is formed 60 cm to the left of the lens.
To learn more about image, refer below:
https://brainly.com/question/30725545
#SPJ11
Questions 7.39 Homework. Unanswered ★ A pendulum is fashioned out of a thin bar of length 0.55 m and mass 1.9 kg. The end of the bar is welded to the surface of a sphere of radius 0.11 m and mass 0.86 kg. Find the centre of mass of the composite object as measured in metres from the end of the bar without the sphere. Type your numeric answer and submit
The center of mass of the composite object, consisting of the bar and sphere, is approximately 0.206 meters from the end of the bar. This is calculated by considering the individual centers of mass and their weighted average based on their masses.
To find the center of mass of the composite object, we need to consider the individual center of masses of the bar and the sphere and calculate their weighted average based on their masses.
The center of mass of the bar is located at its midpoint, which is L/2 = 0.55 m / 2 = 0.275 m from the end of the bar.
The center of mass of the sphere is at its geometric center, which is at a distance of R/2 = 0.11 m / 2 = 0.055 m from the end of the bar.
Now we calculate the weighted average:
Center of mass of the composite object = ([tex]m_bar[/tex] * center of mass of the bar + [tex]m_bar[/tex] * center of mass of the sphere) / ([tex]m_bar + m_sphere[/tex])
Center of mass of the composite object = (1.9 kg * 0.275 m + 0.86 kg * 0.055 m) / (1.9 kg + 0.86 kg)
To solve the expression (1.9 kg * 0.275 m + 0.86 kg * 0.055 m) / (1.9 kg + 0.86 kg), we can simplify the numerator and denominator separately and then divide them.
Numerator: (1.9 kg * 0.275 m + 0.86 kg * 0.055 m) = 0.5225 kg⋅m + 0.0473 kg⋅m = 0.5698 kg⋅m
Denominator: (1.9 kg + 0.86 kg) = 2.76 kg
Now we can calculate the expression:
(0.5698 kg⋅m) / (2.76 kg) ≈ 0.206 m
Therefore, the solution to the expression is approximately 0.206 meters.
To know more about the center of mass refer here,
https://brainly.com/question/8662931#
#SPJ11
A stone with a mass of 4.00 kg is moving with velocity (7.001 - 2.00)) m/s. (HINT: ² =) (a) What is the stone's kinetic energy (in 3) at this velocity? (b) Find the net work (in 3) on the stone if its velocity changes to (8.001 + 4.00j) m/s.
The problem involves calculating the kinetic energy of a stone moving with a given velocity and finding the net work done on the stone when its velocity changes to a different value.
(a) The kinetic energy of an object can be calculated using the equation KE = (1/2)mv², where KE is the kinetic energy, m is the mass of the object, and v is its velocity. Given that the mass of the stone is 4.00 kg and its velocity is (7.001 - 2.00) m/s, we can calculate the kinetic energy as follows:
KE = (1/2)(4.00 kg)((7.001 - 2.00) m/s)² = (1/2)(4.00 kg)(5.001 m/s)² = 50.01 J
Therefore, the stone's kinetic energy at this velocity is 50.01 J.
(b) To find the net work done on the stone when its velocity changes to (8.001 + 4.00j) m/s, we need to consider the change in kinetic energy. The net work done is equal to the change in kinetic energy. Given that the stone's initial kinetic energy is 50.01 J, we can calculate the change in kinetic energy as follows:
Change in KE = Final KE - Initial KE = (1/2)(4.00 kg)((8.001 + 4.00j) m/s)² - 50.01 J
The exact value of the net work done will depend on the specific values of the final velocity components (8.001 and 4.00j).
Learn more about kinetic energy:
https://brainly.com/question/999862
#SPJ11
A loop of wire carrying current I (moving counterclockwise as seen from above) lies in the xy. plane. The loop is placed in a constant magnetic field of magnitude B that points at 30° from the z-axis. If the loop has a radius of 10 meters, carries a current of 2 amps, and the magnitude of the magnetic field is B Tesla, then the magnitude of the torque on the loop is given by am Newton-meters What is the value of a if B=5 Tesla?
The value of a is 100, as it represents the coefficient π in the equation. Therefore, if B = 5 Tesla, the magnitude of the torque on the loop is 500π N·m, or approximately 1570 N·m.
The torque on a current-carrying loop placed in a magnetic field is given by the equation τ = NIABsinθ, where τ is the torque, N is the number of turns in the loop, I is the current, A is the area of the loop, B is the magnitude of the magnetic field, and θ is the angle between the magnetic field and the normal to the loop.
In this case, the loop has a radius of 10 meters, so the area A is πr² = π(10 m)² = 100π m². The current I is 2 amps, and the magnitude of the magnetic field B is 5 Tesla. The angle θ between the magnetic field and the z-axis is 30°.
Plugging in the values into the torque equation, we have: τ = (2)(1)(100π)(5)(sin 30°)
Using the approximation sin 30° = 0.5, the equation simplifies to: τ = 500π N·m
To know more about torque refer here:
https://brainly.com/question/28220969#
#SPJ11
An initially-stationary electric dipole of dipole moment □=(5.00×10−10C⋅m)1 placed in an electric field □=(2.00×106 N/C) I+(2.00×106 N/C)j. What is the magnitude of the maximum torque that the electric field exerts on the dipole in units of 10−3 Nnm ? 1.40 2.80 0.00 1.00
The magnitude of the maximum torque that the electric field exerts on the dipole is[tex]1.00×10^-3[/tex]N⋅m, which is equivalent to 1.00 N⋅mm or [tex]1.00×10^-3[/tex] N⋅m.
