Answer:
31
Step-by-step explanation:
93/3=31
So UV is equal to 31
Answer:
31
Step-by-step explanation:
find x on the lines plz and thanks
Answer:
x = 9
this is a ratio problem. You can see that 12/6 = 2, so you can also take 18/2 to get 9.
Answer:
the answer is 6
Step-by-step explanation:
Because 6 and x are corresponding angle so that means no matter what ( if u want the answer to how long the line is or what degree the angle is ) the answer is always going to be the same as the one above ( which is 6 )
Hop this helpssss
Complete the pattern ___ 8,579 ____85.7 8.57____
Answer:
the next one is .857 I hope this helps you :)
Which of these functions could have been the graph shown below?
Answer:
B
Step-by-step explanation:
we take the only point we know
(0,20)
in A when x =0
[tex]f(x)=e^{20x} =e^{20*0}=1[/tex]
in B when x=0
[tex]f(x)=20e^x=20e^0=20*1=20[/tex]
fits
in C
[tex]f(x)=20^x=20^0=1[/tex]
in D
[tex]f(x)=20^{20x}=20^{20*0}=20^0=1[/tex]
so the only choice is B
A triangle has vertices at (-4,-6),(3,3),(7,2). Rounded to two decimal places, which of the following is closest aporoximation of the perimeter of the triangle
Answer:
Perimeter= 29.12 unit
Step-by-step explanation:
Perimeter of the triangle is the length of the three sides if the triangle summef up together
Let's calculate the length of each side.
For (-4,-6),(3,3)
Length= √((3+4)²+(3+6)²)
Length= √((7)²+(9)²)
Length= √(49+81)
Length= √130
Length= 11.40
For (-4,-6),(7,2)
Length= √((7+4)²+(2+6)²)
Length= √((11)²+(8)²)
Length= √(121+64)
Length= √185
Length= 13.60
For (3,3),(7,2)
Length=√( (7-3)²+(2-3)²)
Length= √((4)²+(-1)²)
Length= √(16+1)
Length= √17
Length= 4.12
Perimeter= 4.12+13.60+11.40
Perimeter= 29.12 unit
Write the function in terms of unit step functions. Find the Laplace transform of the given function. f(t) = 5, 0 ≤ t < 7 −3, t ≥ 7
Rewrite f in terms of the unit step function:
[tex]f(t)=\begin{cases}5&\text{for }0\le t<7\\-3&\text{for }t\ge7\end{cases}[/tex]
[tex]\implies f(t)=5(u(t)-u(t-7))-3u(t-7)=5u(t)-8u(t-7)[/tex]
where
[tex]u(t)=\begin{cases}1&\text{for }t\ge0\\0&\text{for }t<0\end{cases}[/tex]
Recall the time-shifting property of the Laplace transform:
[tex]L[u(t-c)f(t-c)]=e^{-cs}L[f(t)][/tex]
and the Laplace transform of a constant function,
[tex]L[k]=\dfrac ks[/tex]
So we have
[tex]L[f(t)]=L[5u(t)-8u(t-7)]=5L[1]-8e^{-7s}L[1]=\boxed{\dfrac{5-8e^{-7s}}s}[/tex]
In this exercise you have to find the laplace transform:
[tex]L[f(t)]=\frac{5-8e^{-7s}}{s}[/tex]
Rewrite f in terms of the unit step function:
[tex]f(t)=\left \{ {{5, for 0\leq t\leq 7} \atop {-3, for t\geq 7}} \right. \\f(t)= 5(u(t)-u(t-7)-3u(t-7)=5u(t)-8u(t-7)[/tex]
Where:
[tex]u(t)= \left \{ {{1, t\geq 0} \atop {0, t<0}} \right.[/tex]
Recall the time-shifting property of the Laplace transform:
[tex]L[u(t-c)f(t-c)]= e^{-cs}L[f(t)][/tex]
and the Laplace transform of a constant function,
[tex]L[k]=\frac{k}{s}[/tex]
So we have:
[tex]L[f(t)]= L[5u(t)-8u(t-7)]= 5L[1]-8e^{-7s}L[1]= \frac{5-8e^{-7s}}{s}[/tex]
See more about Laplace transform at : brainly.com/question/2088771
If why varies with the square of x and Y equals 24 when x equals 10 then the constant of proportionality is ____, and the value of y when x equals 20 is ____. Assume x is greater than or equal to 0. Select two answers
Answer:
Step-by-step explanation:
y varies with the square of x:
y = kx²
y equals 24 when x equals 10
24 = k·10²
constant of proportionality k = 0.24
when x = 20, y = 0.24·20² = 96
"select two answers" —where are the choices?
