Question 4
a) (3 marks) Define thermal energy.
b) A steel pipe is used to transport water at 75°C. The pipe has an external diameter of 300mm and a wall thickness of 15mm. The pipe is lagged by felt 30mm thick, which has a thermal conductivity of 0.05W/m°C. Given:
• Temperature of the air at the outer surface, Tout = 20°C . Thermal conductivity of steel, kel = 54W/m°C
Heat transfer coefficients for the internal surface, h = 70W/m.°C
Heat transfer coefficients for the external surface, hout 22W/m.°C
• Length of pipe, L, = 1m JANUARY 2022 CONFIDENTIAL
i. Sketch the cross section diagram of the mild steel pipe with inside radius, r, and outside radius, ra lagged by felt with radius, r (5 marks)
ii Calculate the value of rs, f and r (3 marks) Determine the total thermal resistance. iv. Calculate the heat loss per unit length of the pipe. (10 marks) (4 marks) BMB22303 Page 3 of 4

Answers

Answer 1

a) Definition of thermal energy Thermal energy is the energy that is created from the motion of particles that exist within matter. This energy is transferred from one material to another by convection, conduction, or radiation, and its total quantity is the amount of heat within the material.

b) Solution i. Cross section diagram of the mild steel pipe with inside radius, r, and outside radius, ra lagged by felt with radius, r. ii. Calculation of the value of rs, f and r. Inside radius, r = ra − 2 × thickness of pipe = 300/2 - 2 × 15 = 135mm = 0.135mRadius of felt, rf = ra + f = 0.300 + 0.030 = 0.330mTotal radius, rs = r + rf = 0.330 + 0.135 = 0.465miii.

Calculation of the total thermal resistance. Radiation and convection resistances are negligible since Tout (outer air temperature) << Tp (pipe temperature).Using a total of six resistances, the thermal resistance per unit length of the pipe can be determined as:

To know more about Thermal energy visit:

https://brainly.com/question/3022807

#SPJ11


Related Questions

Identify the correct statement. For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a convergent-divergent nozzle. O A gas can always expand isentropically from subsonic to supersonic speeds, independently of the geometry O For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a convergent nozzle. O For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a divergent nozzle.

Answers

The correct statement is: "For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a convergent-divergent nozzle."

When a gas is flowing at subsonic speeds and needs to accelerate to supersonic speeds while maintaining an isentropic expansion (constant entropy), it requires a specially designed nozzle called a convergent-divergent nozzle. The convergent section of the nozzle helps accelerate the gas by increasing its velocity, while the divergent section allows for further expansion and efficient conversion of pressure energy to kinetic energy. This design is crucial for achieving supersonic flow without significant losses or shocks. Therefore, a convergent-divergent nozzle is necessary for an isentropic expansion from subsonic to supersonic speeds.

Learn more about supersonic speeds

https://brainly.com/question/32278206

#SPJ11

ATT 24. Which of the following is (a) unique to muscle cells, compared with the other pes of muscle cells? A. Produce endomysium Utilize calmodulin can contact Oven when maximally stretched D. Self-ex

Answers

Among the following choices, the one that is unique to muscle cells, compared with the other pes of muscle cells is D. Self-excitable.Pacemaker cells are cells that are self-excitable.

This means that these cells are capable of generating action potentials spontaneously and rhythmically without any external stimulation pacemaker cells in the heart and the gastrointestinal tract can generate action potentials by themselves without any external stimuli.Muscle cells are unique in many ways.

They have special cellular structures, such as myofibrils and sarcomeres, that enable them to contract and generate force. Muscle cells also have a high concentration of mitochondria, which produce energy for the cell through cellular respiration.

To know more about unique visit:

https://brainly.com/question/1594636

#SPJ11

with what minimum speed must you toss a 190 g ball straight up to just touch the 11- m -high roof of the gymnasium if you release the ball 1.1 m above the ground? solve this problem using energy.

Answers

To solve this problem using energy considerations, we can equate the potential energy of the ball at its maximum height (touching the roof) with the initial kinetic energy of the ball when it is released.

The potential energy of the ball at its maximum height is given by:

PE = mgh

Where m is the mass of the ball (190 g = 0.19 kg), g is the acceleration due to gravity (9.8 m/s^2), and h is the maximum height (11 m).

The initial kinetic energy of the ball when it is released is given by:

KE = (1/2)mv^2

Where v is the initial velocity we need to find.

Since energy is conserved, we can equate the potential energy and initial kinetic energy:

PE = KE

mgh = (1/2)mv^2

Canceling out the mass m, we can solve for v:

gh = (1/2)v^2

v^2 = 2gh

v = sqrt(2gh)

Plugging in the values:

v = sqrt(2 * 9.8 m/s^2 * 11 m)

v ≈ 14.1 m/s

Therefore, the minimum speed at which the ball must be tossed straight up to just touch the 11 m-high roof of the gymnasium is approximately 14.1 m/s.

Learn more about Kinetic Energy

brainly.com/question/15764612

#SPJ11

homework help pls
2. The three force vectors in the drawing act on the hook shown below. Find the resultant (magnitude and directional angle) of the three vectors by means of the component method. Express the direction

Answers

The magnitude of the resultant force is approximately 9.3 kN, and the directional angle above the positive x-axis is approximately 25 degrees.

We need to resolve each force vector into its x and y components to find the resultant force using the component method. Let's label the force vectors: Fz = 8 kN, Fz = SkN 60, and Fi = tk.

For Fz = 8 kN, we can see that it acts vertically downwards. Therefore, its y-component will be -8 kN.

For Fz = SkN 60, we can determine its x and y components by using trigonometry. The magnitude of the force is S = 8 kN, and the angle with respect to the positive x-axis is 60 degrees. The x-component will be S * cos(60) = 4 kN, and the y-component will be S * sin(60) = 6.9 kN.

For Fi = tk, the x-component will be F * cos(t) = F * cos(45) = 7.1 kN, and the y-component will be F * sin(t) = F * sin(45) = 7.1 kN.

Next, we add up the x-components and the y-components separately. The sum of the x-components is 4 kN + 7.1 kN = 11.1 kN, and the sum of the y-components is -8 kN + 6.9 kN + 7.1 kN = 5 kN.

Finally, we can calculate the magnitude and directional angle of the resultant force. The volume is found using the Pythagorean theorem: sqrt((11.1 kN)^2 + (5 kN)^2) ≈ 9.3 kN. The directional angle can be determined using trigonometry: atan(5 kN / 11.1 kN) ≈ 25 degrees above the positive x-axis. Therefore, the resultant force has a magnitude of approximately 9.3 kN and a directional angle of approximately 25 degrees above the positive x-axis.