The torque (τ) exerted on an electric dipole in an electric field is given by the formula:
τ = p * E * sin(θ)
where p is the dipole moment, E is the electric field, and θ is the angle between the dipole moment and the electric field.
In this case, the dipole moment is given as p = 5.00×[tex]10^-10[/tex] C⋅m, and the electric field is given as E = (2.00×1[tex]0^6[/tex] N/C) I + (2.00×[tex]10^6[/tex] N/C) j.
To find the magnitude of the maximum torque, we need to determine the angle θ between the dipole moment and the electric field.
Since the electric field is given in terms of its x- and y-components, we can calculate the angle using the formula:
θ = arctan(E_y / E_x)
Substituting the given values, we have:
θ = arctan((2.00×[tex]10^6[/tex] N/C) / (2.00×[tex]10^6[/tex] N/C)) = arctan(1) = π/4
Now we can calculate the torque:
τ = p* E * sin(θ) = (5.00×[tex]10^-10[/tex]C⋅m) * (2.00×[tex]10^6[/tex] N/C) * sin(π/4) = (5.00×[tex]10^-10[/tex] C⋅m) * (2.00×[tex]10^6[/tex] N/C) * (1/√2) = 1.00×[tex]10^-3[/tex]N⋅m
To know more about torque refer to-
https://brainly.com/question/30338175
#SPJ11
Complete question
An initially-stationary electric dipole of dipole moment □=(5.00×10−10C⋅m)1 placed in an electric field □=(2.00×106 N/C) I+(2.00×106 N/C)j. What is the magnitude of the maximum torque that the electric field exerts on the dipole in units of 10−3 Nnm ?
Two balls are side by side initially. At time = 0s, ball A is thrown at an initial angular velocity of pi radians per second and at time = 5s, the second ball is thrown down at the same angular velocity of pi radians per second down identical inclines with negligible friction. Assume the ramp is big enough so that the balls do not reach the bottom in the time values given.
a) Construct the angular velocity vs. time graph of both balls from time = 0 s to 15 seconds. Clearly label which line represent which ball and the time values.
b) The experiment is repeated on the same ramps with the same balls but this time, both balls are thrown down the incline at the same time with the same angular velocity. Ball A has twice the radius of Ball B.
i) Construct the linear velocity vs. time graph of both balls.
ii) Shade in the part of your linear velocity vs. time graph that represent the separation displacement between Ball A and Ball B as time progresses. Does this distance increase, decrease, or remain the same over time? Explain your answer.
a) Ball A: Horizontal line at pi radians per second from 0s to 15s.
Ball B: Horizontal line at pi radians per second from 5s to 15s.
b) i) Ball A: Positive sloped line indicating constant increase in linear velocity.
Ball B: Positive sloped line indicating constant increase in linear velocity.
ii) The separation distance between Ball A and Ball B remains the same over time.
a) The angular velocity vs. time graph for both balls can be represented as follows:
- Ball A: The graph is a horizontal line at the value of pi radians per second starting from time = 0s and continuing until time = 15s.
- Ball B: The graph is also a horizontal line at the value of pi radians per second starting from time = 5s and continuing until time = 15s.
b) i) The linear velocity vs. time graph for both balls can be represented as follows:
- Ball A: The graph is a straight line with a positive slope, indicating a constant increase in linear velocity over time.
- Ball B: The graph is also a straight line with a positive slope, indicating a constant increase in linear velocity over time.
ii) The separation displacement between Ball A and Ball B will remain the same over time. This is because both balls are thrown down the incline at the same time with the same angular velocity, meaning they will have the same linear velocity at any given time. Since they start at the same position, their relative distance or separation will remain constant throughout their motion.
Learn more about angular velocity:
https://brainly.com/question/29342095
#SPJ11
A golf ball with mass 5.0 x 10^-2 kg is struck with a club
and leaves the club face with a velocity of +44m/s. find the
magnitude of the impulse due to Collison
The magnitude of the impulse due to the collision is 2.2 kg·m/s.
The impulse due to the collision can be calculated using the principle of conservation of momentum.
Impulse = change in momentum
Since the golf ball leaves the club face with a velocity of +44 m/s, the change in momentum can be calculated as:
Change in momentum = (final momentum) - (initial momentum)
The initial momentum is given by the product of the mass and initial velocity, and the final momentum is given by the product of the mass and final velocity.
