Answer:
[tex]1)\quad f(x)=\bigg\{\begin{array}{ll}12x&0\leq x <9\\18x-48&9\leq x \leq 24\end{array}[/tex]
2) D: x = [0, 24]
3) R: y = [0, 384]
4) see graph
Step-by-step explanation:
Eric's regular wage is $12 per hour for all hours less than 9 hours.
The minimum number of hours Eric can work each day is 0.
f(x) = 12x for 0 ≤ x < 9
Eric's overtime wage is $18 per hour for 9 hours and greater.
The maximum number of hours Eric can work each day is 24 (because there are only 24 hours in a day).
f(x) = 18(x - 8) + 12(8)
= 18x - 144 + 96
= 18x - 48 for 9 ≤ x ≤ 24
The daily wage where x represents the number of hours worked can be displayed in function format as follows:
[tex]f(x)=\bigg\{\begin{array}{ll}12x&0\leq x <9\\18x-48&9\leq x \leq 24\end{array}[/tex]
2) Domain represents the x-values (number of hours Eric can work).
The minimum hours he can work in one day is 0 and the maximum he can work in one day is 24.
D: 0 ≤ x ≤ 24 → D: x = [0, 24]
3) Range represents the y-values (wage Eric will earn).
Eric's wage depends on the number of hours he works. Use the Domain (given above) to find the wage.
The minimum hours he can work in one day is 0.
f(x) = 12x
f(0) = 12(0)
= 0
The maximum hours he can work in one day is 24 (although unlikely, it is theoretically possible).
f(x) = 18x - 48
f(24) = 18(24) - 48
= 432 - 48
= 384
D: 0 ≤ y ≤ 384 → D: x = [0, 384]
4) see graph.
Notice that there is an open dot at x = 9 for f(x) = 12x
and a closed dot at x = 9 for f(x) = 18x - 48
11 Is what percent of 20?
Answer:
55%
Step-by-step explanation:
Because 11/20= 0.55
0.55=55%
The height of the right circular cylinder is 10 cm and the radius of the base is 7 cm. Then, the difference between the total surface area and the curved surface area is a) 300 cm^2 b) 308 cm^3 c) 308 cm^2 d) 308 cm
plz answer it fast I will mark them as the brainlist
Answer:
The answer is option C
308cm²Step-by-step explanation:
Total surface area of a cylinder is
2πr( r + h)
The curved surface area of a cylinder is
2πrh
where r and h are the radius and height respectively
h = 10cm
r = 7cm
Total surface area is
2π×7( 7 + 10)
14π ( 7 + 10)
98π + 140π
238π
Which is
748 cm²
The curved surface area is
2π (7)(10)
140π
Which is
440cm²
The difference between the total surface area and the curved surface area of the cylinder is
748 cm² - 440cm²
= 308cm²Hope this helps you
anyone know how to do this. im hella lost right now
Answer:
a=6
b=5.5
Step-by-step explanation:
not very sure but..
since 8X2=16,
a=3X2
b=11/2
Use the distributive property to write an equivalent expression to 2(n + 5)
Answer:
2n + 10.
Step-by-step explanation:
2(n + 5)
= 2 * n + 2 * 5
= 2n + 10.
Hope this helps!
Answer: 2n + 10
Explanation: In this problem, the 2 "distributes" through the parenthses which means that it multiplies by each of the terms inside.
So we have 2(n) + 2(5) which simplifies to 2n + 10.
I hope u can understand help asap
i think u can see sho T=5n+20
Answer:
T(n) = 5n + 20
Step-by-step explanation:
1 candy has a mass of 5 g.
n candies have a mass of 5n grams.
The box has a mass of 20 grams.
total mass = mass of candies + mass of box
T(n) = 5n + 20
n T(n)
0 20
25 145
50 270
75 395
100 520
Need answers ASAP!!!! (due today)
Answer:
6. 156.6 cm
7. 687.7’
Step-by-step explanation:
45 cm and 150 cm are the legs of one triangle.
The longest side is the hypotenuse.
Apply Pythagorean theorem, since the two triangles are right triangles.
a² + b² = c²
a and b are the legs, c is the hypotenuse.