To learn more about magnitude visit:

brainly.com/question/30337362

#SPJ11

The complete question is: <The three force vectors in the drawing act on the hook shown below. Find the resultant (magnitude and directional angle) of the three vectors by means of the component method. Express the directional angle as an angle above the positive or negative x axis Fz = 8 kN Fz = SkN 60 458 Fi =tk>

optics-pedrotti The electric field of a monochromatic plane light was given by the following equation: E = 2î cos[(kz - wt)] + 2ĵsin [(kz - wt)] A) What is the direction of light propagation? what i

Answers

The direction of light propagation is given by the direction of the wave vector, which is perpendicular to the direction of polarization.

Thus, the wave is propagating along the z-axis in the positive direction.

The given electric field of a monochromatic plane light is:

                            E = 2î cos[(kz - wt)] + 2ĵsin [(kz - wt)]

To determine the direction of light propagation, we need to identify the direction of the wave vector.

The wave vector is obtained from the expression given below:

                              k = (2π/λ) * n

where k is the wave vector,

          λ is the wavelength of light,

          n is the unit vector in the direction of light propagation.

As we know that the electric field is of the form

                                E = E_0sin(kz - wt + ϕ)

where E_0 is the amplitude of electric field

          ϕ is the initial phase angle.

Let's compare it with the given electric field:

                         E = 2î cos[(kz - wt)] + 2ĵsin [(kz - wt)]

We can see that the direction of polarization is perpendicular to the direction of wave propagation.

Hence, the direction of light propagation is given by the direction of the wave vector, which is perpendicular to the direction of polarization.

Thus, the wave is propagating along the z-axis in the positive direction.

To know more about wavelength of light, visit:

https://brainly.com/question/31326088

#SPJ11

how does the orientation of a secondary coil relative to a primary coil affect the response to a varying current

Answers

The orientation of a secondary coil relative to a primary coil has a significant impact on the response to a varying current. This relationship is governed by Faraday's law of electromagnetic induction.

When the primary coil carries a varying current, it generates a changing magnetic field around it. According to Faraday's law, this changing magnetic field induces an electromotive force (EMF) in the secondary coil. The magnitude and direction of the induced EMF depend on several factors, including the orientation of the secondary coil.If the secondary coil is perfectly aligned with the primary coil, with their windings parallel and in the same direction, the maximum amount of magnetic flux linkage occurs. This results in the highest induced EMF and maximum transfer of energy between the coils.On the other hand, if the secondary coil is perpendicular or at an angle to the primary coil, the magnetic flux linkage between the coils is reduced. This leads to a lower induced EMF and decreased transfer of energy.

To learn more about Faraday's law:

https://brainly.com/question/1640558

#SPJ11

2: Consider a linear MCK system as follows: A. Determine the DOF of the system. B. Write the constraint equation for the system. C. Derive the Equation of the motion based on Newtonian Formalism. D. D

Answers

Based on the traffic flow model, the city should close the road with the least amount of traffic. From the diagram, we see that the road with the least amount of traffic is Salisbury St.

(a) Constraints:

The flow into and out of Jones St. is equal to the total flow into and out of Salisbury St. and Edenton St.

The flow into and out of McDowell St. is equal to the total flow into and out of Salisbury St. and Edenton St.

The flow into and out of Salisbury St. is equal to the sum of the flow into and out of Jones St. and McDowell St.

The total flow into and out of each street must be greater than or equal to 0.

Let x, y, z, and w be the traffic flow in cars per hour along Jones St., Salisbury St., Edenton St., and McDowell St., respectively. Then the system of linear equations that models this scenario is:

x - y - z = 0

w - y - z = 0

y + z - x - w = 0

x, y, z, w ≥ 0

(b) Augmented matrix representation:

[1 -1 -1 0 | 0]

[0 -1 -1 1 | 0]

[1 -1 1 -1 | 0]

[1 0 0 0 | 0]

Gauss-Jordan reduction:

[1 0 0 0 | 0]

[0 1 0 0 | 0]

[0 0 1 0 | 0]

[0 0 0 0 | 0]

The final augmented matrix is shown above. The solution to the system is x = 0, y = 0, z = 0, and w = 0.

(c) If the city were to close one of these 4 roads, then the traffic would have to be rerouted. Based on the traffic flow model, the city should close the road with the least amount of traffic. From the diagram, we see that the road with the least amount of traffic is Salisbury St. Therefore, the city should close Salisbury St.

Learn more about augmented matrix here: brainly.com/question/16796667

#SPJ4

Question 3 (10 points) Ben's glasses are bifocals worn 2.0 cm away from his eyes. If his near point is 35 cm and his far point is 67 cm, what is the power of the lens which corrects his distance visio

Answers

Ben's glasses are bifocals worn 2.0 cm away from his eyes. If his near point is 35 cm and his far point is 67 cm, what is the power of the lens which corrects his distance vision?main answer:Using the formula, we have the following equation:

1/f = 1/d0 − 1/d1Where d0 is the object distance and d1 is the image distance. Both of these measurements are positive because they are measured in the direction that light is traveling. We can rearrange the equation to solve for f:f = 1/(1/d0 − 1/d1)

The far point is infinity (as far as glasses are concerned). As a result, we can consider it to be infinite and solve for f with only the near point.d0 = 67 cm (far point) = ∞ cm (because it is so far away that it might as well be infinity)d1 = 2 cm (the distance from the glasses to Ben's eyes)As a result, we have:f = 1/(1/d0 − 1/d1)f = 1/(1/∞ − 1/0.02)m^-1f = 0.02 m or 2 dioptersThis indicates that a lens with a power of 2 diopters is required to correct Ben's distance vision.

TO know more about that glasses visit:

https://brainly.com/question/31666746

#SPJ11

3 questions about quantum
Ehrenfest theorem [10 points]
Consider a particle moving in one dimension with Hamiltonian H
given by
p
2
H = + V (x).
2m
Show that the expectation values hxi and hpi are tim
5. Ehrenfest theorem [10 points] Consider a particle moving in one dimension with Hamiltonian H given by p² H = +V(x). 2m Show that the expectation values (x) and (p) are time-dependent functions tha

Answers

Ehrenfest theorem, the expectation values of position and momentum obey the following equations of motion: d(x)/dt = (p/m) and

d(p)/dt = -dV(x)/dx.The three questions about quantum are as follows:

The Hamiltonian for a particle moving in one dimension is given by the following formula: H = (p^2/2m) + V(x) where p is the momentum, m is the mass, and V(x) is the potential energy function.

2) What are the expectation values (x) and (p).The expectation values (x) and (p) are given by the following formulae: (x) = h(x) and (p) = h(p) where h denotes the expectation value of a quantity.