Initial momentum = (mass) * (initial velocity) = (5.0 x 10^-2 kg) * (0 m/s) = 0 kg·m/s
Final momentum = (mass) * (final velocity) = (5.0 x 10^-2 kg) * (+44 m/s) = +2.2 kg·m/s
Therefore, the change in momentum is:
Change in momentum = +2.2 kg·m/s - 0 kg·m/s = +2.2 kg·m/s
The magnitude of the impulse due to the collision is equal to the magnitude of the change in momentum, which is:
|Impulse| = |Change in momentum| = |+2.2 kg·m/s| = 2.2 kg·m/s
Learn more about momentum:
https://brainly.com/question/1042017
#SPJ11
16) Rayleigh's criteria for resolution You are a human soldier in the war against the giant, bright yellow, alien Spodders who have invaded earth and plan to sell our body parts fried up as Col. McTerran nuggets M to alien restaurants across the galaxy. You are told not to shoot your laser rifle until you can resolve the black dots of their primary pair of eyes. Spodder primary eyes are spaced 6.5 cm apart. The diameter of your pupil in the twilight of the battle is 5.0 mm. Assume the light you use to see them with is at the peak wavelength of human visual sensitivity ( 555 nm ) as is appropriate for humans. At what distance can you resolve two Spodder eyes (and thereby fire on the menacing foe)? (If you are a giant alien Spodder then I apologize for the discriminatory language. Please don't serve me for dinner.) 17)Lab: Ohms law and power in a complex circuit In the figure shown, what is the power dissipated in the 2ohm resistance in the circuit? 18)Putting charge on a capacitor The capacitor shown in the circuit in the figure is initially uncharged when the switch S is suddenly closed. After 2 time constants, the voltage across the capacitor will be.... Hint: first find the cap voltages Vt=0Vt=[infinity]…
In order to resolve the black dots of the Spodder's primary pair of eyes, you need to determine the distance at which they can be resolved.
According to Rayleigh's criteria for resolution, two objects can be resolved if the central maximum of one object's diffraction pattern falls on the first minimum of the other object's diffraction pattern.
Using the formula for the angular resolution limit, θ = 1.22 * (λ/D), where λ is the wavelength of light and D is the diameter of the pupil, we can calculate the angular resolution.
Converting the pupil diameter to meters (5.0 mm = 0.005 m) and substituting the values (λ = 555 nm = 555 × 10^(-9) m, D = 0.005 m) into the formula, we get θ = 1.22 * (555 × 10^(-9) m / 0.005 m) = 0.135 degrees.
Now, to find the distance at which the Spodder's eyes can be resolved, we can use trigonometry. The distance (d) is related to the angular resolution (θ) and the spacing of the eyes (s) by the equation d = s / (2 * tan(θ/2)).
Substituting the values (s = 6.5 cm = 0.065 m, θ = 0.135 degrees) into the equation, we get d = 0.065 m / (2 * tan(0.135/2)) ≈ 0.192 m.
Therefore, you can resolve the Spodder's primary pair of eyes and fire on them when they are approximately 0.192 meters away from you.
Note: The given problem is a hypothetical scenario and involves assumptions and calculations based on Rayleigh's criteria for resolution. In practical situations, other factors such as atmospheric conditions and the visual acuity of an individual may also affect the ability to resolve objects.
To learn more about distance click here brainly.com/question/13034462
#SPJ11
An object of mass 0.2 kg is hung from a spring whose spring constant is 80 N/m. The object is subject to a resistive force given by - bå, where is its velocity in meters per second and b = 4 Nm-sec. (a) Set up differnetial equation of motion for free oscillations of the system and find the period of such oscillations. (b)The object is subjected to a sinusoidal driving force given by F(t) = Fosin(wt), where Fo = 2 N and w = 30 sec-1. In the steady state, what is the amplitude of the forced oscillation? (c) Find Q for the system - is the system underdamped, overdamped or critically damped? (d) What is the mean power input? (e) What is the energy
The differential equation of motion for free oscillations of the system can be derived using Newton's second law. The period of such oscillations is about 1.256 s. The amplitude of the forced oscillation is 0.056 N. The total energy of the system is the sum of the potential energy and the kinetic energy at any given time.
(a) The differential equation of motion for free oscillations of the system can be derived using Newton's second law:
m * d^2x/dt^2 + b * dx/dt + k * x = 0
Where:
m = mass of the object (0.2 kg)
b = damping coefficient (4 N·s/m)
k = spring constant (80 N/m)
x = displacement of the object from the equilibrium position
To find the period of such oscillations, we can rearrange the equation as follows:
m * d^2x/dt^2 + b * dx/dt + k * x = 0
d^2x/dt^2 + (b/m) * dx/dt + (k/m) * x = 0
Comparing this equation with the standard form of a second-order linear homogeneous differential equation, we can see that:
ω0^2 = k/m
2ζω0 = b/m
where ω0 is the natural frequency and ζ is the damping ratio.
The period of the oscillations can be found using the formula:
T = 2π/ω0 = 2π * sqrt(m/k)
Substituting the given values, we have:
T = 2π * sqrt(0.2/80) ≈ 1.256 s
(b) The amplitude of the forced oscillation in the steady state can be found by calculating the steady-state response of the system to the sinusoidal driving force.
The amplitude A of the forced oscillation is given by:
A = Fo / sqrt((k - m * w^2)^2 + (b * w)^2)
Substituting the given values, we have:
A = 2 / sqrt((80 - 0.2 * (30)^2)^2 + (4 * 30)^2) ≈ 0.056 N
(c) The quality factor Q for the system can be calculated using the formula:
Q = ω0 / (2ζ)
where ω0 is the natural frequency and ζ is the damping ratio.
Given that ω0 = sqrt(k/m) and ζ = b / (2m), we can substitute the given values and calculate Q.
(d) The mean power input can be calculated as the average of the product of force and velocity over one complete cycle of oscillation.
Mean power input = (1/T) * ∫[0 to T] F(t) * v(t) dt
where F(t) = Fo * sin(wt) and v(t) is the velocity of the object.
(e) The energy of the system can be calculated as the sum of the potential energy and the kinetic energy.
Potential energy = (1/2) * k * x^2
Kinetic energy = (1/2) * m * v^2
The total energy of the system is the sum of the potential energy and the kinetic energy at any given time.