45² + 150² = c²
24525 = c²
√24525 = c
c = 156.604597634...
c ≈ 156.6
Brain hang-glided from a 520’ high cliff. He landed 450’ away from the base of the cliff. Create a right triangle and apply Pythagorean theorem. The distance he travelled is the hypotenuse of the triangle. The 520’ and 450’ are the legs.
a² + b² = c²
450² + 520² = c²
c² = 472900
c = √472900
c = 687.677249878...
c ≈ 687.7
Answer: 6) =approx 156.60 cm
7) =approx 687.68'
Step-by-step explanation:
6. Let the shortest side of the triangle is AB=45 cm ( ∡A=90° so ABCD is a rectangle). The middle side AD=150 cm. The longest side is BD
The length of BD can be calculated using Phitagore theorem because triangle BAD ia right angle.
BD=sqrt(AD²+AB²)=sqrt(2025+22500)=approx 156.60 cm
7. So we can create the model of the situation described in this problem.
The model is right-angle triangle ABC with side AB=520' ,side AC=450', right angle is A. So we have to find the length of side BC .
BC is hypotenuse of triangle ABC. We can find it using Phitagore theorem again.
BC=sqrt(AC²+AB²)=sqrt(450²+520²)=sqrt(472900)=approx 687.68'
Use the accompanying data set to complete the following actions. a. Find the quartiles. b. Find the interquartile range. c. Identify any outliers. 41 52 37 44 42 38 41 48 43 39 36 55 42 35 15 52 39 50 29 30
Answer:
(a) [tex]Q_1=36.5,M=Q_2=41,Q_3=46[/tex]
(b) [tex]IQR=9.5[/tex]
(c) 15
Step-by-step explanation:
The given data set is
41, 52, 37, 44, 42, 38, 41, 48, 43, 39, 36, 55, 42, 35, 15, 52, 39, 50, 29, 30
Arrange the data in ascending order.
15, 29, 30, 35, 36, 37, 38, 39, 39, 41, 41, 42, 42, 43, 44, 48, 50, 52, 52, 55
Divide the data in four equal parts.
(15, 29, 30, 35, 36), (37, 38, 39, 39, 41), (41, 42, 42, 43, 44), (48, 50, 52, 52, 55)
Now,
[tex]Q_1=\dfrac{36+37}{2}=36.5[/tex]
[tex]M=Q_2=\dfrac{41+41}{2}=41[/tex]
[tex]Q_3=\dfrac{44+48}{2}=46[/tex]
[tex]IQR=Q_3-Q_1=46-36.5=9.5[/tex]
Range for outlier is
[tex][Q_1-1.5IQR,Q_3+1.5IQR]=[36.5-1.5(9.5),46+1.5(9.5)][/tex]
[tex]=[22.25,60.25][/tex]
Since, 15 lies outside the interval [22.25,60.25], therefore 15 is an outlier.
One kind of candy (jelly) sells for $5 a pound and another (chocolate) for $10 a pound. How many pounds of each should be used to make a mixture of 10 pounds of candy (both kinds) that sells for a total $80 (i.e. $8/pound)?
Answer:
chocolate: 6 poundsjelly: 4 poundsStep-by-step explanation:
Let x represent the number of pounds of chocolate in the mix. Then the total price of 10 pounds of mix is ...
10x +5(10 -x) = 80
5x +50 = 80
5x = 30
x = 6 . . . . . . . . pounds of chocolate
10 -x = 4 . . . . . pounds of jelly candy
6 pounds of chocolate and 4 pounds of jelly should be used to make the mixture.
Instructions
Chart of Accounts
Starting Question
Joumal
Instructions
Flush Mate Co. wholesales bathroom fixtures. During the current fiscal year, Flush Mate Co. received the following notes:
Date
Face Amount
Interest Rate
Term
1.
Mar. 6
$80,000
5%
45 days
2.
Apr. 23
24,000
9
60 days
3.
July 20
42,000
6
120 days
4
Sept. 6
54,000
7
90 days
5.
Nov. 29
27,000
6.