A manufacturer knows that their items have a lengths that are skewed right, with a mean of 5.1 inches, and standard deviation of 1.1 inches. If 49 items are chosen at random, what is the probability that their mean length is greater than 4.8 inches? How do you answer this with the answer rounded 4 decimal places?
Answer:
0.9719
Step-by-step explanation:
Find the mean and standard deviation of the sampling distribution.
μ = 5.1
σ = 1.1 / √49 = 0.157
Find the z score.
z = (x − μ) / σ
z = (4.8 − 5.1) / 0.157
z = -1.909
Use a calculator to find the probability.
P(Z > -1.909)
= 1 − P(Z < -1.909)
= 1 − 0.0281
= 0.9719
The probability of the randomly used item mean length is greater than 4.8 inches is 0.9719
What is Probability?Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true.
What is Standard deviation?In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values.
What is Mean?The arithmetic mean is found by adding the numbers and dividing the sum by the number of numbers in the list.
Given,
Mean = 5.1 inches
Standard deviation = 1.1 inches
Sample size = 49
New mean = 4.8
Z score = Difference in mean /(standard deviation / [tex]\sqrt{sample size}[/tex])
Z score = [tex]\frac{4.8-5.1}{1.1/\sqrt{49} }=-1.909[/tex]
Z score = -1.909
Then the probability
P(Z>-1.909)
=1-P(Z>-1.909)
=1-0.0281
=0.9719
Hence, The probability of the randomly used item mean length is greater than 4.8 inches is 0.9719
Learn more about Probability, Standard deviation and Mean here
https://brainly.com/question/14935665
#SPJ2
Determine what type of model best fits the given situation:
The temperature of a cup of coffee decreases by 5 F every 20 minutes.
Find the value of a and YZ if Y is between X and Z. XY = 7a, YZ = 5a, XZ = 6a + 24 = YZ =
[tex]\\ \sf\longmapsto XY+YZ=XZ[/tex]
[tex]\\ \sf\longmapsto 7a+5a=6a+24[/tex]
[tex]\\ \sf\longmapsto 12a=6a+24[/tex]
[tex]\\ \sf\longmapsto 12a-6a=24[/tex]
[tex]\\ \sf\longmapsto 6a=24[/tex]
[tex]\\ \sf\longmapsto a=\dfrac{24}{6}[/tex]
[tex]\\ \sf\longmapsto a=5[/tex]
YZ=5a=5(5)=25Value of a is 4 and value of YZ is 20 units
Step-by-step explanation:
Given:
Y is between point X and Z
Value of line XY = 7a
Value of line YZ = 5a
Value of line XZ = 6a + 24
Find:
Value of "a" and line YZ
Computation:
We know that
XY + YZ = XZ
So,
7a + 5a = 6a + 24
12a = 6a + 24
6a = 24
a = 4
Value of a = 4
So,
Value of line YZ = 5a
By putting value of a
Value of line YZ = 5(4)
Value of line YZ = 20 units
Learn more;
https://brainly.com/question/18983323?referrer=searchResults
there are 40 marbles in an urn: 14 are green and 26 are yellow. you reach into the urn and randomly select 4 marbles without replacement. what is the probability that at least one of the marbles is green
Answer:
p=0,83641536
Step-by-step explanation:
Let's calculate the probability that all 4 marbles are yellow:
p=26/40*25/39*24/38*23/37 ( no replacement)
=0,1635846372688....
probability that at least one of the marbles is green= 1-p
=0,83641536...
What is the equation of the sinusoid?