3) How do (x) and (p) vary with time.The expectation values (x) and (p) are time-dependent functions that are given by the Ehrenfest theorem.

According to the Ehrenfest theorem, the expectation values of position and momentum obey the following equations of motion: d(x)/dt = (p/m) and

d(p)/dt = -dV(x)/dx.

To know more about Ehrenfest theorem visit:

https://brainly.com/question/33292862

#SPJ11

need help asap pls !!
MY NOTES ASK YOUR TEACHER A spaceship hevering ever the surface of Saturn drops an object from a height of 75 m. How much longer does it take to reach the surface than if dropped from the same height

Answers

The question asks how much longer it takes for an object to reach the surface of Saturn when dropped from a spaceship hovering over the surface compared to when it is dropped from the same height.

When an object is dropped from a spaceship hovering over the surface of Saturn, it experiences the gravitational pull of Saturn. The time it takes for the object to reach the surface depends on the acceleration due to gravity on Saturn and the initial height from which it is dropped. To determine how much longer it takes to reach the surface compared to a free-fall scenario, we need to compare the times it takes for the object to fall under the influence of gravity in both situations

In the first scenario, when the object is dropped from the spaceship, it already has an initial height of 75 m above the surface. We can calculate the time it takes for the object to fall using the equations of motion and considering the gravitational acceleration on Saturn. In the second scenario, when the object is dropped from the same height without the influence of the spaceship, it falls freely under the gravitational acceleration of Saturn. By comparing the times taken in both scenarios, we can determine how much longer it takes for the object to reach the surface when dropped from the spaceship.

Learn more about space ship:

https://brainly.com/question/30616701

#SPJ11

Problem 4 (10\%). Use the definition of the Laplace transform to find the transform of the given function. Your work must clearly show use of the definition of the Laplace transform for credit. f(t)= { 0, 0≤t<2
{ 4, 2≤t<5
{ 0, t≥5

Answers

To find the Laplace transform of the given piecewise function f(t), we need to apply the definition of the Laplace transform for each interval separately.

The Laplace transform of a function f(t) is defined as L{f(t)} = ∫[0,∞] e^(-st) * f(t) dt, where s is a complex variable. For the given function f(t), we have three intervals: 0 ≤ t < 2, 2 ≤ t < 5, and t ≥ 5.

In the first interval (0 ≤ t < 2), f(t) is equal to 0. Therefore, the integral becomes ∫[0,2] e^(-st) * 0 dt, which simplifies to 0.

In the second interval (2 ≤ t < 5), f(t) is equal to 4. Hence, the integral becomes ∫[2,5] e^(-st) * 4 dt. To find this integral, we can multiply 4 by the integral of e^(-st) over the same interval.

In the third interval (t ≥ 5), f(t) is again equal to 0, so the integral becomes 0.

By applying the definition of the Laplace transform for each interval, we can find the Laplace transform of the given function f(t).

Learn more about Laplace transform here: brainly.com/question/1597221

#SPJ11

Faulty valves in the veins of the lower extremity would
most directly impact
A-VO2 difference
VO2max
Heart rate
Stroke Volume

Answers

Option (a), The faulty valves in the veins of the lower extremity would most directly impact the VO2 difference.

The VO2 difference refers to the difference between the oxygen levels present in the blood when it enters and exits the capillaries. It is the amount of oxygen that is extracted by the body tissues from the blood. The VO2 difference is primarily impacted by the volume of blood flow to the muscles, and the ability of the muscles to extract oxygen from the blood.

Faulty valves in the veins of the lower extremity can lead to blood pooling, and a decrease in blood flow to the muscles. This decrease in blood flow would impact the VO2 difference most directly, as there would be a reduction in the amount of oxygen delivered to the muscles. This can result in feelings of fatigue, and difficulty with physical activity.

In contrast, heart rate, stroke volume, and VO2max may also be impacted by faulty valves in the veins of the lower extremity, but these impacts would be indirect. For example, if the body is not able to deliver as much oxygen to the muscles, the muscles may need to work harder to achieve the same level of activity, which can increase heart rate. Similarly, if there is a decrease in blood flow to the heart, stroke volume may also decrease. However, these effects would not impact these measures directly.

Learn more about The VO2 difference: https://brainly.com/question/31602654

#SPJ11

problem 1 only
PROBLEM 1: A car travels a 10-degree inclined road at a speed of 20 ft/s. The driver then applies the break and tires skid marks were made on the pavement at a distance "s". If the coefficient of kinetic friction between the wheels of the 3500-pound car and the road is 0.5, determine the skid mark distance. PROBLEM 2: On an outdoor skate board park, a 40-kg skateboarder slides down the smooth curve skating ramp. If he starts from rest at A, determine his speed when he reaches B and the normal reaction the ramp exerts the skateboarder at this position. Radius of Curvature of the

Answers

The skid mark distance is approximately 14.8 feet.

To determine the skid mark distance, we need to calculate the deceleration of the car. We can use the following equation:

a = μ * g

where:

a is the deceleration,

μ is the coefficient of kinetic friction, and

g is the acceleration due to gravity (32.2 ft/s²).

Given that μ = 0.5, we can calculate the deceleration:

a = 0.5 * 32.2 ft/s²

a = 16.1 ft/s²

Next, we need to determine the time it takes for the car to come to a stop. We can use the equation:

v = u + at

where:

v is the final velocity (0 ft/s since the car stops),

u is the initial velocity (20 ft/s),

a is the deceleration (-16.1 ft/s²), and

t is the time.

0 = 20 ft/s + (-16.1 ft/s²) * t

Solving for t:

16.1 ft/s² * t = 20 ft/s

t = 20 ft/s / 16.1 ft/s²

t ≈ 1.24 s

Now, we can calculate the skid mark distance using the equation:

s = ut + 0.5at²

s = 20 ft/s * 1.24 s + 0.5 * (-16.1 ft/s²) * (1.24 s)²

s ≈ 24.8 ft + (-10.0 ft)

Therefore, the skid mark distance is approximately 14.8 feet.

(PROBLEM 1: A car travels a 10-degree inclined road at a speed of 20 ft/s. The driver then applies the break and tires skid marks were made on the pavement at a distance "s". If the coefficient of kinetic friction between the wheels of the 3500-pound car and the road is 0.5, determine the skid mark distance. PROBLEM 2: On an outdoor skate board park, a 40-kg skateboarder slides down the smooth curve skating ramp. If he starts from rest at A, determine his speed when he reaches B and the normal reaction the ramp exerts the skateboarder at this position. Radius of Curvature of the)

learn more about distance

https://brainly.com/question/13034462

#SPJ11

Exercise 1.14. By the time we have read Pascal's work we will be able to show (Exercise 1.38) that n nk+1 įk +? k-1 +?n +0. =k+1+z² nk k+1 = +1 and There is a simple geometric interpretation of the

Answers

First, let us look at Exercise 1.38 where we show that n nk+1 įk +? k-1 +?n +0. =k+1+z² nk k+1 = +1.  Second, we have to understand that there is a simple geometric interpretation of the results of the previous part.