60 days
6
Dec. 30
72,000
5
30 days
Required:
1. Determine for each note (a) the due date and (b) the amount of interest due at maturity, identifying each note by number. Assume a 360-day
Answer:
Note Due Date Interest due at Maturity
1 Mar 6 $500
2 Apr 23 $360
3 July 20 $840
4 Sept 6 $945
5 Nov 29 $270
6 Dec 30 $300
Step-by-step explanation:
Calculation to Determine the due date and the amount of interest due at maturity for Flush Mate Co.
Using this formula to Calculate for the amount of interest due at maturity.
Interest due at Maturity= [Face amount * Numbers of days to maturity / 360 * Interest rate]
Note, Due Date, Face Amount, No of days to maturity, Interest rate, Interest due at Maturity
1 Mar 6 80,000× 45/360 ×5% =$500
2 Apr 23 24,000 × 60/360 ×9% =$360
3 July 20 42,000×120/360 ×6% =$840
4 Sept 6 54,000× 90/360 ×7% =$945
5 Nov 29 27,000× 60/360 ×6% =$270
6 Dec 30 72,000× 30/360 ×5% =$300
Therefore the due date and the amount of interest due at maturity for Flush Mate Co are:
Note Due Date Interest due at Maturity
1 Mar 6 $500
2 Apr 23 $360
3 July 20 $840
4 Sept 6 $945
5 Nov 29 $270
6 Dec 30 $300
The lines shown below are parallel.if the green line has a slope of -1,what is the slope of the red line?
Answer:
-1
Step-by-step explanation:
If a line is parallel on a graph, then that means that they will descend/climb at the same rate. Therefore, the slope of this line is also -1.
Hope this helped!
Answer:If they are parallel,
Then their slope will be same...
Step-by-step explanation:
The height of a right cylinder is 3 times the radius of the base. The volume of the cylinder is 249 cubic units.
What is the height of the cylinder?
O2 units
4 units
O 6 units
O 8 units
Answer:
h = 6 unitsStep-by-step explanation:
Volume of a cylinder = πr²h
where r is the radius
h is the height
The height of a right cylinder is 3 times the radius of the base is written as
h = 3r
Volume = 249cubic units
So we have
249 = π r²(3r)
249 = π3r³
Divide both sides by 3π
r³ = 249/3π
r = 2
h = 3(2)
h = 6 units
Hope this helps you
Using this model, what would be the cost of a flight that travels 1375 miles?
Round your answer to the nearest dollar.
Answer:
C) $143.
Step-by-step explanation:
We are given an equation: y = 0.0714x + 44.8.
x is the number of miles, and y is the cost.
y = 0.0714 * 1,375 + 44.8
y = 98.175 + 44.8
y = 142.975
So, the cost is about C) $143.
Hope this helps!
what’s the opposite of negative two
Answer: The answer is two
Step-by-step explanation: If you look for opposites of a number its either negative or positive. So when the answer is negative, the opposite is positive and if the answer is positive, the opposite is negative.
Answer:
[tex]\boxed{2}[/tex]
Step-by-step explanation:
The opposite of a number is the number that is the same distance from 0 on the number line.
-2 opposite is 2.
Barry spent 1/5 of his monthly salary for rent and 1/7 of his monthly salary for his school loans. If $851 was left, what was his monthly salary?
Answer:
1295$
Step-by-step explanation:
Let's denote the monthly salary of Barry A.
Then we have:
A - (1/5)A - (1/7)A = 851
or
(35A - 7A - 5A)/35 = 851
or
23A = 851 x 35
or
23A = 19785
or
A = 1295$
Alexandria ate at most two hundred fifty calories more than twice the number of calories her infant sister ate. Alexandria ate eighteen hundred calories. If i represents the number of calories eaten by the infant, which inequality represents the situation? A. 1,800 less-than-or-equal-to 250 + 2 i B. 1,800 less-than 250 + 2 i C. 1,800 + 250 greater-than 2 i D. 1,800 + 250 greater-than-or-equal-to 2 i
Hey there! I'm happy to help!
The words at most means that there is a maximum point that is included as a probability. This means that we will use the less than or equal sign (≤) in our inequality.
Let's write this all out as an inequality now. We will use i to represent how much the baby ate.
1,800≤2i+250
This inequality shows that Alexandria's 1,800 calories is at most 250 more than twice those of her baby sister. Therefore, the correct option is A. 1,800≤250+2i .