Answer:
Hello,
Answer A
Step-by-step explanation:
if x=0 then sin(2*0)=sin(0)=0
if x= π/4 then sin(π/2)=1
if x= π/2 then sin(π)=0
The equation of the sinusoid will be y=Sin(2x)
What is an equation?It is defined as the relation between two variables, for a sinusoidal wave the equation will be in the form of Sin or Cos.
if x=0 then sin(2*0)=sin(0)=0
if x= π/4 then sin(π/2)=1
if x= π/2 then sin(π)=0
Hence the equation of the sinusoid will be y=Sin(2x)
To know more about equations follow
https://brainly.com/question/2972832
#SPJ2
A research center poll showed that % of people believe that it is morally wrong to not report all income on tax returns. What is the probability that someone does not have this belief? 78 The probability that someone does not believe that it is morally wrong to not report all income on tax returns is . (Type an integer or a decimal.)
Question:
A research center poll showed that 78% of people believe that it is morally wrong to not report all income on tax returns. What is the probability that someone does not have this belief?
The probability that someone does not believe that it is morally wrong to not report all income on tax returns is . (Type an integer or a decimal.)
Answer:
[tex]q = 0.22[/tex]
Step-by-step explanation:
Given
Let p represent the given proportion
p = 78%
Required
Determine the probability that someone holds a contrary belief
Start by converting the given proportion to decimal
[tex]p = 78\%[/tex]
[tex]p = \frac{78}{100}[/tex]
[tex]p = 0.78[/tex]
In probability, the sum of opposite probability is equal to 1
Represent the probability that someone holds a contrary belief with q
So;
[tex]p + q = 1[/tex]
Make q the subject of formula
[tex]q = 1 - p[/tex]
Substitute 0.78 for p
[tex]q = 1 - 0.78[/tex]
[tex]q = 0.22[/tex]
Hence, the probability that someone does not believe is 0.22
Assuming that the loss of ability to recall learned material is a first-order process with a halflife of 35 days. Compute the number of days required to forget 90% of the material that you have learned today. Report to 1 decimal place.
Answer:
5.3 days
Step-by-step explanation:
Let us assume the loss of ability to recall a learned material = 100%
Formula to calculate number of days = time(t) =
t = t½ × Log½(Nt/No)
Nt = Ending Amount
No = Beginning Amount
t½ = Half life
t = Time elapsed
Therefore, we have the following values from the questions:
Half life (t½)= 35 days
Initial or beginning amount = 100%
Ending amount = 90%
t = t½ × Log½ (Nt/No)
t = 35 × Log ½(90/100)
t = 5.3201082705768 days
Approximately = 5.3 days
given the vector with a manitude of 9m at an angle a of -80 degrees, decompose this vector into two vector components oarallel to the x axis with a slope of
Answer:
We have the magnitude, M, and the angle A.
(The angle is always measured from the +x-axis)
Then we have that:
x = M*cos(A)
y = M*sin(A)
in this case:
M = 9m
A = -80°
x = 9m*cos(-80°) = 1.562
y = 9m*sin(-80) = -8.86m
Now, the component parallel to the x axis is:
x = 9m*cos(-80°) = 1.562 m
And the slope of something parallel to the x-axis is always zero, as this is a constant line.
I need help ASAP please please please
Answer:
n=39/5
Step-by-step explanation:
24=5(n-3)
24=5n-15
-5n= -15-24
-5n=39
n= 39/5
Can someone please help me with this math problem
We have [tex]f\left(f^{-1}(x)\right) = x[/tex] for inverse functions [tex]f(x)[/tex] and [tex]f^{-1}(x)[/tex]. Then if [tex]f(x) = 2x+5[/tex], we have
[tex]f\left(f^{-1}(x)\right) = 2f^{-1}(x) + 5 = x \implies f^{-1}(x) = \dfrac{x-5}2[/tex]
Then
[tex]f^{-1}(8) = \dfrac{8-5}2 = \boxed{\dfrac32}[/tex]
where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50. (Round your answer to two decimal places.)
THIS IS THE COMPLETE QUESTION BELOW
The demand equation for a product is p=90000/400+3x where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50.