To learn more about forced oscillation click here
https://brainly.com/question/31294475
#SPJ11
50. The angle that a reflected light ray makes with the surface normal A) is smaller B) the same size C) greater than the angle that the incident ray makes with the normal 51. The speed of light in gl
The angle that a reflected light ray makes with the surface normal is smaller.
The law of reflection states that the angle of incidence is equal to the angle of reflection. When light is reflected from a surface, the angle at which it is reflected (angle of reflection) is equal to the angle at which it hits the surface (angle of incidence). The angle that a reflected light ray makes with the surface normal is the angle of reflection. Therefore, the answer is that the angle that a reflected light ray makes with the surface normal is smaller than the angle that the incident ray makes with the normal.
The speed of light in glass is less than the speed of light in a vacuum. This means that the refractive index of glass is greater than 1. When light passes through a medium with a higher refractive index than the medium it was previously in, the light is bent towards the normal. Therefore, the answer is that the speed of light in glass is less than the speed of light in a vacuum, and the refractive index of glass is greater than 1.
The angle that a reflected light ray makes with the surface normal is A) is smaller. The law of reflection states that the angle of incidence is equal to the angle of reflection. When light is reflected from a surface, the angle at which it is reflected (angle of reflection) is equal to the angle at which it hits the surface (angle of incidence). The angle that a reflected light ray makes with the surface normal is the angle of reflection. Therefore, the answer is that the angle that a reflected light ray makes with the surface normal is smaller than the angle that the incident ray makes with the normal.
The speed of light in glass is less than the speed of light in a vacuum. This means that the refractive index of glass is greater than 1. When light passes through a medium with a higher refractive index than the medium it was previously in, the light is bent towards the normal. Therefore, the answer is that the speed of light in glass is less than the speed of light in vacuum, and the refractive index of glass is greater than 1.
When a light wave strikes a surface, it can be either absorbed or reflected. Reflection occurs when light bounces back from a surface. The angle at which the light strikes the surface is known as the angle of incidence, and the angle at which it reflects is known as the angle of reflection. The angle of incidence is always equal to the angle of reflection, as stated by the law of reflection. The angle that a reflected light ray makes with the surface normal is the angle of reflection. It's smaller than the angle of incidence.
When light travels through different mediums, such as air and glass, its speed changes, and it bends. Refraction is the process of bending that occurs when light moves from one medium to another with a different density. The refractive index is a measure of the extent to which a medium slows down light compared to its speed in a vacuum. The refractive index of a vacuum is 1.
When light moves from a medium with a low refractive index to a medium with a high refractive index, it bends toward the normal, which is a line perpendicular to the surface separating the two media.
When light is reflected from a surface, the angle of reflection is always equal to the angle of incidence. The angle of reflection is the angle that a reflected light ray makes with the surface normal, and it is smaller than the angle of incidence. The refractive index of a medium is a measure of how much the medium slows down light compared to its speed in a vacuum. When light moves from a medium with a low refractive index to a medium with a high refractive index, it bends toward the normal.
To know more about refractive index visit
brainly.com/question/30761100
#SPJ11
A hollow square steel tube has a height and width dimension of 5 in and a wall thickness of 0.4 in. and an original length of 8 in. The tube is loaded with 44000 lb. in compression and is shortened by 0.0017 in. as a result of the load. Determine the Modulus of Elasticity of the steel with 1-decimal place accuracy.E= _______ x10^6
(to 1 decimal place)
The Modulus of Elasticity of the steel with 1-decimal place accuracy is 0.0017 in / 8 in
To determine the modulus of elasticity (E) of the steel, we can use Hooke's law, which states that the stress (σ) is directly proportional to the strain (ε) within the elastic limit.
The stress (σ) can be calculated using the formula:
σ = F / A
Where:
F is the force applied (44000 lb in this case)
A is the cross-sectional area of the steel tube.
The strain (ε) can be calculated using the formula:
ε = ΔL / L0
Where:
ΔL is the change in length (0.0017 in)
L0 is the original length (8 in)
The modulus of elasticity (E) can be calculated using the formula:
E = σ / ε
Now, let's calculate the cross-sectional area (A) of the steel tube:
The outer dimensions of the tube can be calculated by adding twice the wall thickness to each side of the inner dimensions:
Outer height = 5 in + 2 × 0.4 in = 5.8 in
Outer width = 5 in + 2 × 0.4 in = 5.8 in
The cross-sectional area (A) is the product of the outer height and outer width:
A = Outer height × Outer width
Substituting the values:
A = 5.8 in × 5.8 in
A = 33.64 in²
Now, we can calculate the stress (σ):
σ = 44000 lb / 33.64 in²
Next, let's calculate the strain (ε):
ε = 0.0017 in / 8 in
Finally, we can calculate the modulus of elasticity (E):
E = σ / ε
To know more about elasticity click on below link :
https://brainly.com/question/17250844#
#SPJ11
PROBLEM STATEMENT Housewives claims that bulk red label wine is stronger than the Red Label wine found on Supermarket shelves. Plan and design an experiment to prove this claim HYPOTHESIS AM APPARATUS AND MATERIALS DIAGRAM OF APPARATUS (f necessary METHOD On present tense) VARIABLES: manipulated controlled responding EXPECTED RESULTS ASSUMPTION PRECAUTIONS/ POSSIBLE SOURCE OF ERROR
To prove the claim that bulk red label wine is stronger than the Red Label wine found on supermarket shelves, an experiment can be designed to compare the alcohol content of both types of wine.