Have a wonderful day!
Answer:
The correct option is A. 1,800≤250+2i.
A circular garden has a diameter of 12 feet. About how much trim is needed to surround the garden by placing trim on the garden's circumference?
Trim = circumference
= 2[tex]\pi r[/tex]
= 2 x 3.14 x 6
= 37.68 feet
Find the probability of each event. A six-sided die is rolled seven times. What is the probability that the die will show an even number at most five times?
Answer:
[tex]\dfrac{15}{16}[/tex]
Step-by-step explanation:
When a six sided die is rolled, the possible outcomes can be:
{1, 2, 3, 4, 5, 6}
Even numbers are {2, 4, 6}
Odd Numbers are {1, 3, 5}
Probability of even numbers:
[tex]\dfrac{\text{Favorable cases}}{\text{Total cases }} = \dfrac{3}{6} = \dfrac{1}{2}[/tex]
This is binomial distribution.
where probability of even numbers, [tex]p =\frac{1}{2}[/tex]
Probability of not getting even numbers (Getting odd numbers) [tex]q =\frac{1}{2}[/tex]
Probability of getting r successes out of n trials:
[tex]P(r) = _nC_r\times p^r q^{n-r}[/tex]
Probability of getting even numbers at most 5 times out of 7 is given as:
P(0) + P(1) +P(2) + P(3) +P(4) + P(5)
[tex]\Rightarrow _7C_0\times \frac{1}{2}^0 \frac{1}{2}^{7}+_7C_1\times \frac{1}{2}^1 \frac{1}{2}^{6}+_7C_2\times \frac{1}{2}^2 \frac{1}{2}^{5}+_7C_3\times \frac{1}{2}^3 \frac{1}{2}^{4}+_7C_4\times \frac{1}{2}^4 \frac{1}{2}^{3}+_7C_5\times \frac{1}{2}^5 \frac{1}{2}^{2}[/tex]
[tex]\Rightarrow (\dfrac{1}{2})^7 (_7C_0+_7C_1+_7C_2+_7C_3+_7C_4+_7C_5)\\[/tex]
[tex]\Rightarrow (\dfrac{1}{2})^7 (1+7+\dfrac{7 \times 6}{2}+\dfrac{7 \times 6 \times 5}{3\times 2}+\dfrac{7 \times 6 \times 5}{3\times 2}+\dfrac{7 \times 6}{2})\\\Rightarrow \dfrac{120}{128} \\\Rightarrow \dfrac{15}{16}[/tex]
Determine if the vector u is in the column space of matrix A and whether it is in the null space of A.
u = -4 A = 1 0 3
-5 -2 -1 -4
3 3 -3 0
1 -1 3 6
A) In Col A, not in Nul A
B) Not in Col A, not in Nul A
C) In Col A and in NulA
D) Not in Col in Nul A
Answer: d) Not in Col in Nul A
Step-by-step explanation: The definition of Column Space of an m x n matrix A is the set of all possible combinations of the columns of A. It is denoted by col A. To determine if a vector is a column space, solve the matrix equation:
A.x = b or, in this case, [tex]A.x=u[/tex].
To solve, first write the augmented matrix of the system:
[tex]\left[\begin{array}{cccc}1&0&3&-4\\-2&-1&-4&-5\\3&-3&0&3\\-1&3&6&1\end{array}\right][/tex]
Now, find the row-echelon form of matrix A:
1) Multiply 1st row by 2 and add 2nd row;
2) Multiply 1st row by -3 and add 3rd row;
3) MUltiply 1st row by 1 and add 4th row;
4) MUltiply 2nd row by -1;
5) Multiply 2nd row by 3 and add 3rd row;
6) Multiply 2nd row by -3 and add 4th row;
7) Divide 3rd row by -15;
8) Multiply 3rd row by -15 and add 4th row;
The echelon form matrix will be:
[tex]\left[\begin{array}{cccc}1&0&3&-4\\0&1&-2&13\\0&0&1&-\frac{51}{15}\\0&0&0&-13 \end{array}\right][/tex]
Which gives a system with impossible solutions.
But if [tex]A.x=0[/tex], there would be a solution.
