Answer:
pH is a measure of the concentration of H+ ions in a solution of an acid or base. The pH plots the concentration of solutions in a range from 0–14.
Explanation:
The pH is a measure of the hydrogen ion(H^+) concentration in an acid or base. It can be obtained mathematically by the formula:
pH = —Log [H^+]
The pH scale ranges from 0 to 14
Answer:
it really is A
Explanation:
just got wrong answer because i put 16 and clearly b and c makes no sence : )
Calculate the mass of a body
Whose volume is
Is 2cm3 and
density is 520cm3
Answer:
The answer is
1040gExplanation:
Density = mass / volume
mass = density × volume
volume = 2cm³
density = 520g/cm³
mass = 2 × 520
= 1040g
Hope this helps you
Which example involves a phase change in which heat energy is released by the substance?
Ofreezing ice cream
O cooking a pot of soup
O melting ice under sunlight
O watching frost disappear into air
Answer:
Cooking a pot of soup
Explanation:
id say that because when you freeze ice cream, its already frozen, so no heat is being released. melting ice wouldn't be the answer because, once again, it is already frozen, and no heat is being released.
Answer:
the correct answer is freezing ice cream
Explanation:
i took the test & got this question correct. also, heat energy is released when freezing because there is no heat energy involved.
Draw a structural formula of an alkene or alkenes (if more than one) that undergo acid-catalyzed hydration and without re-arrangement give 2-butanol as the major product.
Answer:
See explanation
Explanation:
Hydration of alkenes is a common reaction in organic chemistry. Hydration is simply the addition of water to an alkene. This is an acid catalysed reaction as we can see from the mechanism attached.
Recall that our task is to carry out the synthesis of 2-butanol using an alkene starting material in which there will be no rearrangement of the intermediate carbocation. If we start with the compound shown in the image (but-2-ene), the first step is the formation of the secondary carbocation. This is followed by the addition of water. Subsequently, the added water is deprotonated by another water molecule to yield 2-butanol and the acid catalyst. All these steps have been clearly outlined in the image attached.
Calculate the combustion of gaseous dimethyl ether CH 3 OCH 3 (g)+3O 2 (g) 2CO 2 (g)+3H 2 O(l) using standard molar enthalpies of formation Molecule AH H l ^ 0 (k)/mol) CH 3 OCH 3 (g) - 184.1
Answer:
[tex]\Delta _cH=-1328.3kJ/mol[/tex]
Explanation:
Helllo,
In this case, for the given chemical reaction in gaseous state:
[tex]CH_3OCH_3+3O_2\rightarrow 2CO_2+3H_2O[/tex]
We comoute the combustion enthalpy as the reaction enthalpy for one mole of fuel (dimethyl ether) considering the formation enthalpy of each given substance and whether they are reactants (subtracting) or products (adding), therefore we write:
[tex]\Delta _cH=2*\Delta _fH_{CO_2}+3*\Delta _fH_{H_2O}-\Delta _fH_{CH_3OCH_3}-3*\Delta _fH_{O_2}[/tex]
Whereas the formation enthalpies for carbon dioxide, water, dimethyl ether and oxygen are -393.5, -241.8, -184.1 and 0 kJ/mol respectively, thereby, the combustion enthalpy turns out:
[tex]\Delta _cH=2(-393.5)+3*(-241.8)-(-184.1)-3(0)\\\\\Delta _cH=-1328.3kJ/mol[/tex]
Notice that enthalpy of formation of oxygen is zero since forming an element has no chemical sense, it just exists as it has been early demonstrated.
Regards.
: Starting with 0.3500 mol CO(g) and 0.05500 mol COCl2(g) in a 3.050-L flask at 668 K, how many moles of Cl2(g) will be present at equilibrium
Answer:
The number of moles of Cl₂ present at equilibrium is 3.94x10⁻⁴ moles.