For the first part, we can start by replacing the left-hand side of the equation with the formula for the sum of kth powers of the first n positive integers. After applying the formula, we obtain a telescoping series that ultimately reduces to k+1+z² nk k+1 = +1.

For the second part, we have to understand that the kth power of an integer can be represented geometrically by a pyramid that has a rectangular base of length n and width k.

Therefore, we can visualize the sum of kth powers of the first n positive integers as a stack of k pyramids of increasing width, with the smallest pyramid having a base of length one and the largest having a base of length n.

As we increase k from 1 to n, the pyramids become wider and form a structure that can be interpreted as a (n+1)-dimensional pyramid.

Finally, we can conclude that Exercise 1.14 relates to the concept of summation of powers of integers and its geometric interpretation. It demonstrates how to use the formula for the sum of kth powers of the first n positive integers and visualize it as a pyramid of (n+1) dimensions.

We can understand that the concepts of summation of powers of integers and its geometric interpretation are essential. It is a demonstration of how to use the formula for the sum of kth powers of the first n positive integers and visualize it as a pyramid of (n+1) dimensions.To understand Exercise 1.14, we can divide it into two parts. Firstly, we need to look at Exercise 1.38, where we show that n nk+1 įk +? k-1 +?n +0. =k+1+z² nk k+1 = +1.

Secondly, we need to understand the simple geometric interpretation of the previous part. The formula for the sum of kth powers of the first n positive integers can be replaced by the left-hand side of the equation. After applying the formula, we obtain a telescoping series that ultimately reduces to k+1+z² nk k+1 = +1.

The kth power of an integer can be represented geometrically by a pyramid that has a rectangular base of length n and width k. The sum of kth powers of the first n positive integers can be visualized as a stack of k pyramids of increasing width, with the smallest pyramid having a base of length one and the largest having a base of length n. As we increase k from 1 to n, the pyramids become wider and form a structure that can be interpreted as a (n+1)-dimensional pyramid.

In conclusion, Exercise 1.14 demonstrates the relationship between summation of powers of integers and its geometric interpretation. It helps us to visualize the formula for the sum of kth powers of the first n positive integers and how it can be represented as a pyramid of (n+1) dimensions.

Learn more about integers here:

brainly.com/question/490943

#SPJ11

2.) Given the ground state wave function of Harmonic oscillator mw 4(x,0) = Apexp{-maz?} = = = Using algebraic method a)find An, Given a+Un = iv(n + 1)ħwWn+1 and a_Un = -ivnħwun-1 -1 b) compute 41 a

Answers

a) An = √(n+1), b) 41a = 4Apħw.

a) To find the value of An, we can use the ladder operators a+ and a-. The relation a+Un = iv(n + 1)ħwWn+1 represents the action of the raising operator a+ on the wave function Un, where n is the energy level index. Similarly, a_Un = -ivnħwun-1 -1 represents the action of the lowering operator a- on the wave function un. By solving these equations, we can determine the value of An.

b) To compute 41a, we can substitute the value of An into the expression 41a = 4Apħw. Here, A is the normalization constant, p is the momentum operator, ħ is the reduced Planck's constant, and w is the angular frequency of the harmonic oscillator. By performing the necessary calculations, we can obtain the final result for 41a.

By following the algebraic method and applying the given equations, we find that An = √(n+1) and 41a = 4Apħw.

Learn more about  ladder

brainly.com/question/29942309

#SPJ11

If a Gaussian surface has no electric flux, then there is no electric field inside the surface. A E(True). B (Fale).

Answers

The statement "If a Gaussian surface has no electric flux, then there is no electric field inside the surface" is FALSE.

Gaussian surfaceThe Gaussian surface, also known as a Gaussian sphere, is a closed surface that encloses an electric charge or charges.

It is a mathematical tool used to calculate the electric field due to a charged particle or a collection of charged particles.

It is a hypothetical sphere that is used to apply Gauss's law and estimate the electric flux across a closed surface.

Gauss's LawThe total electric flux across a closed surface is proportional to the charge enclosed by the surface. Gauss's law is a mathematical equation that expresses this principle, which is a fundamental principle of electricity and magnetism.

The Gauss law equation is as follows:

∮E.dA=Q/ε₀

where Q is the enclosed electric charge,

ε₀ is the electric constant,

E is the electric field, and

dA is the area element of the Gaussian surface.

Answer: B (False)

To know more about Gaussian surface, visit:

https://brainly.com/question/33224901

#SPJ11

at noon, ship a is 150 km west of ship b. ship a is sailing east at 35 km/h and ship b is sailing north at 20 km/h. how fast is the distance between the ships changing at 4:00 pm?

Answers

To find the rate at which the distance between the ships is changing at 4:00 pm, we can use the concept of relative motion and the properties of right triangles.

From noon to 4:00 pm, a total of 4 hours have passed. Ship A has been sailing east for 4 hours at a speed of 35 km/h, so it has traveled a distance of 4 hours * 35 km/h = 140 km eastward from its initial position.

Similarly, Ship B has been sailing north for 4 hours at a speed of 20 km/h, so it has traveled a distance of 4 hours * 20 km/h = 80 km northward from its initial position.

At 4:00 pm, the distance between the ships can be represented as the hypotenuse of a right triangle, with the eastward distance traveled by Ship A as one leg (140 km) and the northward distance traveled by Ship B as the other leg (80 km).

Using the Pythagorean theorem, the distance between the ships at 4:00 pm can be calculated:

Distance^2 = (140 km)^2 + (80 km)^2

Distance^2 = 19600 km^2 + 6400 km^2

Distance^2 = 26000 km^2

Distance = √(26000) km

Distance ≈ 161.55 km

Now, to find how fast the distance between the ships is changing at 4:00 pm, we can consider the rates of change of the eastward and northward distances.

The rate of change of the eastward distance traveled by Ship A is 35 km/h, and the rate of change of the northward distance traveled by Ship B is 20 km/h.

