Answer:
[tex]A +B+C+D = 3[/tex] is the correct answer.
Step-by-step explanation:
Given:
[tex]$\frac{5}{2+\sqrt{6}}$[/tex]
To find:
[tex]A+B+C+D = ?[/tex] if given term is written as following:
[tex]$\frac{A\sqrt{B}+C}{D}$[/tex]
Solution:
We can see that the resulting expression does not contain anything under [tex]\sqrt[/tex] (square root) so we need to rationalize the denominator to remove the square root from denominator.
The rule to rationalize is:
Any term having square root term in the denominator, multiply and divide with the expression by changing the sign of square root term of the denominator.
Applying this rule to rationalize the given expression:
[tex]\dfrac{5}{2+\sqrt{6}} \times \dfrac{2-\sqrt6}{2-\sqrt6}\\\Rightarrow \dfrac{5 \times (2-\sqrt6)}{(2+\sqrt{6}) \times (2-\sqrt6)} \\\Rightarrow \dfrac{10-5\sqrt6}{2^2-(\sqrt6)^2}\ \ \ \ \ (\because \bold{(a+b)(a-b)=a^2-b^2})\\\Rightarrow \dfrac{10-5\sqrt6}{4-6}\\\Rightarrow \dfrac{10-5\sqrt6}{-2}\\\Rightarrow \dfrac{-5\sqrt6+10}{-2}\\\Rightarrow \dfrac{5\sqrt6-10}{2}[/tex]
Comparing the above expression with:
[tex]$\frac{A\sqrt{B}+C}{D}$[/tex]
A = 5, B = 6 (Not divisible by square of any prime)
C = -10
D = 2 (positive)
GCD of A, C and D is 1.
So, [tex]A +B+C+D = 5+6-10+2 = \bold3[/tex]
Fundamental Theorem of Algebra...
(x+7)^5
1. Using the Fundamental Theorem of Algebra explain how many roots your expression can have. How many real roots and how many complex roots are possible?
Answer:
A real root of fifth-grade multiplicity/No complex roots.
Step-by-step explanation:
The Fundamental Theorem of Algebra states that every polynomial with real coefficients and a grade greater than zero has at least a real root. Let be [tex]f(x) = (x+7)^{5}[/tex], if such expression is equalized to zero and handled algebraically:
1) [tex](x+7)^{5} = 0[/tex] Given.
2) [tex](x+7)\cdot (x+7)\cdot (x+7)\cdot (x+7)\cdot (x+7) = 0[/tex] Definition of power.
3) [tex]x+7=0[/tex] Given.
4) [tex]x = -7[/tex] Compatibility with the addition/Existence of the additive inverse/Modulative property/Result.
This expression has a real root of fifth-grade multiplicity. No complex roots.
3) The radius of circle is 11 miles. What is the area of a sector bounded by a
300° arc?
Answer:
[tex] Area = 316.6 mi^2 [/tex]
Step-by-step explanation:
Given:
Angle of arc = 300°
Radius of circle = 11 miles
Take π as 3.14
Required:
Area of the major sector
Solution:
Area of sector is given as: angle of arc/360*πr²
Thus,
[tex] Area = \frac{300}{360}*3.14*11^2 [/tex]
[tex] Area = 316.616667 [/tex]
[tex] Area = 316.6 mi^2 [/tex] (rounded to the nearest tenth)
Please answer this correctly without making mistakes
Simplify the correct answer
Answer:
[tex]\frac{109}{122}[/tex]
Step-by-step explanation:
Well first we need to find the total amount of Winter Olympic medals won.
550 + 540 + 130
= 1220
Now we need to find the amount won from the Western and Northern Europe.
550 + 540
= 1090
Now we can make the following fraction,
1090/1220
Simplify
= 109/122
Thus,
the answer is [tex]\frac{109}{122}[/tex].