Explanation:
The reaction is:
CO(g) + Cl₂(g) ⇄ COCl₂(g)
The equilibrium constant of the above reaction is:
K = 1.2x10³
To find the moles of Cl₂ present at equilibrium, let's evaluate the reverse reaction:
COCl₂(g) ⇄ CO(g) + Cl₂(g)
The equilibrium constant for the reverse reaction is:
[tex] K_{r} = \frac{1}{1.2 \cdot 10^{3}} = 8.3 \cdot 10^{-4} [/tex]
Now, we need to calculate the concentration of CO and COCl₂:
[tex] C_{CO} = \frac{\eta_{CO}}{V} = \frac{0.3500 moles}{3.050 L} = 0.115 M [/tex]
[tex] C_{COCl_{2}} = \frac{\eta_{COCl_{2}}}{V} = \frac{0.05500 moles}{3.050 L} = 0.018 M [/tex]
Now, from the reaction we have:
COCl₂(g) ⇄ CO(g) + Cl₂(g)
0.018 - x 0.115+x x
The concentration of Cl₂ is:
[tex] K_{r} = \frac{[CO][Cl_{2}]}{[COCl_{2}]} [/tex]
[tex] 8.3 \cdot 10^{-4} = \frac{(0.115 + x)(x)}{0.018 - x} [/tex]
[tex] 8.3 \cdot 10^{-4}*(0.018 - x) - (0.115 + x)(x) = 0 [/tex]
By solving the above equation for x we have:
x = 1.29x10⁻⁴ M = [Cl₂]
Finally, the number of moles of Cl₂ present at equilibrium is:
[tex] \eta_{Cl_{2}} = C_{Cl_{2}}*V = 1.29 \cdot 10^{-4} mol/L*3.050 L = 3.94 \cdot 10^{-4} moles [/tex]
Therefore, the number of moles of Cl₂ present at equilibrium is 3.94x10⁻⁴ moles.
I hope it helps you!
If 3.10 moles of P4010 reacted with excess water, how many grams of H3PO4
would be produced?
P4010 +6H20 + 4H3PO4
You Answered
126 g
0 0.007918
Correct Answer
O 1220 g
0.1278
75.98
Answer:
1.22 × 10³ g
Explanation:
Step 1: Write the balanced equation
P₄O₁₀ + 6 H₂O ⇒ 4 H₃PO₄
Step 2: Calculate the moles of H₃PO₄ produced by 3.10 moles of P₄O₁₀
The molar ratio of P₄O₁₀ to H₃PO₄ is 1:4. The moles of H₃PO₄ produced are 4/1 × 3.10 mol = 12.4 mol
Step 3: Calculate the mass corresponding to 12.4 moles of H₃PO₄
The molar mass of H₃PO₄ is 97.99 g/mol.
[tex]12.4 mol \times \frac{97.99g}{mol} = 1.22 \times 10^{3} g[/tex]
A constant volume and mass of helium gas at 77°C is heated so that the pressure of the gas doubles. What is the new temperature of the gas in Celsius degrees?
Answer:
427°C .
Explanation:
Step 1:
Data obtained from the question. This include the following:
Initial temperature (T1) = 77°C
Initial pressure (P1) = P
Final pressure (P2) = 2P
Final temperature (T2) =?
Step 2:
Conversion of celsius temperature to Kelvin temperature.
This is illustrated below:
T(K) = T (°C) + 273
Initial temperature (T1) = 77°C
Initial temperature (T1) = 77°C+ 273 = 350K
Step 3:
Determination of the new temperature. The new temperature can be obtained as follow:
P1/T1 = P2/T2
P/350 = 2P/T2
Cross multiply
P x T2 = 350 x 2P
Divide both side by P
T2 = (350 x 2P ) / P
T2 = 700K
Step 4:
Conversion of Kelvin temperature to celsius temperature.
This can be obtained as follow:
T(°C) = T(K) – 273
T(K) = 700K
T(°C) = 700 – 273
T(°C) = 427°C
Therefore, the new temperature of the gas is 427°C
Homolysis, or homolytic bond dissociation, produces a very specific type of product under certain reaction conditions. In Part 1, select all the products (in formulae and general chemical terms) that could result from homolysis. In Part 2, select the reaction conditions that are most likely to promote homolysis.