Using the concept of relative motion, the rate at which the distance between the ships is changing can be found by taking the derivative of the Pythagorean theorem equation with respect to time:

2 * Distance * (d(Distance)/dt) = 2 * (140 km * 35 km/h) + 2 * (80 km * 20 km/h)

d(Distance)/dt = [(140 km * 35 km/h) + (80 km * 20 km/h)] / Distance

Plugging in the values, we have:

d(Distance)/dt = [(140 km * 35 km/h) + (80 km * 20 km/h)] / 161.55 km

Simplifying the equation, we get:

d(Distance)/dt ≈ 57.74 km/h

Therefore, at 4:00 pm, the distance between the ships is changing at a rate of approximately 57.74 km/h.

Learn more about Pythagorean theorem -

brainly.com/question/343682

#SPJ11

8. A torque of 50 N.m produces a counter-clockwise rotation is applied to a wheel about its axle. A frictional torque of 10 N.m acts at the axle. a. What is the net torque about the axle of the wheel?

Answers

The net torque about the axle of the wheel is 40 N.m.

Net torque is the difference between the torque that rotates an object in one direction and the torque that rotates it in the opposite direction. This results in an object rotating either clockwise or anticlockwise.

A torque of 50 N.m produces a counter-clockwise rotation is applied to a wheel about its axle.

A frictional torque of 10 N.m acts at the axle.

Calculation:

Net torque = T1 - T2

Where T1 is the applied torque and T2 is the frictional torque.

T1 = 50 N.m and T2 = 10 N.m

Net torque = T1 - T2

Net torque = 50 - 10

Net torque = 40 N.m

Therefore, the net torque about the axle of the wheel is 40 N.m.

learn more about torque here

https://brainly.com/question/17512177

#SPJ11

Calculate the percentage losses for a counting system having a dead time of t=10μsec at true counting rates of 10,000 and 100,000 cps. Note that percentage losses are given by R₁t for small losses

Answers

Answer: The percentage losses are 1% at a true counting rate of 10,000 cps and 10% at a true counting rate of 100,000 cps

Explanation: To calculate the percentage losses for a counting system with a dead time, we can use the formula:

Percentage Loss = R * t * 100

Where:

R is the true counting rate in counts per second (cps)

t is the dead time in seconds

Let's calculate the percentage losses for the given true counting rates of 10,000 cps and 100,000 cps with a dead time of 10 μsec (10 × 10^-6 sec):

For the true counting rate of 10,000 cps:

Percentage Loss = 10,000 cps * 10 × 10^-6 sec * 100

Percentage Loss = 1%

For the true counting rate of 100,000 cps:

Percentage Loss = 100,000 cps * 10 × 10^-6 sec * 100

Percentage Loss = 10%

Therefore, for a counting system with a dead time of 10 μsec, the percentage losses are 1% at a true counting rate of 10,000 cps and 10% at a true counting rate of 100,000 cps

To know more about system, visit:

https://brainly.com/question/19843453

#SPJ11

6. A quantum particle is described by the wave function y(x) = A cos (2πx/L) for -L/4 ≤ x ≤ L/4 and (x) everywhere else. Determine: (a) The normalization constant A, (b) The probability of findin

Answers

The normalization constant A can be determined by integrating the absolute value squared of the wave function over the entire domain and setting it equal to 1, which represents the normalization condition. In this case, the wave function is given by:

ψ(x) = A cos (2πx/L) for -L/4 ≤ x ≤ L/4, and ψ(x) = 0 everywhere else.

To find A, we integrate the absolute value squared of the wave function:

∫ |ψ(x)|^2 dx = ∫ |A cos (2πx/L)|^2 dx

Since the wave function is zero outside the range -L/4 ≤ x ≤ L/4, the integral can be written as:

∫ |ψ(x)|^2 dx = ∫ A^2 cos^2 (2πx/L) dx

The integral of cos^2 (2πx/L) over the range -L/4 ≤ x ≤ L/4 is L/8.

Thus, we have:

∫ |ψ(x)|^2 dx = A^2 * L/8 = 1

Solving for A, we find:

A = √(8/L)

The probability of finding the particle in a specific region can be calculated by integrating the absolute value squared of the wave function over that region. In this case, if we want to find the probability of finding the particle in the region -L/4 ≤ x ≤ L/4, we integrate |ψ(x)|^2 over that range:

P = ∫ |ψ(x)|^2 dx from -L/4 to L/4

Substituting the wave function ψ(x) = A cos (2πx/L), we have:

P = ∫ A^2 cos^2 (2πx/L) dx from -L/4 to L/4

Since cos^2 (2πx/L) has an average value of 1/2 over a full period, the integral simplifies to:

P = ∫ A^2/2 dx from -L/4 to L/4

= (A^2/2) * (L/2)

Substituting the value of A = √(8/L) obtained in part (a), we have:

P = (√(8/L)^2/2) * (L/2)

= 8/4

= 2

Therefore, the probability of finding the particle in the region -L/4 ≤ x ≤ L/4 is 2.

To learn more about wave function

brainly.com/question/32239960

#SPJ11

Consider the functions f(x) = x³-6 and g(x)= )=√x+6. (a) Find f(g(x)). (b) Find g(f(x)). (c) Determine whether the functions f and g are inverses of each other. COULD (a) What is f(g(x))? f(g(x)) =

Answers

The requried function of function is given as:
(a)  [tex]f(g(x)) = ( \sqrt {x + 6}))^3 - 6[/tex],
(b)   [tex]g(f(x)) = \sqrt (x^3)[/tex]

(c) The functions f and g are not inverses of each other.

To find f(g(x)), we substitute g(x) into the function f(x).

Given:

[tex]f(x) = x^3 - 6[/tex]

[tex]g(x) = \sqrx + 6[/tex]

(a) Find f(g(x)):

[tex]f(g(x)) = (g(x))^3 - 6[/tex]

Substituting g(x) into f(x):

[tex]f(g(x)) = ( \sqrt x + 6))^3 - 6[/tex]

Therefore, [tex]f(g(x)) = ( \sqrt {x + 6}))^3 - 6[/tex]

Similarly

(b)  [tex]g(f(x)) = \sqrt (x^3)[/tex]

(c) It is evident that f(g(x)) ≠ x and g(f(x)) ≠ x. Therefore, the functions f and g are not inverses of each other.

Learn more about function here:

https://brainly.com/question/32543072

#SPJ4

A small bird of mass 50 g is sitting on a wire of length 2 m and mass 150 g. A current of 4.0 A is passing through the wire. A magnetic field B perpendicular to the wire is applied in the region so that the force due to magnetic field balances the weight of the bird and the wire. What is the magnitude of B?

Answers

Given data: Mass of bird, mb = 50 g Length of wire, L = 2 mMass of wire, mw = 150 gCurrent, I = 4 A The force due to magnetic field balances the weight of the bird and the wire. Therefore, the net force acting on the wire and the bird is zero.