Hope this helps :)
Hi there!! (✿◕‿◕)
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Northern Europe: 550 medals
Western Europe: 540 medals
550 + 540 = 1,090
Northern Europe and Western Europe: 1,090
Other: 130
1,090 + 130 = 1,220
European Regions: 1,220 medals
1,090/1,220 = 109/122
Hope this helped!! ٩(◕‿◕。)۶
A bus company has contracted with a local high school to carry 450 students on a field trip. The company has 18 large buses which can carry up to 30 students and 19 small buses which can carry up to 15 students. There are only 20 drivers available on the day of the field trip.
The total cost of operating one large bus is $225 a day, and the total cost of operating one small bus is $100 per day.
Answer:
The answer is below
Step-by-step explanation:
Let x represent the big buses and y represent small buses. The large buses can carry 30 students and the small buses can carry 15 students. The total number of students are 450, this can be represented by the inequality:
30x + 15y ≤ 450
They are only 20 drivers, therefore only 20 buses can be used. It is represented by:
x + y ≤ 20
They are only 19 small buses and 18 large buses:
x ≤ 18
y ≤ 19
After plotting the graph, the minimum solution to the graph are at:
A (15,0), B(18,0), C(10, 10), D(18, 2).
The cost function is given as:
The total cost of operating one large bus is $225 a day, and the total cost of operating one small bus is $100 per day.
F(x, y) = 225x + 100y
At point A:
F(x, y) = 225(15) + 100(0) = $3375
At point B:
F(x, y) = 225(18) + 100(0) = $4050
At point C:
F(x, y) = 225(10) + 100(10) = $3250
At point D:
F(x, y) = 225(18) + 100(2) = $4250
The minimum cost is at point C(10, 10) which is $3250
Help with finding the slope of the line and graph find the slope 1.) (1, 6) (3,8) 2.) (7,10) (5,6) 3.) (1,-2) (3,4) 4.) (10,5) (4,7) 5.) (-2,6) (0,5) 6.) (-9,9) (7,5) 7.) (-3, 5) (0,0) (8, 10) (-7, 14) 9.) (-12, -5) (0, -8)
Answer:
1 is 1.
2 is 2.
3 is 3. (this is not a joke, keep going)
4 is -1/3.
5 is -1/2.
6 is -1/4.
7 is -5/3.
8 is -4/15, if you meant that the points are (8,10) and (-7,14). You might have typed wrong.
9 is -1/4.
10 is 1/3. Take a look at it. It goes up by 1 and it goes over 3. 1 divided by 3 is 1/3.
11 is 1. It rises 2 and goes across by 2. 2 divided by 2 is 1.
12 is -3/4, because it goes down 3 and over 4.
13 is -3/2. Do you see why?
14 is 1. It's super easy, since it only goes up 1 and over 1.
15 is easy. You have to figure this one out, but I'll give you a hint. It goes down by 3 .
Let T:V→W be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W.
Answer:
The range of T is a subspace of W.
Step-by-step explanation:
we have T:V→W
This is a linear transformation from V to W
we are required to prove that the range of T is a subspace of W
0 is a vector in range , u and v are two vectors in range T
T = T(V) = {T(v)║v∈V}
{w∈W≡v∈V such that T(w) = V}
T(0) = T(0ⁿ)
0 is Zero in V
0ⁿ is zero vector in W
T(V) is not an empty subset of W
w₁, w₂ ∈ T(v)
(v₁, v₂ ∈V)
from here we have that
T(v₁) = w₁
T(v₂) = w₂
t(v₁) + t(v₂) = w₁+w₂
v₁,v₂∈V
v₁+v₂∈V
with a scalar ∝
T(∝v) = ∝T(v)
such that
T(∝v) ∈T(v)
so we have that T(v) is a subspace of W. The range of T is a subspace of W.
Evaluate 2x^+2x+8 when x=4
The volume of wine in liters produced by a parcel of vineyard every year is modeled by a Gaussian distribution with an average of 100 and a variance of 9. Find the probability that this year it will produce 115 liters of wine
Answer:
0.99865
Step-by-step explanation:
The question above is modelled by gaussian distribution. Gaussian distribution is also known as Normal distribution.