Part 1. Choose all that may occur as possible products of a homolysis reaction.
Choose one or more:_______.
a. hydride ion
b. R3CO
c. Br2
d. H
e. a carbocation
f. H3C
g. H3CO-
h. hydrogen ion
i. a carbon free radical
Part 2. Choose the conditions under which homolysis is likely to occur.
Choose one or more:_______.
a. strong base
b. ultraviolet irradiation
c. high temperature
d. strong acid
e. infrared irradiation
f. low temperature
Answer:
1) R₃CO , H, H₃C, a carbon free radical
2) high temperature, ultraviolet irradiation
Explanation:
1) Homolysis leads to the formation of free radicals (species having a free electron). Thus, answer is :
R₃CO
H
H₃C
a carbon free radical
2) Homolysis require high temperature, ultraviolet irradiation.
If the vinegar were measured volumetrically (e.g., a pipet), what additional piece of data would be needed to complete the calculations for the experiment?
Answer:
the density if vinegar will also be needed
Explanation:
Because this is an experiment of volumetric analysis
The thermochemical equation is for the reaction of hydrogen bromide gas to form hydrogen gas and bromine liquid. 2HBr(g) = H 2 (g)+ Br 2 (l) 72.6 kJ How many grams of HBr (g) would be made to react if 11.4 energy were provided?
Answer:
the mass of HBr that would react is 25.41 g of HBr
Explanation:
attached is the calculations.
If 5.00 mL of a 0.5 M solution is diluted to a final volume of 100.0 mL, what is the concentration of the final dilute solution?
Answer:
0.025 M
Explanation:
The following data were obtained from the question:
Initial volume (V1) = 5 mL
Initial concentration (C1) = 0.5 M
Final volume (V2) = 100 mL
Final concentration (C2) =..?
Using the dilution formula, we can obtain the final concentration of the diluted solution as follow:
C1V1 = C2V2
0.5 x 5 = C2 x 100
Divide both side by 100
C2 = (0.5 x 5)/100
C2 = 0.025 M
Therefore, the final concentration of the diluted solution is 0.025 M
The concentration of the final diluted solution is 0.025M
The dilution formula is expressed according to the formula:
[tex]C_1V_1=C_2V_2[/tex]
Given the following parameters
[tex]C_1=0.5M\\V_1=5.00mL\\V_2=100.0mL\\C_2=?[/tex]
Substitute the given parameters into the formula:
[tex]C_1V_1=C_2V_2\\0.5(5)=100C_2\\2.5=100C_2\\C_2=\frac{2.5}{100}\\C_2= 0.025M[/tex]
Hence the concentration of the final diluted solution is 0.025M
Learn more here: https://brainly.com/question/6103588
merits of modern periodic table?
Answer:
Merits of modern periodic table:The wrong position of some elements like argon, potassium, cobalt and nickel due to atomic weights have been solved by arranging the elements in the order of increasing atomic number without changing their own places.The isotopes of some element have the same atomic numbers. Therefore, they find the same position in periodic table.It separates metals from non-metals.The groups of the table are divided into sub groups A and B due to their dissimilar properties which make the study of elements specific and easier.The representative and transition elements have been separated.Hope this helps...
Good luck on your assignment...
When 75.5 grams of phosphorus pentachloride react with an excess of water, as shown in the unbalanced chemical equation below, how many moles of hydrochloric acid will be produced? Please show all your work for the calculations for full credit. PCl5 + H2O --> H3PO4 + HC
Answer:
Explanation: M(PCL5)= 31 + 5(35.5)
=208.5g/mol
M(H20)= 18g/mol
n(PCL5) = 75.5÷208.5
= 0.362mol
n(HCl)/n(PCL5)= 5/1
n(HCl)= 5×0.362
=1.81mol of HCl
If you start with 512 grams of aluminum and 1147 grams of copper chloride to make aluminum chloride and copper, what is the limiting reagent? 2Al + 3CuCl -> 2AlCl3 + 3Cu
Answer:
Copper (II) chloride.