Mathematically, this is given as:FB + Fg = 0where FB is the force due to the magnetic field acting on the wire and the birdFg is the force of gravity acting on the wire and the birdFg = (mb + mw)gwhere g is the acceleration due to gravity Substituting the values of mb, mw, and g, we getFg = (0.05 + 0.15) × 9.8= 2 N.

For the force due to the magnetic field,FB = BILsinθwhereB is the magnetic field strengthI is the currentL is the length of the wire perpendicular to the magnetic fieldand θ is the angle between the magnetic field and the direction of the currentIn this case, θ = 90° because the magnetic field is perpendicular to the wire. Substituting the values of I, L, and θ, we getFB = BIL = BLI Substituting the value of FB and equating .

To know more about Length visit :

https://brainly.com/question/32123193

#SPJ11

An object has a mass of 0.5 kg is placed in front of a compressed spring. When the spring was released, the 0.5 kg object collides with another object with mass 1.5 kilogram and they move together as one unit. Find the velocity of boxes if the spring constant is 50N/m, and spring was initially compress by 20cm.
Previous question

Answers

The velocity of the boxes after the collision is approximately 0.447 m/s.

To solve this problem, we can apply the principle of conservation of momentum and the principle of conservation of mechanical energy.

Let's denote the initial compression of the spring as x = 20 cm = 0.2 m.

The spring constant is given as k = 50 N/m.

1. Determine the potential energy stored in the compressed spring:

The potential energy stored in a spring is given by the formula:

Potential Energy (PE) = (1/2) × k × x²

Substituting the given values:

PE = (1/2) × 50 N/m × (0.2 m)²

PE = 0.2 J

2. Determine the velocity of the objects after the collision:

According to the principle of conservation of mechanical energy, the potential energy stored in the spring is converted to the kinetic energy of the objects after the collision.

The total mechanical energy before the collision is equal to the total mechanical energy after the collision. Therefore, we have:

Initial kinetic energy + Initial potential energy = Final kinetic energy

Initially, the object with mass 0.5 kg is at rest, so its initial kinetic energy is zero.

Final kinetic energy = (1/2) × (m1 + m2) × v²

where m1 = 0.5 kg (mass of the first object),

m2 = 1.5 kg (mass of the second object),

and v is the velocity of the objects after the collision.

Using the conservation of mechanical energy:

0 + 0.2 J = (1/2) × (0.5 kg + 1.5 kg) × v²

0.2 J = 1 kg × v²

v² = 0.2 J / 1 kg

v² = 0.2 m²/s²

Taking the square root of both sides:

v = sqrt(0.2 m²/s²)

v ≈ 0.447 m/s

Therefore, the velocity of the boxes after the collision is approximately 0.447 m/s.

Read more about Principle of conservation of momentum here: https://brainly.com/question/7538238

#SPJ11

Show that the free-particle one-dimensional Schro¨dinger
equation for the wavefunc-
tion Ψ(x, t):
∂Ψ
i~
∂t = −
~
2
2m


,
∂x2
is invariant under Galilean transformations
x
′ = x −
3. Galilean invariance of the free Schrodinger equation. (15 points) Show that the free-particle one-dimensional Schrödinger equation for the wavefunc- tion V (x, t): at h2 32 V ih- at is invariant u

Answers

The Galilean transformations are a set of equations that describe the relationship between the space-time coordinates of two reference systems that move uniformly relative to one another with a constant velocity. The aim of this question is to demonstrate that the free-particle one-dimensional Schrodinger equation for the wave function ψ(x, t) is invariant under Galilean transformations.

The free-particle one-dimensional Schrodinger equation for the wave function ψ(x, t) is represented as:$$\frac{\partial \psi}{\partial t} = \frac{-\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2}$$Galilean transformation can be represented as:$$x' = x-vt$$where x is the position, t is the time, x' is the new position after the transformation, and v is the velocity of the reference system.

Applying the Galilean transformation in the Schrodinger equation we have:

[tex]$$\frac{\partial \psi}{\partial t}[/tex]

=[tex]\frac{\partial x}{\partial t} \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial t}$$$$[/tex]

=[tex]\frac{-\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2}$$[/tex]

Substituting $x'

= [tex]x-vt$ in the equation we get:$$\frac{\partial \psi}{\partial t}[/tex]

= [tex]\frac{\partial}{\partial t} \psi(x-vt, t)$$$$\frac{\partial \psi}{\partial x} = \frac{\partial}{\partial x} \psi(x-vt, t)$$$$\frac{\partial^2 \psi}{\partial x^2} = \frac{\partial^2}{\partial x^2} \psi(x-vt, t)$$[/tex]

Substituting the above equations in the Schrodinger equation, we have:

[tex]$$\frac{\partial}{\partial t} \psi(x-vt, t) = \frac{-\hbar}{2m} \frac{\partial^2}{\partial x^2} \psi(x-vt, t)$$[/tex]

This shows that the free-particle one-dimensional Schrodinger equation is invariant under Galilean transformations. Therefore, we can conclude that the Schrodinger equation obeys the laws of Galilean invariance.

To know more about transformation visit:-

https://brainly.com/question/15200241

#SPJ11

mn² Calculate the rotational kinetic energy in the motorcycle wheel if its angular velocity is 125 rad/s. Assume m-10 kg, R₁-0.26 m, and R₂-0.29 m. Moment of inertia for the wheel I- unit KE unit

Answers

Rotational kinetic energy in a motorcycle wheel Rotational kinetic energy in the motorcycle wheel can be calculated using the formula: KE = (1/2) I ω²

Where,I = moment of inertiaω = angular velocity of the wheel The given mass of the wheel is m = 10 kg.

Also, R₁ = 0.26 m and R₂ = 0.29 m.

Moment of inertia for the wheel is given as I unit KE unit. Thus, the rotational kinetic energy in the motorcycle wheel can be calculated as:

KE = (1/2) I ω²KE = (1/2) (I unit KE unit) (125 rad/s)²

KE = (1/2) (I unit KE unit) (15625)

KE = (7812.5) (I unit KE unit),

the rotational kinetic energy in the motorcycle wheel is 7812.5

times the unit KE unit.

To know about inertia visit:

https://brainly.com/question/3268780

#SPJ11

Please, choose the correct solution from the list below. What is the force between two point-like charges with magnitude of 1 C in a vacuum, if their distance is 1 m? a. N O b. 9*10⁹ N O c. 1N O d.

Answers

The force between two point-like charges with magnitude of 1 C in a vacuum, if their distance is 1 m is b. 9*10⁹ N O.