Null Space of an m x n matrix is a set of all solutions to [tex]A.x=0[/tex], so vector u is a null space of A, denoted by null (A)
Solve the formula V=LHW for L
Answer:
L = [tex]\frac{V}{HW}[/tex]
Step-by-step explanation:
Given
V = LHW ( isolate L by dividing both sides by HW )
[tex]\frac{V}{HW}[/tex] = L
Answer:
[tex]l = \frac{v}{w \times h} [/tex]
Step-by-step explanation:
[tex]v = l \times w \times h = \frac{v}{w \times h} = \frac{l \times h \times w}{w\times h} = l = \frac{v}{w \times h} [/tex]
Hope this helps ;) ❤❤❤
Suppose that the value of a stock varies each day from $9.82 to $24.17 with a uniform distribution.
Find the upper quartile; 25% of all days the stock is above what value? (Enter your answer to the nearest
cent.)
Answer:
The upper quartile is 20.5825
Step-by-step explanation:
In order to find the upper quartile we would have to use the following formula:
According to the given data:
value of a stock varies each day from $9.82 to $24.17
Hence, Q=upper quartile,
Therefore, ($24.17 - Q)/($24.17 - $9.82) = 25%
($24.17 - Q)/$14.35=25%
$24.17 - Q=3.5875
Q=20.5825
The upper quartile is 20.5825
The sum of two numbers is 37 and the difference is 15 . What are the numbers?
the first number is 11 and the second one is 26
Answer:
this is the answer with the working
Write the equation of the line in slope intercept form that passes through the points (4,-2) and (2,-1)
Answer:
y + 2 = (-1/2)(x - 4)
Step-by-step explanation:
Let's move from (2, -1) to (4, -2) and measure the changes in x and y. x increases by 2 units from 2 to 4, and y decreases by 1 unit from -1 to -2. Thus, the slope of the line connecting the two points is m = rise / run =
-1
--- = (-1/2).
2
Using the point-slope formula, we get:
y + 2 = (-1/2)(x - 4)
Identify the correct HYPOTHESES used in a hypothesis test of the following claim and sample data:
Claim: "The average battery life (between charges) of this model of tablet is at least 12 hours."
A random sample of 80 of these tablets is selected, and it is found that their average battery life is 11.58 hours with a standard deviation of 1.93 hours. Test the claim at the 0.05 significance level.
a. H0: p = 12 vs. H1: p < 12
b. H0: ? = 12 vs. H1: ? < 12
c. H0: p = 12 vs. H1: p > 12
d. H0: ? = 12 vs. H1: ? > 12
Answer:
The null hypothesis is ;
H0 ≥ 12
While the alternative hypothesis H1 is ;
H1 < 12
Step-by-step explanation:
Here, we want to correctly identify the null hypothesis H0 and the alternative hypothesis H1
The null hypothesis is as follows ;
H0 ≥ 12
While the alternative hypothesis H1 is ;
H1 < 12
i will give brainliest and 50 points pls help ASAP
Answer:
answer is 2.3 hope you get the answer
PLEASE HELP ?
Convert by looking at the thermometer and measure to the nearest 5 degrees F.
31 degrees Celsius to Fahrenheit
Answer:
90º
Step-by-step explanation:
just look at where 31º on the right lines up with the value on the left (aka around 90º)
Answer:
87.8 °F ≈ 90°F
Step-by-step explanation:
[tex]x \ degrees \ F = 31 \ degree \ Celsius *\frac{9}{5} + 32\\x \ degrees \ F = 55.8 + 32\\\\x \ degrees \ Fahrenheit = 87.8 \ degrees \ Farenheit[/tex]
Need help with finding the kg
Answer:
3 kg
Step-by-step explanation:
Inverse relation:
y = k/x
In this case, the acceleration is inversely proportional to the mass, so using a for acceleration and m for mass, we have:
a = k/m
We need to find the value of k.
We use the given information to find k.
a = 9 m/s^2 when m = 5 kg
a = k/m
9 = k/5
k = 9 * 5 = 45
Now we can complete our equation:
a = 45/m
For a = 15 m/s^2, m = ?