Explanation:
Hello,
In this case, considering the described reaction which is also given as:
[tex]2Al + 3CuCl_2 \rightarrow 2AlCl_3 + 3Cu[/tex]
For us to identify the limiting reactant we first compute the available moles of aluminium:
[tex]n_{Al}=512gAl*\frac{1molAl}{27gAl}=19.0molAl[/tex]
Next, we compute the consumed moles of aluminium by the 1147 grams of copper (II) chloride by using their 2:3 molar ratio:
[tex]n_{Al}^{consumed}=1147gCuCl_2*\frac{1molCuCl_2}{134.45gCuCl_2}*\frac{2molAl}{3molCuCl_2} =5.69molAl[/tex]
Thereby, we can infer aluminium is in excess since less moles are consumed than available whereas the copper (II) chloride is the limiting reactant.
Best regards.
A 10.0 mL sample of calcium hydroxide solution required 26.85 mL of 0.225 M hydrochloric acid for neutralization. The balanced equation is:
Answer:
[tex]C_{base}=0.302M[/tex]
Explanation:
Hello,
In this case, we can evidence that when calcium hydroxide solution reacts with hydrochloric acid solution, the balanced neutralization reaction turns out:
[tex]2HCl(aq)+Ca(OH)_2\rightarrow CaCl_2(aq)+2H_2O(l)[/tex]
Moreover, the concentration of neutralized calcium hydroxide can be computed by using the 2:1 mole ratio between the base and the acid:
[tex]C_{acid}V_{acid}=2*C_{base}V_{base}\\\\C_{base}=\frac{C_{acid}V_{acid}}{2*V_{base}} =\frac{0.225M*26.85mL}{2*10.0mL}\\ \\C_{base}=0.302M[/tex]
Regards.
Which physical method can be used for obtaining a sample of salt from a small beaker of salt water?
boiling
freezing
chromatography
sorting
Answer:
a. boiling
Explanation:
A transition in the balmer series for hydrogen has an observed wavelength of 434 nm. Use the Rydberg equation below to find the energy level that the transition originated. Transitions in the Balmer series all terminate n=2.
Delta E= -2.178 x10-18J ( 1/n2Final - 1/n2Initial )
The number is 5.
What is the energy of this transition in units of kJ/mole? ( hint: the anser is NOT 4.58x10-22kJ/mole or -4.58x10-22kJ/mole)
Answer:
i. n = 5
ii. ΔE = 7.61 × [tex]10^{-46}[/tex] KJ/mole
Explanation:
1. ΔE = (1/λ) = -2.178 × [tex]10^{-18}[/tex]([tex]\frac{1}{n^{2}_{final} }[/tex] - [tex]\frac{1}{n^{2}_{initial} }[/tex])
(1/434 × [tex]10^{-9}[/tex]) = -2.178 × [tex]10^{-18}[/tex] ([tex]\frac{n^{2}_{initial} - n^{2}_{final} }{n^{2}_{final} n^{2}_{initial} }[/tex])
⇒ 434 × [tex]10^{-9}[/tex] = (1/-2.178 × [tex]10^{-18}[/tex])[tex]\frac{n^{2}_{final} *n^{2}_{initial} }{n^{2}_{initial} - n^{2}_{final} }[/tex]
But, [tex]n_{final}[/tex] = 2
434 × [tex]10^{-9}[/tex] = (1/2.178 × [tex]10^{-18}[/tex])[tex]\frac{2^{2} n^{2}_{initial} }{n^{2}_{initial} - 2^{2} }[/tex]
434 × [tex]10^{-9}[/tex] × 2.178 × [tex]10^{-18}[/tex] = [tex](\frac{4n^{2}_{initial} }{n^{2}_{initial} - 4 })[/tex]
⇒ [tex]n_{initial}[/tex] = 5
Therefore, the initial energy level where transition occurred is from 5.