Answer
$168.27
Step by step Explanation
Given p=90000/400+3x
With the limits of 40 to 50
Then we need the integral in the form below to find the average price
1/(g-d)∫ⁿₐf(x)dx
Where n= 40 and a= 50, then if we substitute p and the limits then we integrate
1/(50-40)∫⁵⁰₄₀(90000/400+3x)
1/10∫⁵⁰₄₀(90000/400+3x)
If we perform some factorization we have
90000/(10)(3)∫3dx/(400+3x)
3000[ln400+3x]₄₀⁵⁰
Then let substitute the upper and lower limits we have
3000[ln400+3(50)]-ln[400+3(40]
30000[ln550-ln520]
3000[6.3099×6.254]
3000[0.056]
=168.27
the average price p on the interval 40 ≤ x ≤ 50 is
=$168.27
5 A machine puts tar on a road at the rate of 4 metres in 5 minutes.
a) How long does it take to cover 1 km of road
b) How many metres of road does it cover in 8 hours?
Answer:
5 a) Total = 20.83 hrs = 20 hrs and 50 mins (1250mins total)
5 b) Total = 96 meters. = 0.096km in 8 hrs.
Step-by-step explanation:
1km = 1000 meters
5 mins = 4 meters
1000/4 = 250 multiplier
250 x 5mins = 1250 minutes
1250/60 = 20hrs + 50 minutes
50 / 60 = 0.83 = 20.83hrs
b) 8 hrs = 8 x 60 = 480 minutes
480/5 = 24 multiplier of 4 meters
24 x 4 = 96 meters
How do you solve an expansion?
[tex]\displaystyle\\(a+b)^n\\T_{r+1}=\binom{n}{r}a^{n-r}b^r\\\\\\(x+2)^7\\a=x\\b=2\\r+1=5\Rightarrow r=4\\n=7\\T_5=\binom{7}{4}x^{7-4}2^4\\T_5=\dfrac{7!}{4!3!}\cdot x^3\cdot16\\T_5=16\cdot \dfrac{5\cdot6\cdot7}{2\cdot3}\cdot x^3\\\\T_5=560x^3[/tex]
Answer:
[tex]\large \boxed{560x^3}[/tex]
Step-by-step explanation:
[tex](x+2)^7[/tex]
Expand brackets.
[tex](x+2) (x+2) (x+2) (x+2) (x+2) (x+2) (x+2)[/tex]
[tex](x^2 +4x+4) (x^2 +4x+4) (x^2 +4x+4)(x+2)[/tex]
[tex](x^4 +8x^3 +24x^2 +32x+16)(x^3 +6x^2 +12x+8)[/tex]
[tex]x^7 +14x^6 +84x^5 +280x^4 +560x^3 +672x^2 +448x+128[/tex]
The fifth term is 560x³.
help pls!!! Classify the following question: “President, vice president, and secretary are being chosen for the Environmental Club. In how many different ways can these three offices be filled from a list of ten members?”
the answer is: combation
Alice, Bob, and Carol play a chess tournament. The first game is played between Alice and Bob. The player who sits out a given game plays next the winner of that game. The tournament ends when some player wins two successive games. Let a tournament history be the list of game winners, so for example ACBAA corresponds to the tournament where Alice won games 1, 4, and 5, Caroll won game 2, and Bob won game 3.
Required:
a. Provide a tree-based sequential description of a sample space where the outcomes are the possible tournament histories.
b. We are told that every possible tournament history that consists of k games has probability 1/2k, and that a tournament history consisting of an infinite number of games has zero prob- ability. Demonstrate that this assignment of probabilities defines a legitimate probability law.
c. Assuming the probability law from part (b) to be correct, find the probability that the tournament lasts no more than 5 games, and the probability for each of Alice, Bob, and Caroll winning the tournament.
Answer:
I don't know what you think about it is not going to be a great day of school and I don't know what you think about it is not going to be a great day of school
One model of the length LACL of a person's anterior cruciate ligament, or ACL, relates it to the person's height h with the linear function LACL=0.04606h−(41.29 mm) This relationship does not change significantly with age, gender, or weight. If a basketball player has a height of 2.13 m, approximately how long is his ACL?