15 = 45/m
15m = 45
m = 45/15
m = 3
Answer: 3 kg
[tex]20+3x-15+x=27[/tex]
Answer:
x=11/2
Step-by-step explanation:
First we can combine similar terms on the left side. 3x + x is 4x and 20-15 is 5
Now that we have combined them, we are left with 4x+5=27
Subtract 5 on both sides to cancel out the 5.
4x=22
Divide both sides by 4
x=22/4
Simplify
x=11/2
Answer:
[tex] \boxed{\sf x = \frac{11}{2}} [/tex]
Step-by-step explanation:
[tex] \sf Solve \: for \: x: \\ \sf \implies 20 + 3x - 15 + x = 27 \\ \\ \sf Grouping \: like \: terms, \: 20 + 3x - 15 + x = \\ \sf (3x + x) + (20 - 15) : \\ \sf \implies \boxed{ \sf (3x + x) + (20 - 15)} = 27 \\ \\ \sf 3x + x = 4x : \\ \sf \implies \boxed{ \sf 4x} + (20 - 15) = 27 \\ \\ \sf 20 - 15 = 5 : \\ \sf \implies 4x + \boxed{ \sf 5} = 27 \\ \\ \sf Subtract \: 5 \: from \: both \: sides: \\ \sf \implies 4x + (5 - \boxed{ \sf 5}) = 27 - \boxed{ \sf 5} \\ \\ \sf 5 - 5 = 0 : \\ \sf \implies 4x = 27 - 5 \\ \\ \sf 27 - 5 = 22 : \\ \sf \implies 4x = \boxed{ \sf 22} \\ \\ \sf Divide \: both \: sides \: of \: 4x = 22 \: by \: 4 : \\ \sf \implies \frac{4x}{4} = \frac{22}{4} \\ \\ \sf \frac{ \cancel{4}}{ \cancel{4}} = 1 : \\ \sf \implies x = \frac{22}{4} \\ \\ \sf \implies x = \frac{11 \times \cancel{2}}{2 \times \cancel{2}} \sf \implies x = \frac{11}{2} [/tex]
The Buzz Tool Company issued 1,000 shares of common stock. If the total value of this was $50,000,what's the par value of each share.
Answer:
$50.
Step-by-step explanation:
The formula for the stocks is...
Par value of preferred stock = (Number of issued shares) * (par value per share)
So, we can say that...
Par value per share = par value of preferred stock / number of issued shares.
The par value of the Buzz Tool Company is $50,000. There are 1,000 issued shares. So, each stock would be $50,000 / 1,000 = $50 / 1 = $50.
Hope this helps!
Answer: par value is $50.00
Step-by-step explanation:
$50,000.00 ÷ 1,000
= $50.00
Please help me. The function g(x) is a transformation of f(x). If g(x) has a y-intercept at 3, which of the following functions could represent g(x)?
The graph shows f(x) to have a y intercept at -1, which is where the diagonal line crosses the y axis. We want the y intercept to move to 3. So we must add 4 to the old y intercept to get the new y intercept.
We do this with every single point on f(x) to get g(x) = f(x)+4. This shifts the graph up 4 units.
Fake Question: Should Ujalakhan01 be a moderator? (If you could answer I'd appreciate it haha.)
Real Question: Simplify [tex](a^5*a^4)+(b^2*b^3)-(c^7*c^6)[/tex]
Answer:
[tex]a^9 + b^ 5 + c^{13}[/tex]
Step-by-step explanation:
[tex](a^5 \times a^4)+(b^2 \times b^3) + (c^7 \times c^6)[/tex]
When bases are same and it is multiplication, then add the exponents.
[tex](a^{5+4})+(b^{2+3})+(c^{7+6})[/tex]
[tex](a^9)+(b^ 5) + (c^{13})[/tex]
Apply rule : [tex](a^b)=a^b[/tex]
[tex]a^9 + b^ 5 + c^{13}[/tex]
Answer:
[tex]a^9+b^5-c^{13[/tex]
Step-by-step explanation:
[tex](a^5*a^4) + (b^2*b^3)-(c^7*c^6)[/tex]
When bases are same, powers are to be added.
=> [tex](a^{5+4})+(b^{2+3})-(c^{7+6})[/tex]
=> [tex]a^9+b^5-c^{13[/tex]