To investigate the claim, the experiment would involve analyzing the alcohol content of bulk red label wine and the Red Label wine available in supermarkets. The hypothesis assumes that bulk red label wine has a higher alcohol content than the Red Label wine sold in supermarkets.
In order to conduct this experiment, the following apparatus and materials would be required:
1. Samples of bulk red label wine
2. Samples of Red Label wine from a supermarket
3. Alcohol meter or hydrometer
4. Wine glasses or containers for testing
The experiment would proceed as follows:
1. Obtain representative samples of bulk red label wine and Red Label wine from a supermarket.
2. Ensure that the samples are of the same vintage and have been stored under similar conditions.
3. Use the alcohol meter or hydrometer to measure the alcohol content of each wine sample.
4. Pour the wine samples into separate wine glasses or containers.
5. Observe and record any visual differences between the wines, such as color or clarity.
Variables:
- Manipulated variable: Type of wine (bulk red label wine vs. Red Label wine from a supermarket)
- Controlled variables: Vintage of the wine, storage conditions, and volume of wine used for testing
- Responding variable: Alcohol content of the wine
Expected Results:
Based on the hypothesis, it is expected that the bulk red label wine will have a higher alcohol content compared to the Red Label wine from a supermarket.
Assumption:
The assumption is that the bulk red label wine, being purchased in larger quantities, may be sourced from different suppliers or production methods that result in a higher alcohol content compared to the Red Label wine sold in supermarkets.
Precautions/Possible Sources of Error:
1. Ensure that the alcohol meter or hydrometer used for measuring the alcohol content is calibrated properly.
2. Take multiple measurements for each wine sample to ensure accuracy.
3. Avoid cross-contamination between the wine samples during testing.
4. Ensure the wine samples are handled and stored properly to maintain their integrity.
Learn more about alcohol
brainly.com/question/29268872
#SPJ11
How do the vibrational and rotational levels of heavy hydrogen (D²) molecules compare with those of H² molecules?
The vibrational and rotational levels of heavy hydrogen (D²) molecules are similar to those of H² molecules, but with some differences due to the difference in mass between hydrogen (H) and deuterium (D).
The vibrational and rotational levels of diatomic molecules are governed by the principles of quantum mechanics. In the case of H² and D² molecules, the key difference lies in the mass of the hydrogen isotopes.
The vibrational energy levels of a molecule are determined by the reduced mass, which takes into account the masses of both atoms. The reduced mass (μ) is given by the formula:
μ = (m₁ * m₂) / (m₁ + m₂)
For H² molecules, since both atoms are hydrogen (H), the reduced mass is equal to the mass of a single hydrogen atom (m_H).
For D² molecules, the reduced mass will be different since deuterium (D) has twice the mass of hydrogen (H).
Therefore, the vibrational energy levels of D² molecules will be shifted to higher energies compared to H² molecules. This is because the heavier mass of deuterium leads to a higher reduced mass, resulting in higher vibrational energy levels.
On the other hand, the rotational energy levels of diatomic molecules depend only on the moment of inertia (I) of the molecule. The moment of inertia is given by:
I = μ * R²
Since the reduced mass (μ) changes for D² molecules, the moment of inertia will also change. This will lead to different rotational energy levels compared to H² molecules.
The vibrational and rotational energy levels of heavy hydrogen (D²) molecules, compared to H² molecules, are affected by the difference in mass between hydrogen (H) and deuterium (D). The vibrational energy levels of D² molecules are shifted to higher energies due to the increased mass, resulting in higher vibrational states.
Similarly, the rotational energy levels of D² molecules will differ from those of H² molecules due to the change in moment of inertia resulting from the different reduced mass. These differences in energy levels arise from the fundamental principles of quantum mechanics and have implications for the spectroscopy and behavior of heavy hydrogen molecules compared to regular hydrogen molecules.
To know more about hydrogen ,visit:
https://brainly.com/question/24433860
#SPJ11
On a day when the speed of sound is 345 m/s, the fundamental frequency of a particular stopped organ pipe is 220 Hz. The second overtone of this pipe has the same wavelength as the third harmonic of an open pipe. How long is the open pipe? Express your answer in mm
The length of the open pipe can be determined by comparing the wavelength of the third harmonic of the open pipe to the second overtone of the stopped organ pipe.
The fundamental frequency of a stopped organ pipe is determined by the length of the pipe, while the frequency of a harmonic in an open pipe is determined by the length and speed of sound. In this case, the fundamental frequency of the stopped organ pipe is given as 220 Hz.
The second overtone of the stopped organ pipe is the third harmonic, which has a frequency that is three times the fundamental frequency, resulting in 660 Hz (220 Hz × 3). The wavelength of this second overtone can be calculated by dividing the speed of sound by its frequency: wavelength = speed of sound / frequency = 345 m/s / 660 Hz = 0.5227 meters.
Now, we need to find the length of the open pipe that produces the same wavelength as the third harmonic of the stopped organ pipe. Since the open pipe has a fundamental frequency that corresponds to its first harmonic, the wavelength of the third harmonic in the open pipe is four times the length of the pipe. Therefore, the length of the open pipe can be calculated by multiplying the wavelength by a factor of 1/4: length = (0.5227 meters) / 4 = 0.1307 meters.
Finally, to express the length in millimeters, we convert the length from meters to millimeters by multiplying it by 1000: length = 0.1307 meters × 1000 = 130.7 mm. Hence, the length of the open pipe is 130.7 mm.