2. ΔE = hf
= (hc) ÷ λ
= (6.626 × 10−34 × 3.0 × [tex]10^{8}[/tex] ) ÷ (434 × [tex]10^{-9}[/tex])
= (1.9878 × [tex]10^{-25}[/tex]) ÷ (434 × [tex]10^{-9}[/tex])
= 4.58 × [tex]10^{-19}[/tex] J
= 4.58 × [tex]10^{-22}[/tex] KJ
But 1 mole = 6.02×[tex]10^{23}[/tex], then;
energy in KJ/mole = (4.58 × [tex]10^{-22}[/tex] KJ) ÷ (6.02×[tex]10^{23}[/tex])
= 7.61 × [tex]10^{-46}[/tex] KJ/mole
The initial energy level is 5 and the energy of this transition in units of kJ/mole is 7.57 * 10^-43 kJ/mole
We must first calculate ΔE as follows;
ΔE = hc/λ
h = Plank's constant = 6.6 * 10^-34 Js
c = speed of light = 3 * 10^8 m/s
λ = wavelength = 434 * 10^-9
ΔE = 6.6 * 10^-34 * 3 * 10^8/434 * 10^-9
ΔE = 0.0456 * 10^-17 J
ΔE = [tex]ΔE = -2.178 x10^-18 (\frac{1}{n^2final} - \frac{1}{n^2initial}) \\ΔE = -2.178 x10^-18 (\frac{1}{2^2} - \frac{1}{n^2initial} )\\\\4.56 * 10^-19/2.178 x10^-18 = (\frac{1}{2^2} - \frac{1}{n^2initial})\\0.210 = (\frac{1}{2^2} - \frac{1}{n^2initial})\\\frac{1}{n^2initial} = 0.25 - 0.210\\\frac{1}{n^2final} = 0.04\\n = (\sqrt{(0.04)^-1} \\n = 5[/tex]
Energy of this transition in units of kJ/mole = 4.56 * 10^-19/ 6.02 * 10^23
= 7.57 * 10^-43 kJ/mole
Learn more; https://brainly.com/question/5295294
Silver crystallizes in a face-centered cubic structure. What is the edge length of the unit cell if the atomic radius of silver is 144 pm?
Answer:
Edge length of the unit cell is 4.07x10⁻¹⁰m
Explanation:
In a face-centered cubic structure, the edge, a, could be obtained using pythagoras theorem knowing the hypotenuse of the unit cell, b, is equal to 4r:
a² + a² = b² = (4r)²
2a² = 16r²
a = √8 r
That means edge lenght is = √8 r
adius
As radius of Silver is 144pm = 144x10⁻¹²m:
a = √8 r
a = √8 ₓ 144x10⁻¹²m
a = 4.07x10⁻¹⁰m
Edge length of the unit cell is 4.07x10⁻¹⁰mErbium metal (Er) can be prepared by reacting erbium(III) fluoride with magnesium; the other product is magnesium fluoride. Write and balance the equation.
Answer:
2ErF3 + 3Mg → 2Er + 3MgF2
Explanation:
Erbium metal is a member of the lanthaniod series. It reacts with halogens directly to yield erbium III halides such as erbium III chloride, Erbium III fluoride etc.
Erbium metal (Er) can be prepared by reacting erbium(III) fluoride with magnesium; the products are erbium metal and magnesium fluoride. This is a normal redox process in which the Erbium metal is reduced while the magnesium is oxidized. The balanced reaction equation of this process is; 2ErF3 + 3Mg → 2Er + 3MgF2
What is a ‘control’ in an experiment?
A. A version of the experiment that is unchanged to make sure the experimental data is not due to chance.
B. A person who oversees the experiment to make sure it is following proper procedures.
C. The variable controlled by the scientist to affect the dependent variable.
D. The name for the set of independent and dependent variables that will be controlled by the scientist.
need help asap got 1 minute
D. The name for the set of independent and dependent variables that will be controlled by the scientist.
The statement, that describes the ‘control’ in an experiment is "the name for the set of independent and dependent variables that will be controlled by the scientist."