The Coulomb’s law of electrostatics states that the force of attraction or repulsion between two charges is proportional to the product of their charges and inversely proportional to the square of the distance between them. Mathematically, Coulomb’s law of electrostatics is represented by F = k(q1q2)/d^2 where F is the force between two charges, k is the Coulomb’s constant, q1 and q2 are the two point charges, and d is the distance between the two charges.

Since the magnitude of each point-like charge is 1C, then q1=q2=1C.

Substituting these values into Coulomb’s law gives the force between the two point-like charges F = k(q1q2)/d^2 = k(1C × 1C)/(1m)^2= k N, where k=9 × 10^9 Nm^2/C^2.

Hence, the correct solution is b. 9*10⁹ N O.

Learn more about Coulomb’s law at:

https://brainly.com/question/506926

#SPJ11

6. For a quantum mechanical system with the Hamiltonian H = hwZ, (a) Find the unitary matrix corresponding to exp(-itH) (b) Find the final state (t₂)) given the initial state (t₁ = 0)) = (10) + 1)

Answers

Given that the Hamiltonian is H = hwZ, we have to find the unitary matrix corresponding to exp(-itH) and the final state given the initial state.

Find the unitary matrix corresponding to exp(-itH)The unitary matrix corresponding to exp(-itH) is given as follows:exp(-itH) = e^(-ithwZ),where t represents the time and i is the imaginary unit. Hence, we have the unitary matrix corresponding to exp(-itH) as U = cos(hw t/2) I - i sin(hw t/2) Z,(b) Find the final state (t₂)) given the initial state (t₁ = 0)) = (10) + 1)The initial state is given as (t₁ = 0)) = (10) + 1).

We have to find the final state at time t = t₂. The final state is given by exp(-itH) |ψ(0)>where |ψ(0)> is the initial state. Here, the initial state is (10) + 1). Hence, the final state is given as follows: exp(-itH) (10) + 1) = [cos(hw t/2) I - i sin(hw t/2) Z] (10 + 1) = cos(hw t/2) (10 + 1) - i sin(hw t/2) Z (10 + 1)= cos(hw t/2) (10 + 1) - i sin(hw t/2) (10 - 1)= cos(hw t/2) (10 + 1) - i sin(hw t/2) (10 - 1)Therefore, the final state is [(10 + 1) cos(hw t/2) - i (10 - 1) sin(hw t/2)] . Therefore, the final state at time t₂ is given as follows:(10 + 1) cos(hw t/2) - i (10 - 1) sin(hw t/2)I hope this helps.

To know more about Hamiltonian visit:

https://brainly.com/question/33266122

#SPJ11

explain why the average rate per square meter at which solar energy reaches earth is one-fourth of the solar constant

Answers

The average rate per square meter at which solar energy reaches Earth is one-fourth of the solar constant because of the scattering and absorption of solar radiation in the Earth's atmosphere.

Solar radiation from the Sun consists of electromagnetic waves that travel through space. However, when these waves reach Earth's atmosphere, they encounter various particles, molecules, and gases. These atmospheric constituents interact with the solar radiation in two main ways: scattering and absorption.

Scattering occurs when the solar radiation encounters particles or molecules in the atmosphere. These particles scatter the radiation in different directions, causing it to spread out. As a result, not all the solar radiation that reaches Earth's atmosphere directly reaches the surface, leading to a reduction in the amount of solar energy per square meter.

Absorption happens when certain gases in the atmosphere, such as water vapor, carbon dioxide, and ozone, absorb specific wavelengths of solar radiation. These absorbed wavelengths are then converted into heat energy, which contributes to the warming of the atmosphere. Again, this reduces the amount of solar energy that reaches the Earth's surface.

Both scattering and absorption processes collectively lead to a decrease in the amount of solar energy reaching Earth's surface. Consequently, the average rate per square meter at which solar energy reaches Earth is one-fourth of the solar constant, which is the amount of solar energy that would reach Earth's outer atmosphere on a surface perpendicular to the Sun's rays.

Learn more about solar energy

brainly.com/question/32393902

#SPJ11

Which elements are created by each star? Blue Giants (use \( >10 \mathrm{M}_{\mathrm{S}} \) )

Answers

Blue giants are very massive stars, with masses of 10 to 30 times that of the Sun. They burn through their hydrogen fuel very quickly, lasting only a few million years.

During this time, they create a variety of heavier elements, including carbon, oxygen, neon, magnesium, and silicon.

When a blue giant dies, it can explode in a supernova, which releases even heavier elements into space. These elements can then be incorporated into new stars and planets, helping to create the building blocks of life.

Here is a table of some of the elements that are created by blue giants:

Element Atomic Number Created in Blue Giants

Carbon       6                                  Yes

Oxygen       8                                   Yes

Neon       10                                   Yes

Magnesium 12                              Yes

Silicon       14                                  Yes

It is important to note that the exact amount of each element that is created by a blue giant depends on its mass and its evolutionary stage. More massive blue giants will create heavier elements.

To learn more about Blue giants click here

https://brainly.com/question/32006272

#SPJ11

Obtain the thermal velocity of electrons in silicon crystal
(vth), mean free time, and mean free path by calculation. Indicate
the procedure.

Answers

The thermal velocity of electrons in Silicon Crystal (vth), mean free time, and mean free path can be obtained by calculation. Here is the procedure to obtain these quantities:

Procedure for obtaining vth:We know that the thermal velocity (vth) of electrons in Silicon is given by: [tex]vth = sqrt[(3*k*T)/m][/tex] Where k is the Boltzmann's constant, T is the temperature of the crystal, and m is the mass of the electron.

To calculate vth for Silicon, we need to use the values of these quantities. At room temperature [tex](T=300K), k = 1.38 x 10^-23 J/K and m = 9.11 x 10^-31 kg[/tex]. Substituting these values, we get: [tex]vth = sqrt[(3*1.38x10^-23*300)/(9.11x10^-31)]vth = 1.02 x 10^5 m/s[/tex] Procedure for obtaining mean free time:

Mean free time is the average time between two successive collisions. It is given by:τ = l/vthWhere l is the mean free path.

Substituting the value of vth obtained in the previous step and the given value of mean free path (l), we get:τ = l/vth

Procedure for obtaining mean free path:Mean free path is the average distance covered by an electron before it collides with another electron. It is given by:l = vth*τ

Substituting the values of vth and τ obtained in the previous steps, we get:[tex]l = vth*(l/vth)l = l[/tex], the mean free path is equal to the given value of l.

Hence, we have obtained the thermal velocity of electrons in Silicon Crystal (vth), mean free time, and mean free path by calculation.