To learn more about wavelength.
Click here:brainly.com/question/29548846
#SPJ11
Imagine you had a device to use for this experiment. The device would shoot a series of 2. 0 g balls along the surface at the box, each with a velocity of 30 cm/s [E60N]. In 2. 0 s it shoots 10 successive 2. 0 balls, all of which collide and rebound off the 100g box, as with the first ball. What would be the total impulse delivered to the box by the 10 collisions?What would be the total change in momentum of the 100g box?What would be the total change in velocity of the 100g box after these 10 collisions?
The total impulse delivered to the box by the 10 collisions is 0.006 kg·m/s, the total change in momentum of the 100 g box is 0.012 kg·m/s, and the total change in velocity of the 100 g box after these 10 collisions is 0.12 m/s.
The total impulse delivered to the box by the 10 collisions can be calculated using the equation:
Impulse = Change in Momentum
First, let's calculate the momentum of each 2.0 g ball. The momentum of an object is given by the equation:
Momentum = mass x velocity
Since the mass of each ball is 2.0 g and the velocity is 30 cm/s, we convert the mass to kg and the velocity to m/s:
mass = 2.0 g = 0.002 kg
velocity = 30 cm/s = 0.3 m/s
Now, we can calculate the momentum of each ball:
Momentum = 0.002 kg x 0.3 m/s = 0.0006 kg·m/s
Since 10 balls are shot in succession, the total impulse delivered to the box is the sum of the impulses from each ball. Therefore, we multiply the momentum of each ball by the number of balls (10) to find the total impulse:
Total Impulse = 0.0006 kg·m/s x 10 = 0.006 kg·m/s
Next, let's calculate the total change in momentum of the 100 g box. The initial momentum of the box is zero since it is at rest. After each collision, the box gains momentum in the opposite direction to the ball's momentum. Since the box rebounds off the ball with the same momentum, the change in momentum for each collision is twice the momentum of the ball. Therefore, the total change in momentum of the box is:
Total Change in Momentum = 2 x Total Impulse = 2 x 0.006 kg·m/s = 0.012 kg·m/s
Finally, let's calculate the total change in velocity of the 100 g box after these 10 collisions. The change in velocity can be found using the equation:
Change in Velocity = Change in Momentum / Mass
The mass of the box is 100 g = 0.1 kg. Therefore, the total change in velocity is:
Total Change in Velocity = Total Change in Momentum / Mass = 0.012 kg·m/s / 0.1 kg = 0.12 m/s
Therefore, the total impulse delivered to the box by the 10 collisions is 0.006 kg·m/s, the total change in momentum of the 100 g box is 0.012 kg·m/s, and the total change in velocity of the 100 g box after these 10 collisions is 0.12 m/s.
To more about velocity visit:
https://brainly.com/question/34025828
#SPJ11
A proton (charge +e, mass mp), a deuteron (charge +e, mass 2mp), and an alpha particle (charge +2e, mass 4m) are accelerated from rest through a common potential difference AV. Each of the particles enters a uniform magnetic field B, with its velocity in a direction perpendicular to B. The proton moves in a circular path of radius p (a) In terms of r, determine the radius r of the circular orbit for the deuteron.
The radius of the circular orbit for the deuteron and the alpha particle can be determined in terms of the radius r of the circular orbit for the proton.
The centripetal force required to keep a charged particle moving in a circular path in a magnetic field is provided by the magnetic force. The magnetic force is given by the equation F = qvB, where q is the charge of the particle, v is its velocity, and B is the magnetic field strength.
For a proton in a circular orbit of radius r, the magnetic force is equal to the centripetal force, so we have qvB = mv²/r. Rearranging this equation, we find that v = rB/m.
Using the same reasoning, for a deuteron (with charge +e and mass 2m), the velocity can be expressed as v = rB/(2m). Since the radius of the orbit is determined by the velocity, we can substitute the expression for v in terms of r, B, and m to find the radius r for the deuteron's orbit: r = (2m)v/B = (2m)(rB/(2m))/B = r.
Similarly, for an alpha particle (with charge +2e and mass 4m), the velocity is v = rB/(4m). Substituting this into the expression for v, we get r = (4m)v/B = (4m)(rB/(4m))/B = r.
Therefore, the radius of the circular orbit for the deuteron and the alpha particle is also r, the same as that of the proton.
Learn more about velocity here ;
brainly.com/question/30540135
#SPJ4
In terms of r, the radius of the circular orbit for the deuteron is r.
The magnetic field B that each of the particles enters is uniform. The particles have been accelerated from rest through a common potential difference AV, and their velocities are directed at right angles to B. Given that the proton moves in a circular path of radius p. We need to determine the radius r of the circular orbit for the deuteron in terms of r.
Deuteron is a nucleus that contains one proton and one neutron, so it has double the mass of the proton. Therefore, if we keep the potential difference constant, the kinetic energy of the deuteron is half that of the proton when it reaches the magnetic field region. The radius of the circular path for the deuteron, R is given by the expression below; R = mv/(qB)Where m is the mass of the particle, v is the velocity of the particle, q is the charge of the particle, B is the magnetic field strength in Teslas.
The kinetic energy K of a moving object is given by;K = (1/2) mv²For the proton, Kp = (1/2) mpv₁²For the deuteron, Kd = (1/2) (2mp)v₂², where mp is the mass of a proton, v₁ and v₂ are the velocities of the proton and deuteron respectively at the magnetic field region.