What is a control in experiment?A control is an element in an experiment that remains intact or unaffected by other variables. An experiment or observation aiming to minimise the influence of variables other than the independent variable is referred to as a scientific control. It serves as a standard or point of reference against which other test findings are measured.
In a scientific experiment, an independent variable is the variable that is modified or manipulated in order to assess the effects on the dependent variable. In a scientific experiment, the dependent variable is the variable that is being tested and measured. The designation given to the set of independent and dependent variables that the scientist will regulate.
Hence the correct option is D.
Learn more about control in an experiment here
https://brainly.in/question/19374703
#SJP3
A 0.4647-g sample of a compound known to contain only carbon, hydrogen, and oxygen was burned in oxygen to yield 0.01962 mol of CO2 and 0.01961 mol of H2O. The empirical formula of the compound was found to be C3H6O2. Show how this was calculated.
What does the empirical formula tell you about the compound?
The molar mass of the actual compound was found to be 222.27g/mol. Find the molecular formula of this compound. What does the molecular formula tell you about the compound?
Can you see what type of functional group this compound could have?
Answer:
See explanation.
Explanation:
Hello,
In this case, we can show how the empirical formula is found by following the shown below procedure:
1. Compute the moles of carbon in carbon dioxide as the only source of carbon at the products:
[tex]n_C=0.01962molCO_2*\frac{1molC}{1molCO_2} =0.01962molC[/tex]
2. Compute the moles of hydrogen in water as the only source of hydrogen at the products:
[tex]n_H=0.01961molH_2O*\frac{2molH}{1molH_2O}=0.03922molH[/tex]
3. Compute the mass of oxygen by subtracting the mass of both carbon and hydrogen from the 0.4647-g sample:
[tex]m_O=0.4647g-0.01962molC*\frac{12gC}{1molC}-0.03922molH*\frac{1gH}{1molH} =0.1900gO[/tex]
4. Compute the moles of oxygen by using its molar mass:
[tex]n_O=0.1900gO*\frac{1molO}{16gO}=0.01188molO[/tex]
5. Divide the moles of carbon, hydrogen and oxygen by the moles of oxygen (smallest one) to find the subscripts in the empirical formula:
[tex]C=\frac{0.01962}{0.01188}=1.65\\ \\H=\frac{0.03922}{0.01188} =3.3\\\\O=\frac{0.01188}{0.01188} =1[/tex]
6. Search for the closest whole number (in this case multiply by 2):
[tex]C_3H_6O_2[/tex]
Moreover, the empirical formula suggests this compound could be carboxylic acid since it has two oxygen atoms, nevertheless, this is not true since the molar mass is 222.27 g/mol, therefore, we should compute the molar mass of the empirical formula, that is:
[tex]M=12*3+1*6+16*2=74g/mol[/tex]
Which is about three times in the molecular formula, for that reason, the actual formula is:
[tex]C_9H_{18}O_6[/tex]
It suggest that the compound has a highly oxidizing character due to the presence of oxygen, therefore, we cannot predict the distribution of the functional groups as it could contain, carboxyl, carbonyl, hydroxyl or even peroxi.
Best regards.
The molecular weight of table salt, NaCl, is 58.5 g/mol. A tablespoon of salt weighs 6.37 grams. Calculate the number of moles of salt in one tablespoon.
Finally, solve (remember significant figures):
Answer:
0.109 mol/tablespoon
Explanation:
6.37 g/ 58.5 mol = 0.10888888 mol (0.109 significantly)
Answer:
A: 0.109
Explanation:
Edge 2020
Answer these questions, please.
Answer:
1a. 0.89 gcm¯³
1b. Yes.
1c. Tetrahydrofuran.