Answer:
The [tex]L_{ACL}[/tex] of the player is [tex]L_{ACL} = 56.82 \ mm[/tex]
Step-by-step explanation:
From the question we are told that
The relationship between the length [tex]L_{ACL}[/tex] to the height is
[tex]L_{ACL} = 0.04606h - (41.29 \ mm)[/tex]
The height of the basketball player is [tex]h = 2.13 \ m = 2130 \ mm[/tex]
Substituting the value of height of the basket ball player in to the model we have the [tex]L_{ACL}[/tex] of the player is
[tex]L_{ACL} = 0.04606 (2130) - (41.29 ) \ mm[/tex]
[tex]L_{ACL} = 56.82 \ mm[/tex]
The recipe for gelatin uses 2 cups of water with 4 packages of the gelatin mix. ? How many cups of water will be used with 12 packages of gelatin mix?
Step-by-step explanation:
2 cups of water used with 4 packs
therefore for 12 we use x cups of water
2:4
X :12
therefore 6'cups of water?
The PTA sells 100 tickets for a raffle and puts them in a bowl. They will randomly pull out a ticket for the first prize and then another ticket for the second prize. You have 10 tickets and your friend has 10 tickets. What is the probability that your friend wins the first prize and you win the second prize?
[tex]4 + \frac{4}{4 } \: = [/tex]
what is answer
Answer:
5Step-by-step explanation:
[tex]4 + \frac{4}{4} [/tex]
= 4 + 1
= 5 (Ans)
What are the coordinates of the point (2,-4) under the dilation D-2?
A) (8,-4)
B) (4,-8)
C) (-8,4)
D) (-4,8)
Answer:
D) (-4,8)
Step-by-step explanation:
Multiply both coordinates by -2
Answer:
(-4,8)
Step-by-step explanation:
I found a school pdf with the answer key to this exact equation and thats the answer
Write and solve a word problem involving a $145.00 price and a 5.5% sales tax.
Your question is not complete but I guess you want to know the total price to be paid. This will be:
= $145 + (5.5% × $145)
= $145 + (0.055 × $145)
= $145 + $7.975
= $152.975
3) Write the operation used to obtain the types of solutions.
Sum:
Difference:
Product:
Quotient:
Answer:
the Sum
hope this helps
What is the volume of this rectangular pyramid?
_____ cubic millimeters
Answer:
Step-by-step explanation:
L = 9 mm
W = 9 mm
H = 10 mm
volume = LWH/3 = 9·9·10/3 = 270 mm³
Please help me I will mark brainliest! The ratio of the number of boys to the number of girls in a school is 3:4. One-third of the boys and three-eighths of the girls wear spectacles, If there are 612 pupils who do not wear spectacles, a)find the total number of the pupils in the school, and b) how many more girls than boys are there in the school
Answer:
a) 952
b) 136
Step-by-step explanation:
Ratio of b:g = 3:4, based on this we have:
Number of boys = 3xNumber of girls = 4xTotal number of pupils = 3x+4x = 7xNumber of spectacle wearers:
1/3*3x + 3/8*4x = x + 3/2x = 2.5xNumber of those not wearing spectacles:
7x - 2.5x= 4.5xAnd this number equals to 612, then we can find the value of x:
4.5 x = 612x= 612/4.5x= 136a) Total number of pupils:
7x = 7*136 = 952b) The difference in the number of boys and girls:
4x-3x= x = 136Answer:
total number of students: 952
number of girls more than boys :136 more girls
Step-by-step explanation:
1/3 of boys +3/8 girls= spectacles
612 people do not wear spectacles
3:4= boys: girls
total number of students
3+4=7
boys + girls = total ratio
7= total ratio
1/3×3=1 3/8×4=3/2
1+3/2=5/2
7-5/2=9/2 9/2=612 students
If 9/2=612 Then 7=?
7= 7÷ 9/2×612
=952 people
Girls more than boys
if 7= 952
3= 3/7 × 952=408 boys
if 7 = 952
4= 4/7 ×952=544girls
Girls - boys
544- 408 = 136 girls