Since AV is common to all particles, we can equate their kinetic energy at the magnetic field region; Kp = Kd(1/2) mpv₁² = (1/2) (2mp)v₂²4v₁² = v₂²From the definition of circular motion, centripetal force, Fc of a charged particle of mass m with charge q moving at velocity v in a magnetic field B is given by;Fc = (mv²)/r
Where r is the radius of the circular path. The centripetal force is provided by the magnetic force experienced by the particle, so we can equate the magnetic force and the centripetal force;qvB = (mv²)/rV = (qrB)/m
Substitute for v₂ and v₁ in terms of B,m, and r;(qrB)/mp = 2(qrB)/md² = 2pThe radius of the deuteron's circular path in terms of the radius of the proton's circular path is;d = 2p(radius of proton's circular path)r = (d/2p)p = r/2pSo, r = 2pd.
Learn more about deuteron
https://brainly.com/question/31978176
#SPJ11
If the period of a 70.0-cm-long simple pendulum is 1.68 s, what
is the value of g at the location of the pendulum?
The value of g at the location of the pendulum is approximately 9.81 m/s², given a period of 1.68 s and a length of 70.0 cm.
The period of a simple pendulum is given by the formula:
T = 2π√(L/g),
where:
T is the period,L is the length of the pendulum, andg is the acceleration due to gravity.Rearranging the formula, we can solve for g:
g = (4π²L) / T².
Substituting the given values:
L = 70.0 cm = 0.70 m, and
T = 1.68 s,
we can calculate the value of g:
g = (4π² * 0.70 m) / (1.68 s)².
g ≈ 9.81 m/s².
Therefore, the value of g at the location of the pendulum is approximately 9.81 m/s².
To learn more about acceleration due to gravity, Visit:
https://brainly.com/question/88039
#SPJ11
Part A What percentage of all the molecules in the glass are water? Express your answer using six significant figures. D | ΑΣΦ VO ? MAREH nwater Submit Request Answer % Assume the total number of molecules in a glass of liquid is about 1,000,000 million trillion. One million trillion of these are molecules of some poison, while 999,999 million trillion of these are water molecules.
Assuming the total number of molecules in a glass of liquid is about 1,000,000 million trillion.
One million trillion of these are molecules of some poison, while 999,999 million trillion of these are water molecules.
Express your answer using six significant figures. To determine the percentage of all the molecules in the glass that are water, we need to use the following formula: % of water = (number of water molecules/total number of molecules) × 100.
To know more about liquid visit:
https://brainly.com/question/20922015
#SPJ11
Astronomers measure the distance to a particular star to
be 6.0 light-years (1 ly = distance light travels in 1 year). A spaceship travels from Earth to the vicinity of this star at steady speed, arriving in 3.50 years as measured by clocks on the spaceship. (a) How long does the trip take as measured by clocks in Earth's reference frame? (b) What distance does the spaceship travel as measured in its own
reference frame?
The time taken by the spaceship as measured by Earth's reference frame can be calculated as follows: Δt′=Δt×(1−v2/c2)−1/2 where:v is the speed of the spaceship as measured in Earth's reference frame, c is the speed of lightΔt is the time taken by the spaceship as measured in its own reference frame.
The value of v is calculated as follows: v=d/Δt′where:d is the distance between Earth and the star, which is 6.0 light-years. Δt′ is the time taken by the spaceship as measured by Earth's reference frame.Δt is given as 3.50 years.Substituting these values, we get :v = d/Δt′=6.0/3.50 = 1.71 ly/yr.
Using this value of v in the first equation v is speed, we can find Δt′:Δt′=Δt×(1−v2/c2)−1/2=3.50×(1−(1.71)2/c2)−1/2=3.50×(1−(1.71)2/1)−1/2=2.42 years. Therefore, the trip takes 2.42 years as measured by clocks in Earth's reference frame.
The distance traveled by the spaceship as measured in its own reference frame is equal to the distance between Earth and the star, which is 6.0 light-years. This is because the spaceship is at rest in its own reference frame, so it measures the distance to the star to be the same as the distance measured by Earth astronomers.
Learn more about speed:
brainly.com/question/13943409
#SPJ11
A 1350 kg car is going at a constant speed 55.0 km/h when it
turns through a radius of 210 m. How big is the centripetal force?
Answer in 'kiloNewtons'.
A 1350 kg car is going at a constant speed 55.0 km/h, the centripetal force exerted by the car on taking the turn is approximately 109.37 kN.
Given data
Mass of the car, m = 1350 kg
Speed of the car, v = 55.0 km/h = 15.28 m/s
Radius of the turn, r = 210 m
Formula to find centripetal force : F = (mv²)/r where,
m = mass of the object
v = velocity of the object
r = radius of the turn
The formula to calculate the centripetal force is given as : F = (mv²)/r
We know that, m = 1350 kg ; v = 15.28 m/s and r = 210 m
Substitute the given values in the above equation to get the centripetal force.
F = (1350 kg) × (15.28 m/s)² / 210 m≈ 109.37 kN
Thus, the centripetal force exerted by the car on taking the turn is approximately 109.37 kN.
To learn more about centripetal force :
https://brainly.com/question/898360
#SPJ11
Any two point charges exert equally strong electric forces on each other. Coulomb's constant is
8.99 × 10° N-m2/C?, and given that an electron has a charge of -1.60 × 10-19 C: What is the electric force (magnitude and direction) between two electrons (-e) separated by a
distance of 15.5 cm?