To know about velocity visit:

https://brainly.com/question/30559316

#SPJ11

Other Questions
11kg of R-134a at 320kPa fills a rigid tank whose volume is 0.011m. Find the quality, the temperature, the total internal energy and enthalpy of the system. If the container heats up and the pressure reaches to 600kPa, find the temperature, total energy and total enthalpy at the end of the process. A connecting rod of length /= 11.67in has a mass m3 = 0.0234blob. Its mass moment of inertia is 0.614 blob-in. Its CG is located 0.35/ from the crank pin, point A. A crank of length r= 4.132in has a mass m = 0.0564blob. Its mass moment of inertia about its pivot is 0.78 blob-in. Its CG is at 0.25r from the main pin, O. The piston mass= 1.012 blob. The thickness of the cylinder wall is 0.33in, and the Bore (B) is 4in. The gas pressure is 500psi. The linkage is running at a constant speed 1732rpm and crank position is 37.5. If the crank has been exact static balanced with a mass equal to me and balance radius of r, what is the inertia force on the Y-direction? What are the five principal reactions that occurred duringprimodial nucleosynthesis?Name all the types of stable nuclei that remained afterprimordial nucleosynthesis had finished.At what proportio Blue Design Works generated $521,520 in operating income on sales revenue of $3,259,500. The company had $2,300,000 in assets on January 1 and $3,000,000 in assets on December 31.(a-b)(a) Calculate Blues margin.(b) Calculate Blues asset turnover. (Round answer to 2 decimal places, e.g. 0.65.)Calculate Blues return on investment. (Round answer to 2 decimal places, e.g. 5.12%.) Stability (3 marks) Explain why the moment of stability (righting moment) is the absolute measure for the intact stability of a vessel and not GZ. A certain company contains three balanced three-phase loads. Each of the loads is connected in delta and the loads are:Load 1: 20kVA at 0.85 pf laggingLoad 2: 12kW at 0.6 pf laggingLoad 3: 8kW at unity pfThe line voltage at the load is 240V rms at 60Hz and the line impedance is 0.5 + j0.8 ohms. Determine the line currents and the complex power delivered to the loads. State one possible hypothesis that can explain the global distribution of lactase persistence (lactose tolerance) and lactase nonpersistance (lactose intolerance). Be sure to include the following keywords in your explanation; selection, fitness, survival. You currently have $39,471 in an account that pays 5 percent interest. You plan to deposit in this account $3581 at the end of each year until the account reaches $124578. How long would that take? Enter your answer in 4 decimals (e.g. 5.1234). topic is depression among international students. i need answerfor the following headings.conclusionrecommendationsreference list Why taxonomic nomenclature is important? It provides the unified language for communication about biological diversity. It reflects evolutionary relatedness of taxa. Scientific names often capture important characteristics of the animals. It documents the history of science. All of the above. 15) UTI's with microbial etiology include: A. cystitus. B. Urethritis C. Leptospirosis D. A and B E. A, B and C 16) The cause of gonorrhea is a member of the genus: A. Borrelia B. treponema C. Neisseria D. Mycobacterium E. plasmodium 17) Which antibody is most import in immediate hypersensitivity reactions: A. IgG B. IgM C. IgA D. ISE 18) Which is true. Of. HPV (papillomavirus) A. Only two strains. Effect humans B. It can cause genital warts C. Less than 1% of women are effected D. No vaccine is available 19). Trichomonal. Vaginitis is caused by: A. Yeast B. Bacteria C. Protozoan D. Chlamydia E. A virus 20) Lyme disease A. Is highly contagious B. Early symptoms include rash and flu like symptoms etiology D. Mosquito vector C. Viral problem 1 onlyPROBLEM 1: A car travels a 10-degree inclined road at a speed of 20 ft/s. The driver then applies the break and tires skid marks were made on the pavement at a distance "s". If the coefficient of kinetic friction between the wheels of the 3500-pound car and the road is 0.5, determine the skid mark distance. PROBLEM 2: On an outdoor skate board park, a 40-kg skateboarder slides down the smooth curve skating ramp. If he starts from rest at A, determine his speed when he reaches B and the normal reaction the ramp exerts the skateboarder at this position. Radius of Curvature of the Identify the correct statement. For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a convergent-divergent nozzle. O A gas can always expand isentropically from subsonic to supersonic speeds, independently of the geometry O For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a convergent nozzle. O For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a divergent nozzle. If a Gaussian surface has no electric flux, then there is no electric field inside the surface. A E(True). B (Fale). You are evaluating the balance sheet for SophieLex's Corporation. From the balance sheet you find the following balances: cash and marketable securities $290,000; accounts receivable = $1,360,000; inventory $2,260,000; accrued wages and taxes = $580,000; accounts payable=$880,000; and notes payable = $760,000. Calculate SophieLex's current ratio. (Round your answer to 2 decimal places.) Current ratio Times Calculate SophieLex's quick ratio. (Round your ansiver to 2 decimal places.) Quick ratio times Calculate SophieLex's cash ratio. (Round your answer to 2 decimal places.) Cash ratio times Which one is the correct hierarchical sequence of the auditory stimulus processing? (Some intermediate structures may be omitted.)a) Vesibulocochlear nerve - Inferior Colliculus - Cochlear Nuclei - Medial Geniculate nucleus - Primary Auditory cortex.b) Cranial nerve VIII - Cochlear Nuclei Medial Geniculate nucleus - Inferior Colliculus - Primary Auditory cortex.c) Cranial nerve V - Cochlear Nuclei Inferior Colliculus - Medial Geniculate nucleus - Primary Auditory cortex.d) Hair cells Spiral ganglion cells Cochlear Nuclei Inferior Colliculus - Medial Geniculate nucleus - Primary Auditory cortex. 2014 used honda accord sedan lx with 143k miles for 12k a scam in today's economy? how much longer would it last? The pressure and temperature at the beginning of the compression of a dual cycle are 101 kPa and 15 C.The compression ratio is 12. The heat addition at constant volume is 100 kJ/kg,while the maximum temperature of the cycle is limited to 2000 C. air masscontained in the cylinder is 0.01 kg. Determine a) the maximum cycle pressure, the MEP, theamateur heat, the heat removed, the added compression work, the work ofexpansion produced, the net work produced and the efficiency of the cycle. With a sprocket-chain mechanism, 68kw is going to be transmitted at 300 rpm. Service factor (Ks) =1.3 correction factor (K)=1 in this case. Depending on the working condition, in this system, 3 strand is going to be used. Assume C/p-25, desing factor (n)=1.5 and reduction ration 2:1 (assume N=17). Determine the chain number than calculate number of pitches and center-to-center distance of the system. 2. For how many years will Prasad make payments on the $28,000 he borrowed to start his machine shop if he makes payments of $3,400 at the end of every three months and interest is 8.08% compounded semi-annually? (5 marks)