2. 0.54 g/mL
Explanation:
1. Data obtained from the question include:
Volume = 0.988 L = 988 cm³
Mass = 879 g
1a. Determination of the density
Density = mass /volume
Density = 879/ 988
Density = 0.89 gcm¯³
Therefore, the density of the liquid is 0.89 gcm¯³
1b. From the given data, it is possible to determine the identity of the liquid.
1c. The density of the liquid is 0.89 gcm¯³. Comparing the density of the liquid obtained with those given in the table, the liquid is tetrahydrofuran
2. Data obtained from the question include:
Mass of empty cylinder = 5.25 g
Mass of cylinder and sodium thiosulfate = 75.82 g
Volume = 130.63 mL
Next, we shall determine the mass of sodium thiosulfate. This can be obtain as follow:
Mass of empty cylinder = 5.25 g
Mass of cylinder and sodium thiosulfate = 75.82 g
Mass of sodium thiosulfate =.?
Mass of sodium thiosulfate = Mass of cylinder and sodium thiosulfate – Mass of empty cylinder
Mass of sodium thiosulfate = 75.82 – 5.25
Mass of sodium thiosulfate = 70.57 g
Finally, we shall determine the concentration of the sodium thiosulfate as follow:
Mass = 70.57 g
Volume = 130.63 mL
Concentration =?
Concentration = mass /volume
Concentration = 70.57/130.63
Concentration = 0.54 g/mL
The concentration of the solution is 0.54 g/mL
The compound barium nitrate is a strong electrolyte. Write the transformation that occurs when solid barium nitrate dissolves in water.
Answer:
Ba(NO₃)₂(s) → Ba²⁺ + 2NO₃⁻
Explanation:
A strong electrolyte is a salt (A compound that has an anion and a cation and are neutral) that, in water, dissociates completely in its ions.
In Barium nitrate, Ba(NO₃)₂, the cation is Ba²⁺ (Alkaline earth metal), and the anion is the nitrate ion, NO₃⁻.
Thus, when Ba(NO₃)₂ (s) is dissolved in water, its transformation is:
Ba(NO₃)₂(s) → Ba²⁺ + 2NO₃⁻When solid barium nitrate (Ba(NO₃)₂) dissolves in water, it undergoes a dissociation process where the compound breaks apart into its constituent ions.
Dissociation refers to the process in which a compound breaks apart into its constituent ions when dissolved in a solvent, typically water. In this process, the chemical bonds within the compound are disrupted, resulting in the separation of positive and negative ions.
The dissociation occurs due to the interaction between the solute particles and the solvent molecules, leading to the formation of hydrated ions.
The transformation can be represented as follows:
Ba(NO₃)₂(s) → Ba²⁺(aq) + 2NO₃⁻(aq)
In this process, the barium nitrate compound dissociates into barium ions (Ba²⁺) and nitrate ions (NO₃⁻) in the aqueous solution. The resulting ions are free to move and conduct electricity, indicating that barium nitrate is a strong electrolyte when dissolved in water.
Learn more about Dissociation, here:
https://brainly.com/question/32501023
#SPJ6
Given the specific heat for aluminum is 0.900 J/g.°C, how much heat is released when a 3.8 g sample
of Al cools from 450.0°C to 25°C?
A. 1.5 kJ
B. 54 J
C. 60J
D. 1.7 kJ
E. 86 J
Answer:
Q = 1.5 kJ
Explanation:
It is given that,
The specific heat for aluminum is 0.900 J/g°C
Mass of sample, m = 3.8 g
Initial temperature, [tex]T_i=450^{\circ} C[/tex]
Final temperature, [tex]T_f=25^{\circ} C[/tex]
We need to find the heat released. The amount of heat released is given by the formula:
[tex]Q=mc\Delta T\\\\Q=mc(T_f-T_i)\\\\Q=3.8\times 0.9\times (25-450)\\\\Q=1453.5\ J\\\\Q=1.45\ kJ[/tex]
or
[tex]Q=1.5\ kJ[/tex]
So, the correct option is (A) i.e. 1.5 kJ.