The magnitude of the electric force between two electrons separated by a distance of 15.5 cm is approximately 2.32 × 10^-8 N. The direction of the force is attractive, as like charges repel each other, and both electrons have a negative charge.
The electric force between two charges can be calculated using Coulomb's law:
F = k * |q1 * q2| / r^2
where F is the electric force, k is Coulomb's constant (8.99 × 10^9 N m^2/C^2), q1 and q2 are the charges, and r is the distance between the charges.
Given that both charges are electrons with a charge of -1.60 × 10^-19 C, and the distance between them is 15.5 cm (which can be converted to meters as 0.155 m), we can substitute the values into the equation:
F = (8.99 × 10^9 N m^2/C^2) * |-1.60 × 10^-19 C * -1.60 × 10^-19 C| / (0.155 m)^2
Calculating the expression inside the absolute value:
|-1.60 × 10^-19 C * -1.60 × 10^-19 C| = (1.60 × 10^-19 C)^2 = 2.56 × 10^-38 C^2
Substituting this value and the distance into the equation:
F = (8.99 × 10^9 N m^2/C^2) * (2.56 × 10^-38 C^2) / (0.155 m)^2
Calculating further:
F ≈ 2.32 × 10^-8 N
Therefore, the magnitude of the electric force between two electrons separated by a distance of 15.5 cm is approximately 2.32 × 10^-8 N. The direction of the force is attractive, as like charges repel each other, and both electrons have a negative charge.
Learn more about magnitude:
https://brainly.com/question/30337362
#SPJ11
(i) Construct linear and quadratic approximations to the function f = x1x2 at the point x0 = (1,2)T. (ii) For the function f = x1x2, determine expressions for f(α) along the line x1 = x2 and also along the line joining (0, 1) to (1, 0).
The linear and quadratic approximations to the function f = x1x2 at the point x0 = (1,2)T have been constructed and the expressions for f(α) along the line x1 = x2 along the line joining (0, 1) to (1, 0).
For the given function f(x1,x2)=x1x2, the linear and quadratic approximations can be determined as follows:
Linear approximation: By taking the partial derivatives of the given function with respect to x1 and x2, we get:
f1(x1,x2) = x2 and f2(x1,x2) = x1
Now, the linear approximation can be expressed as follows:
f(x1,x2) ≈ f(1,2) + f1(1,2)(x1-1) + f2(1,2)(x2-2)
Thus, we have (x1,x2) ≈ 2 + 2(x1-1) + (x2-2) = 2x1 - x2 + 2.
Quadratic approximation:
For the quadratic approximation, we need to take into account the second-order partial derivatives as well.
These are given as follows:
f11(x1,x2) = 0, f12(x1,x2) = 1, f21(x1,x2) = 1, f22(x1,x2) = 0
Now, the quadratic approximation can be expressed as follows
f(x1,x2) ≈ f(1,2) + f1(1,2)(x1-1) + f2(1,2)(x2-2) + (1/2)[f11(1,2)(x1-1)² + 2f12(1,2)(x1-1)(x2-2) + f22(1,2)(x2-2)²]
Thus, we have (x1,x2) ≈ 2 + 2(x1-1) + (x2-2) + (1/2)[0(x1-1)² + 2(x1-1)(x2-2) + 0(x2-2)²] = 2x1 - x2 + 2 + x1(x2-2)
For the function f(x1,x2)=x1x2, we are required to determine the expressions for f(α) along the line x1 = x2 and also along the line joining (0, 1) to (1, 0).
Line x1 = x2:
Along this line, we have x1 = x2 = α.
Thus, we can write the function as f(α,α) = α².
Hence, the expression for f(α) along this line is simply f(α) = α².
The line joining (0,1) and (1,0):
The equation of the line joining (0,1) and (1,0) can be expressed as follows:x1 + x2 = 1Or,x2 = 1 - x1Substituting this value of x2 in the given function, we get
f(x1,x2) = x1(1-x1) = x1 - x1²
Now, we need to express x1 in terms of t where t is a parameter that varies along the line joining (0,1) and (1,0). For this, we can use the parametric equation of a straight line which is given as follows:x1 = t, x2 = 1-t
Substituting these values in the above expression for f(x1,x2), we get
f(t) = t - t²
Thus, we have constructed the linear and quadratic approximations to the function f = x1x2 at the point x0 = (1,2)T, and also determined the expressions for f(α) along the line x1 = x2 and also along the line joining (0, 1) to (1, 0).
To know more about partial derivatives visit
brainly.com/question/28751547
#SPJ11
Which graphs could represent CONSTANT VELOCITY MOTION
A constant velocity motion will be represented by a straight line on the position-time graph as in option (c). Therefore, the correct option is C.
An object in constant velocity motion keeps its speed and direction constant throughout. The position-time graph for motion with constant speed is linear. The magnitude and direction of the slope on the line represent the speed and direction of motion, respectively, and the slope itself represents the velocity of the object.
A straight line with a slope greater than zero on a position-time graph indicates that the object is traveling at a constant speed. The velocity of the object is represented by the slope of the line; A steeper slope indicates a higher velocity, while a shallower slope indicates a lower velocity.
Therefore, the correct option is C.
Learn more about Slope, here:
https://brainly.com/question/3605446
#SPJ4
Your question is incomplete, most probably the complete question is:
Which of the following position-time graphs represents a constant velocity motion?