To solve the above question, we would be using the z score formula
The formula for calculating a z-score
z = (x-μ)/σ,
where x is the raw score
μ is the population mean
σ is the population standard deviation.
In the above question,
x is 115 liters
μ is 100
σ is the population standard deviation is unknown. But we were given variance in the question.
Standard deviation = √Variance
Variance = 9
Hence, Standard deviation = √9 = 3
We go ahead to calculate our z score
z = (x-μ)/σ
z = (115 - 100) / 3
z = 15/ 3
z score = 5
Using the z score table of normal distribution to find the Probability of having a z score of 5
P(x = 115) = P(z = 5) =
0.99865
Therefore the probability that this year it will produce 115 liters of wine = 0.99865
A compressive uniform stress distributed on a rectangular areas of sides. located on the two opposite vertical/radial faces of step. If Force = 1.87kN and stress = 0.987MPa calculate the h * t in m^2
Answer:
Area = 0.019 m²
Step-by-step explanation:
stess = applied Force over Area
since stress = 0.987 MPa
and the force = 1.87 Kn
then Area = h * t
Q = F / (h * t)
0.987 mPa = 1.87 kN / (h* t)
since h * t = Area then 1.87 / 0.987
Area = 1.89 x 0.01 =
Area = 0.019 m²
The regular octagon below has a perimeter of 80m What is the length of one side of the octagon?
Answer:
10 m
Step-by-step explanation:
Since all of the side lengths of a regular octagon are equal and there are 8 sides on an octagon, the answer would be 80 / 8 = 10 m.
Consider a sample with a mean of 60 and a standard deviation of 5. Use Chebyshev's theorem to determine the percentage of the data within each of the following ranges (to the nearest whole number).
a. 50 to 70, at least %
b. 35 to 85, at least %
c. 51 to 69, at least %
d. 47 to 73, at least %
e. 43 to 77, at least %
Answer:
a)75%
b)96%
c)69.4%
d)85.2%
e)91.3%
Step by step explanation:
Given:
Mean=60
Standard deviation= 5
We were told to use chebyshev's theorem.to determine the percentage of the above given data within each of the following ranges
CHECK THE ATTACHMENT FOR DETAILED EXPLANATION.
6x²-7x=20 solve the following quadratic equation
Answer:
x = -4/3 and x = 5/2.
Step-by-step explanation:
6x² - 7x = 20
6x² - 7x - 20 = 0
To solve this, we can use the quadratic formula to solve this.
[please ignore the A-hat; that is a bug]
[tex]\frac{-b±\sqrt{b^2 - 4ac} }{2a}[/tex]
In this case, a = 6, b = -7, and c = -20.
[tex]\frac{-(-7)±\sqrt{(-7)^2 - 4 * 6 * (-20)} }{2(6)}[/tex]
= [tex]\frac{7±\sqrt{49 + 80 * 6} }{12}[/tex]
= [tex]\frac{7±\sqrt{49 + 480} }{12}[/tex]
= [tex]\frac{7±\sqrt{529} }{12}[/tex]
= [tex]\frac{7±23 }{12}[/tex]
[tex]\frac{7 - 23 }{12}[/tex] = [tex]\frac{-16 }{12}[/tex] = -8 / 6 = -4 / 3
[tex]\frac{7 + 23 }{12}[/tex] = [tex]\frac{30}{12}[/tex] = 15 / 6 = 5 / 2
So, x = -4/3 and x = 5/2.
Hope this helps!
Answer:
[tex]x1 = - \frac{4}{3} [/tex][tex]x2 = \frac{5}{2} [/tex]Step-by-step explanation:
[tex]6 {x}^{2} - 7x = 20[/tex]
Move constant to the left and change its sign
[tex] {6x}^{2} - 7x - 20 = 0[/tex]
Write -7x as a difference
[tex]6 {x}^{2} + 8x - 15x - 20 = 0[/tex]
Factor out 2x from the expression
[tex]2x(3x + 4) - 15x - 20 = 0[/tex]
Factor out -5 from the expression
[tex]2x(3x + 4) - 5(3x + 4) = 0[/tex]
Factor out 3x + 4 from the expression
[tex](3x + 4)(2x - 5) = 0[/tex]
When the product of factors equals 0 , at least one factor is 0
[tex]3x + 4 = 0[/tex]
[tex]2x - 5 = 0[/tex]
Solve the equation for X1
[tex]3x + 4 = 0[/tex]
Move constant to right side and change its sign
[tex] 3x = 0 - 4[/tex]
Calculate the difference
[tex]3x = - 4[/tex]
Divide both sides of the equation by 3
[tex] \frac{3x}{3} = \frac{ - 4}{3} [/tex]
Calculate
[tex]x = - \frac{4}{3} [/tex]
Again,
Solve for x2
[tex]2x - 5 = 0[/tex]
Move constant to right side and change its sign
[tex]2x = 0 + 5[/tex]
Calculate the sum
[tex]2x = 5[/tex]
Divide both sides of the equation by 2
[tex] \frac{2x}{2} = \frac{5}{2} [/tex]
Calculate
[tex]x = \frac{5}{2} [/tex]
[tex]x1 = - \frac{4}{3} [/tex]
[tex]x2 = \frac{5}{2} [/tex]
Hope this helps...
Best regards!!
What is the value of x plz help
Solve for one half on the triangle with height 6 and base would be 4/2 = 2
Use the Pythagorean theorem:
X = sqrt( 6^2 + 2^2)
X = sqrt( 36 + 4)
X = sqrt(40)
The answer is D
Which of the following is not a solution to the inequality graphed below?
Answer:
C ( 1,-2)
Step-by-step explanation:
We can plot the points and see what point is not in the shaded section
A loan of $25,475 is taken out at 4.6% interest, compounded annually. If no payments are
made, after about how many years will the amount due reach $37,500? Round to the
nearest year.
Please helpp
Answer:
9 years
Step-by-step explanation:
There were 3 adults and 9 children on the bus. What was the ratio of adults to children? Enter your answer in reduced form. (add explanation please!) (70 points!!!!!)
Answer:
1/3
Step-by-step explanation:
Ratios are basically comparisons of multiple numbers that shows their quantity relationship with each other. If we want to find the ratio of x to y, then the ratio is written as x : y or x/y.
Here, we want the ratio of adults to children. There are 3 adults and 9 children, so we have:
adults / children = 3 / 9 = 1/3
The answer is thus 1/3.
~ an aesthetics lover
Answer:
1:3
Step-by-step explanation:
The ratios of two terms is written as x:y.
3 ⇒ adults
9 ⇒ children
The ratio of adults to children:
3:9
Simplify the ratio.
1:3
Which is the solution to this question 4X equals 32
Answer:
8
Step-by-step explanation:
you would just divide 32 by 4
4x = 32
x = 32/4
x=8
Answer:
[tex]\large\boxed{\sf \ \ \ x=8 \ \ \ }[/tex]
Step-by-step explanation:
Hello
4x=32 we can divide both parts by 4 so
[tex]\dfrac{4x}{4}=\dfrac{32}{4}\\\\<=> x = 8[/tex]
Hope this helps
On a final exam, each multiple-choice question is worth 4 points and each word problem is worth 8 points. Lorenzo needs at least 50 points on the final to earn a "B" in the class. Which inequality represents x, the number of correct multiple-choice questions, and y, the number of correct word problems, he needs to earn a "B"? 4x + 8y 50 4x + 8y ≥ 50
Answer:
4x + 8y ≥ 50
Step-by-step explanation:
Lorenzo must score at least 50 points to earn a B. He cannot score any less, therefore you use the greater than or equal to sign (≥).
Answer:
4x+8y>=50 is the required inequality.
Step-by-step explanation:
Here,
4 marks (multiple choice) and 8 marks (word problem) are the marks of each questions in the exam.
also x and y represents the number of correct and wrong answer respectively.
according to the question the person must have The points equal to or more than 50 points so, the inequality must be 4x+8y>=50.
so, theanswer is 4x+8y>=50.
hope it helps...
What is the quotient? URGENT!!
Answer:
The answer is A.
Step-by-step explanation:
You have to multiply by converting the second fraction into upside down :
[tex] \frac{4x + 1}{6x} \div \frac{x}{3x - 1} [/tex]
[tex] = \frac{4x + 1}{6x} \times \frac{3x - 1}{x} [/tex]
[tex] = \frac{(4x + 1)(3x - 1)}{x(6x)} [/tex]
[tex] = \frac{12 {x}^{2} - 4x + 3x - 1}{6 {x}^{2} } [/tex]
[tex] = \frac{12 {x}^{2} - x - 1 }{6 {x}^{2} } [/tex]
Graph the equation below by plotting the y-intercept and a second point on the line. When you click Done, your line will appear
Answer:
Step-by-step explanation:
Equation of the line has been given as,
[tex]y=\frac{3}{2}x-5[/tex]
By comparing this equation with the y-intercept form of the equation,
y = mx + b
Slope of the line 'm' = [tex]\frac{3}{2}[/tex]
and y-intercept 'b' = -5
Table for the points to be plotted on a graph will be,
x y
-4 -11
-2 -6
0 -5
2 -4
4 -3
By plotting y-intercept (0, -5) and any one of the points given in the table we can get the required line.
Answer: actually the answer to this question is (0, -5) and ( 2, -2)
Step-by-step explanation: I just took the test on Plato and got it right :)
Graph parallelogram ABCD on the graph
below with vertices A(2,0), B(7,0), C(10,3),
D (5,3). What is the area of parallelogram
ABCD?
Answer: 25 square units
Step-by-step explanation:
We mark the points, A(2,0), B(7,0), C(10,3), D (5,3). on a graph and then joined them to make parallelogram ABCD as provided in the attachment.
Area of parallelogram = Base x corresponding height
From the figure, base AB = 7 - 2 units = 5 units
corresponding height: h= 5 units
Now , Area of parallelogram ABCD = base AB x corresponding height
= 5 x 5 square units
= 25 square units
Hence, the area of parallelogram ABCD is 25 square units .
Copy the problem, mark the givens in the diagram, and write a Statement/Reason proof. Given: MN ≅ MA ME ≅ MR Prove: ∠E ≅ ∠R
Answer:
Step-by-step explanation:
Given: MN ≅ MA
ME ≅ MR
Prove: ∠E ≅ ∠R
From the given diagram,
YN ≅ YA
EY ≅ RY
<EMA = <RMN (right angle property)
EA = EY + YA (addition property of a line)
NR = YN + RY (addition property of a line)
EA ≅ NR (congruent property)
ΔEMA ≅ ΔRMN (Side-Side-Side, SSS, congruence property)
<MNR ≅ MAE (angle property of congruent triangles)
Therefore,
<E ≅ <R (angle property of congruent triangles)
A P E X!!!! URGENT :The annual interest rate of Belinda's savings account is 8.6% and simple interest is calculated quarterly. What is the periodic interest rate of Belinda's account?
Answer:
The answer is 2.15%
Step-by-step explanatio
The image of a parabolic lens is traced onto a graph. The function f(x) = (x + 8)(x – 4) represents the image. At which points does the image cross the x-axis?
Answer:
[tex]\large \boxed{\sf \ \ \ (-8,0) \ \text{ and } \ (4,0) \ \ \ }[/tex]
Step-by-step explanation:
Hello,
from the expression of f(x) we can say that there are two zeroes, -8 with a multiplicity of 1 and 4 with a multiplicity of 1.
So the image of the parabolic lens crosses the x-axis at two points:
(-8,0)
and
(4,0)
For information, I attached the graph of the function.
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
94. A tin of peas & carrots and two mangoes weighing 300 grams each are placed on one
side of a scale. To balance the scale, 4 tins of condensed milk each weighing 250g are
placed on the other side. Determine the mass of the peas & carrots.
Answer:
400 g
Step-by-step explanation:
Let p represent the mass of the peas & carrots. The scale is balanced when the mass on one side is equal to the mass on the other side.
p + 2(300 g) = 4(250 g)
p = 1000 g -600 g . . . . . subtract 600 g
p = 400 g
The mass of the peas & carrots is 400 grams.
Find the area of the shaded triangle, if the side of each square is 1 unit long.
Answer:
10 units²
Step-by-step explanation:
The shape is a triangle.
The area can be found by multiplying the base (in units) with height (in units) divided by 2.
base = 4 units
height = 5 units
[tex]\frac{4 \times 5}{2}[/tex]
[tex]\frac{20}{2} =10[/tex]
One number is 6 more than another. Their product is -9. Need help fast
Answer: the numbers are 3 and -3
Step-by-step explanation:
let the unknown number be x
The first UNKNOWN NUMBER = X
The second unknown number is = 6 + x
Their product = -9
(X)(6 + X) = -9
6x +[tex]x^{2}[/tex]=-9
[tex]x^{2}[/tex] +6x +9=0
we multiply the coefficient of x which is 1 with 9
now, we look for two numbers that when multiplied will give us 9 and when added will give 6 and that is 3 and 3
[tex]x^{2}[/tex] +3x+3x +9 = 0
x(x+3) +3(x+3) = 0
(x +3 ) = 0
or (x +3)=0
x +3 =0
x=0 -3
x =-3
x +3=0
x =0-3
x =-3
since the numbers are the same ,we pick one
therefore,the first number =x =-3
the second number is 6 + x=6 + (-3)
6-3=3
When testing the claim that p 1p1equals=p 2p2, a test statistic of zequals=2.04 is obtained. Find the p-value obtained from this test statistic.
Answer:
0.0414 with an upper tailed test
Step-by-step explanation:
Claim: P1P1 = P2P2
The above is a null hypothesis
The alternative hypothesis for a two-tailed test would be:
P1P1 \=/ P2P2
Where "\=/" represents "not equal to".
Using a z-table or z-calculator, we derive the p-value (probability value) for the z-score 2.04
With an upper tailed test, the
2 × [probability that z>2.04] = 2[0.0207] = 0.0414
This is the p-value for the test statistic.
Focus is on the alternative hypothesis.
If m
X=49, y=41
X=90, y= 49
X=41, y =49
X=90, y=41
Answer:
x=90 degrees and y=41 degrees.
Step-by-step explanation:
In the diagram
[tex]AB=AC\\$Therefore \triangle ABC$ is an isosceles triangle[/tex]
[tex]m\angle C=49^\circ[/tex]
Since ABC is Isosceles
[tex]m\angle B=m\angle C=49^\circ $ (Base angles of an Isosceles Triangle)[/tex]
[tex]m\angle A+m\angle B+m\angle C=180^\circ $ (Sum of angles in a Triangle)\\m\angle A+49^\circ+49^\circ=180^\circ\\m\angle A=180^\circ-(49^\circ+49^\circ)\\m\angle A=82^\circ[/tex]
[tex]m\angle x=90^\circ $(perpendicular bisector of the base of an isosceles triangle)[/tex]
[tex]m\angle y=m\angle A \div 2 $ (perpendicular bisector of the angle at A)\\m\angle y=82 \div 2\\m\angle y=41^\circ[/tex]
Therefore:
x=90 degrees and y=41 degrees.
Please Help
Show Work
Answer:
[tex]m<7[/tex]
Step-by-step explanation:
We can solve this inequality by isolating the variable [tex]m[/tex].
To do this, we subtract 8 from both sides of the equation.
[tex]15-8 > m+8-8[/tex]
[tex]7>m[/tex]
I always like formatting by inequalities with the variable on the left, so we just reverse the numbers and the sign.
[tex]m<7[/tex]
Hope this helped!
Answer:
Hey there!
15>m+8
15-8>m
7>m
m<7
Hope this helps :)