How many valence electrons are in the electron dot structures for the elements in group 3A(13)?
Answer:
here, as we have known the elements of group 3A(13) such as aluminium , boron has three valance electron and in perodic table the elements are kept with similar proterties in same place so, their valance electron is 3.
hope it helps...
The number of valence electrons are in the electron dot structures for the elements in group 3A(13) is three.
What are Groups in the Periodic Table?The periodic table is organized into groups (vertical columns), periods (horizontal rows), and families (groups of elements that are similar). Elements in the same group have the same number of valence electrons.
Groups are the columns of the periodic table, and periods are the rows. There are 18 groups, and there are 7 periods plus the lanthanides and actinides.
There are two different numbering systems that are commonly used to designate groups, and you should be familiar with both.
The traditional system used in the United States involves the use of the letters A and B. The first two groups are 1A and 2A, while the last six groups are 3A through 8A. The middle groups use B in their titles.
Therefore, The number of valence electrons are in the electron dot structures for the elements in group 3A(13) is three.
Learn more about Groups in the periodic table, here:
https://brainly.com/question/30858972
#SPJ3
Which of the following is NOT one of the types of bonds? A. Ionic B. Metallic C. Covalent D. Valence
Considering the definition of bond and the different type of bonds, valence is not one of the types of bonds.
What is a chemical bondA chemical bond is defined as the force by which the atoms of a compound are held together. These are electromagnetic forces that give rise to different types of chemical bonds.
In other words, a chemical bond is the force that joins atoms to form chemical compounds and confers stability to the resulting compound.
Covalent bondThe covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas. The shared electron pair is common to the two atoms and holds them together.
Ionic bondAn ionic bond is produced between metallic and non-metallic atoms, where electrons are completely transferred from one atom to another. During this process, one atom loses electrons and another one gains them, forming ions.
Metallic bondMetallic bonds are a type of chemical bond that occurs only between atoms of the same metallic element. In this way, metals achieve extremely compact, solid and resistant molecular structures, since the atoms that share their valence electrons.
SummaryIn summary, valence is not one of the types of bonds. The types of bonds are covalent, ionic and metallic.
Learn more about chemical bonds:
https://brainly.com/question/25385832
https://brainly.com/question/13178368
#SPJ1
Calculate the number of moles of C2H6 in 3.97×1023 molecules of C2H6.
3.97×1023 molecules C2H6 1 mol C2H6
------------------------------------------ x ------------------------------------ = 0.66 mol C2H6
6.022 x 1023 molec. C2H6
Which of the following atoms would have the longest de Broglie wavelength, if all have the same velocity?
A) Li
B) Na
C) Fe
D) Pb
E) Not possible to tell with given information
Answer:
Li
Explanation:
The phenomenon of wave particle duality was well established by Louis deBroglie. The wavelength associated with matter waves was related to its mass and velocity as shown below;
λ= h/mv
Where;
λ= wavelength of matter waves
m= mass of the particle
v= velocity of the particle
This implies that if the velocities of all particles are the same, the wavelength of matter waves will now depend on the mass of the particle. Hence; the wavelength of a matter wave associated with a particle is inversely proportional to the magnitude of the particle's linear momentum. The longest wavelength will then be obtained from the smallest mass of matter. Hence lithium which has the smallest mass will exhibit the longest DeBroglie wavelength
The atom that have the longest de Broglie wavelength is ; ( A ) Li
Wave particle duality is a phenomenon by de Broglie. that shows that The wavelength associated with matter waves is related to its mass and velocity .
Wave particle duality is represented as ; λ = h / mv
λ= wavelength of matter waves
m= mass of the particle
v= velocity of the particle
Given that the elements have the same velocity the atom that would have the longest de Broglie wavelength is Li
Learn more : https://brainly.com/question/21537274
What is the atomic mass of OsO4
Answer:
254.23 g/mol
Explanation:
Atomic mass for Osmium tetroxide would be 254.23 g/ml
Answer:254.2276
Explanation: